Применение оператора Адамара ($H^ {n} $)
Оператор Адамара $H^ {n} $ применяется ко всем кубитам в системе и выполняет следующие действия:
1. Каждый кубит приводится в состояние суперпозиции, где вероятности нахождения в состоянии $|0\rangle$ и $|1\rangle$ равны.
2. Для получения произведения оператор Адамара применяется к каждому кубиту в системе.
Оператор Адамара $H^ {n} $ может быть записан следующим образом:
$$H^ {n} = \frac {1} {\sqrt {2^ {n}}} \sum_ {\boldsymbol {y}} (-1) ^ {\boldsymbol {x} \cdot \boldsymbol {y}} |\boldsymbol {y} \rangle,$$
где:
– $\boldsymbol {y} $ – битовые строки длины $n$,
– $\boldsymbol {x} \cdot \boldsymbol {y} $ – скалярное произведение битовых строк $\boldsymbol {x} $ и $\boldsymbol {y} $,
– $|\boldsymbol {y} \rangle$ – состояние кубитов, соответствующее битовой строке $\boldsymbol {y} $.
Применение оператора Адамара $H^ {n} $ в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ приводит каждый кубит в суперпозицию состояний $|0\rangle$ и $|1\rangle$, равновероятных состояний. Это означает, что каждый кубит имеет вероятности $1/2$ быть измеренным в состоянии $|0\rangle$ и $|1\rangle$.
Применение оператора Адамара является ключевым шагом в формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $, поскольку он подготавливает систему кубитов в равновероятное суперпозиционное состояние, подготавливая её для последующей операции сложения по модулю 2 и повторного применения оператора Адамара.
Оператор Адамара $H^ {n} $ применяется к каждому кубиту в системе и выполняет следующие действия:
1. Каждый кубит приводится в суперпозицию состояний $|0\rangle$ и $|1\rangle$.
2. Применяется оператор Адамара к каждому кубиту в системе.
После применения оператора Адамара к каждому кубиту, каждый кубит находится в равновероятной суперпозиции состояний $|0\rangle$ и $|1\rangle$. Это означает, что вероятности нахождения каждого кубита в состоянии $|0\rangle$ и $|1\rangle$ равны $1/2$.
Действие оператора Адамара на каждый кубит является важной частью формулы $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $. Оно создает начальное состояние системы кубитов, обеспечивает равномерную вероятность состояний и подготавливает систему к последующим операциям сложения по модулю 2 и повторному применению оператора Адамара. Это позволяет формуле $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ эффективно обрабатывать и изменять состояние каждого кубита на основе входных данных $\boldsymbol {x} $ и набора параметров $\boldsymbol {\theta} $.
Действие оператора Адамара на каждый кубит является одним из ключевых шагов в квантовых алгоритмах. Оно позволяет использовать суперпозицию состояний кубитов и межкубитные взаимодействия для решения определенных задач, которые классические алгоритмы могут решать намного медленнее или вообще не могут решить. Благодаря этому действию оператора Адамара, формула $\mathcal {F} (\boldsymbol {x}, \boldsymbol {\theta}) $ может быть эффективно применена в различных квантовых алгоритмах, позволяя достигать значительного ускорения и расширения возможностей вычислений.