20. СООТНОШЕНИЯ МЕЖДУ ФАЗНЫМИ И ЛИНЕЙНЫМИ НАПРЯЖЕНИЯМИ ИСТОЧНИКОВ. НОМИНАЛЬНЫЕ НАПРЯЖЕНИЯ

Фазные напряжения источника отличаются от его ЭДС вследствие падений напряжения во внутренних сопротивлениях источника, а напряжения приемника отличаются от напряжений источника за счет падений напряжения в сопротивлениях проводов электрической сети. Пока же для упрощения анализа соотношений в трехфазных цепях будем пренебрегать указанными падениями напряжения.

Рис. 23. Векторные диаграммы фазных и линейных напряжений при соединении источника звездой

Применяя второй закон Кирхгофа поочередно ко всем фазам, при сделанном допущении и соединении источников звездой получим:

На основании этих выражений можно сделать вывод о том, что если генератор имеет симметричную систему ЭДС, то его фазные напряжения тоже симметричны, а векторная диаграмма фазных напряжений (рис. 23а) не отличается от векторной диаграммы ЭДС генератора.

На основании уравнений по второму закону Кирхгофа для контуров N1abN1, N1bcN1 и N1caN1 нетрудно получить следующие уравнения, связывающие линейные и фазные напряжения:

Можно построить векторы линейных напряжений Uab, Ubc и Uca.

Из векторной диаграммы (рис. 23а) следует, что при соединении источника звездой линейные напряжения равны и сдвинуты по фазе относительно друг друга на угол. Векторы линейных напряжений изображают чаще соединяющими векторы соответствующих фазных направлений, как показано на рисунке 23б. Из векторной диаграммы (рис. 23б) следует, что

Рис. 24. Векторная диаграмма фазных и линейных напряжений при соединении источника треугольником

Такое же соотношение существует между любыми другими линейными и фазными напряжениями. Поэтому можно написать, что вообще при соединении источника звездой

Линейные напряжения равны соответствующим фазным напряжениям:

Можно написать, что при соединении источника треугольником вообще U′л = U′ф

Векторная диаграмма фазных и линейных напряжений при соединении источника треугольником приведена на рисунке 24.

Загрузка...