Рассмотрим сразу определенный пример.
Мы уходим далеко от своего дома. На сколько – точно этого сами не знаем. Но зато точно знаем, что это далеко.
Так вот, чисто формальное понятие слова "далеко" и определяет свойства значения "бесконечность".
Видимо-невидимо – это второе, подобное первому свойство.
Много-премного – третье и т.д., т.п.
В силу разности восприятия окружающего, мы все стараемся определить понятие бесконечности.
Но выразить более конкретно все же не можем. Почему?
Потому, что у данного слова нет какого-либо цифрового значения.
Как понимать такое беззубое высказывание?
Ведь только минуту назад, мы определили, что конец существует всегда, как и всякое начало.
То есть, конец чего-то всегда соответствует какому-либо началу.
Неужели, в функции чисел нет своего завершения?
Тогда, возникает вопрос.
Все наши существующие исчисления просто примерны, а значит, неправдивы.
Откровенно говоря, просто ложны, так как теория чисел развивает свою силу до самого максимального предела.
Так почему же его все-таки не существует?
Для пояснения возьмем простой пример " 2+2=4 ".
Как видите, здесь всё ясно, и наш ум этого не отрицает, хотя целостность самого числа можно еще оспорить.
Но пока это оставим так, как есть.
Возьмем другое – вычитание.
5-4=1.
И здесь все ясно, как и в предыдущем.
Тогда, возьмем деление.
5:3=1,6666…
Как видите, подобная ситуация неразрешения возникает только при делении.
В остальных случаях мы имеем уже готовые величины, то есть окончательно выраженные.
Из этого следует, что теория чисел представляет собой некоторую теорию распада на определенные частицы, которые, в итоге, окончательного значения не имеют.
Значит, бесконечность – это процесс деления какого-либо числа на другое с незавершенным уровнем познания в окончательном выражении.
Соответственно, сама теория деления чисел попадает в аспект данного содержания.
То есть, на определенном этапе какая-то сила завершает или округляет это общее длительное выражение и заключает в себе, отрезая дальнейший процесс разложения на частицы.
Значит, в закругленной форме бесконечность обретает смысл какой-то обоснованной конечной величины и имеет свои пределы развития.
Дальнейшее же выражение продолжает деление по тому же принципу, исходя из оставшегося числового выражения, и уже имеет другую форму своего развития.
Таким образом, теория определения бесконечности приобретает смысл в закругленной форме выражения какого-либо числового значения.
Исходя из этого, предполагаемо высказываем, что оставшееся от деления остальное числовое выражение соответствующим образом продолжает процесс распада, но уже с иными первоначальными числовыми значениями, которые в результате какого-либо постороннего силового завершения будут иметь совершенно другое выражение – как численное, так и гектоскопическое в общем молекулярном составе.
Но возникает вопрос.
Имеет ли место общее первоначальное значение этого числового определения бесконечности пространства?
Да, имеет. Но оно относится только к самому пространству и по своей величине является бесконечно-опустошенным.
То есть, по мере высвобождения каких либо закругленных завершений или отдельных пространственных территорий, это число слагается и начинает отсчет нового деления.
Таким образом, это длится вечно, ибо существующие закругления очень малы по своему численному выражению и имеют свои пределы развития, то есть время существования, выраженное целостной единицей значения.
Значит, конец одной является началом другой. Разность может заключаться только в гектоскоплении каких-то отдельных частиц.
То есть, закругления не могут быть совершенно одинаковы, ибо они – продукт деления разных числовых значений.
Таким образом, бесконечность – сама по себе слагаемая величина из существующих числовых выражений гектоскопляемых величин пространственного периодического опустошения, то есть прекращения времени существования.
В свою очередь, время существования таких закругленностей строго определено временем деления гектоскопических частиц, их составляющих, которое в итоге имеет строгую конкретную величину.
Вечность – это синхронная работа величин закругленностей в процессе завершения времени их существования и возникновения следующего начала.
Таким образом, можно определить само слово "вечность".
Это строгая единица от деления различных числовых значений всех присутствующих величин.
Соответственно, бесконечность – это вечность во времени любого существования.
Из этого следует, что теория чисел само собой имеет свое завершение, которое не определяется в процессе общих преобразований тех же числовых выражений.
То есть, невозможно исчислить какое-либо действие, ибо первоначально определенное числовое значение имеет свойство изменяться в силу времени исполнения каких-либо преобразований в общем составе бесконечности.
Определяя время существования, можно сказать, что:
всякое численное выражение его равно простому натуральному числу, так как время деления гектоскопических частиц имеет строгое первоначальное функциональное значение.
Подведя общий краткий итог этой главе, можно определить следующее:
всякая величина имеет свой предел развития, который входит в общий состав бесконечности, определяемой вечностью от завершений времени существования тех же величин.
В любом случае, бесконечность – это выраженная общая единица гектоскопления, пролегающая во времени величин развития ее составляющих.
Таким образом, можно сказать, что она – это общее единичное выражение от делений составляющих величин.
Это пространственная бесконечность.
Относительно числовой имеется другая формулировка, которая вправе войти в определенную выше.
Бесконечность числовых значений лишь дополняет сказанное в силу своего фактического реального выражения.