Пифагор II: Число и гармония

Сущность всех струнных инструментов, будь это древняя лира или современная гитара, виолончель или пианино, одинакова: они производят звук с помощью движения струн. Качество звука, или тембр, зависит от множества сложных факторов, в том числе от материала струн, формы поверхности деки – «звукоотражателя», вибрирующего согласованно со струной, и способа извлечения звука из струны: щипком, проведением смычка или ударом. Но для всех инструментов существует основной тон или строй, который мы, слушая игру на них, распознаем как ноты. Пифагор – настоящий Пифагор – открыл, что музыкальный строй подчиняется двум удивительным правилам. Эти правила имеют прямую связь с числами, свойствами физического мира и нашим чувством гармонии (которая является одним из ликов красоты).

На следующем рисунке, который не принадлежит кисти Рафаэля, изображен Пифагор, проводящий эксперименты по гармонии.


Илл. 3. Средневековая европейская гравюра, изображающая Пифагора за изучением музыкальной гармонии.


Из рисунка мы можем сделать вывод, что Пифагор слушает, как изменяется звук его инструмента, когда он меняет два различных параметра. Зажимая струну в разных точках, он может варьировать рабочую длину вибрирующей части, а изменяя груз, который натягивает струну, он может менять ее натяжение

Гармония, число и длина: поразительная связь

Первое правило Пифагора устанавливает соотношение между длиной вибрирующей струны и нашим восприятием ее тона. Оно гласит, что две одинаковые струны с одним и тем же натяжением издают вместе приятный звук, когда длины струн пропорциональны небольшим целым числам. Так, например, когда соотношение длин составляет 1:2, тональности формируют октаву. При соотношении 2:3 мы слышим доминантовую квинту, а при 3:4 – мажорную кварту. В музыкальном нотном письме (в регистре «до») это соотносится с тем, что одна за другой проигрываются две ноты до различных диапазонов, до и соль или до и фа соответственно. Такие комбинации тональностей привлекательны для людей. Они стали основой классической и большей части народной музыки, а также поп- и рок-музыки.

Применяя правило Пифагора, мы должны понимать под длиной струны ее рабочую длину, т. е. длину той части струны, которая в действительности вибрирует. Зажимая струну и таким образом создавая мертвую зону, мы можем поменять тональность. Гитаристы и виолончелисты пользуются этой возможностью, зажимая струны пальцами левой руки. Делая это, они, зная об этом или нет, призывают к жизни Пифагора. На рисунке мы видим, как Пифагор подбирает рабочую длину струны, используя заостренные зажимы, которые нужны для того, чтобы добиться точности в измерениях. Когда звуки звучат вместе хорошо, мы говорим, что они находятся в гармонии или созвучны. Таким образом, Пифагор открыл, что та гармония звуков, которую мы ощущаем, отражает отношения, которые имеют место, казалось бы, в совершенно другом мире – в мире чисел.

Гармония, число и вес: поразительная связь

Второе правило Пифагора связано с натяжением струны. Нужное натяжение можно получить управляемым и хорошо измеряемым способом, отягощая струну грузами различного веса, как это показано на илл. 6. Здесь результат еще более интересен. Звуки находятся в гармонии, если натяжение пропорционально квадратам небольших целых чисел. Более сильное натяжение соответствует более высокой тональности. Так, соотношение натяжений 1:4 создает октаву и т. д. Когда музыканты настраивают свои инструменты перед выступлением, подтягивая или ослабляя струны, поворачивая колки, Пифагор снова возвращается.

Эта вторая закономерность впечатляет куда больше, чем первая, в качестве свидетельства того, что ощущения являются скрытыми числами. Она лучше спрятана, потому что числа должны быть обработаны – если быть точным, возведены в квадрат – до того, как закономерность станет очевидной. Соответственно потрясение от открытия куда сильнее. Также эта закономерность связана с весом предметов. А вес более безошибочно, чем длина, приводит нас к вещам материального мира.

Открытия и мировоззрение

Вот мы и обсудили три главных открытия Пифагора: его теорему о прямоугольных треугольниках и два правила музыкального созвучия.

Все вместе они связывают форму, размер, вес и гармонию общей нитью, которой оказываются числа.

Для пифагорейцев этого триединства открытий было более чем достаточно, чтобы склониться к мистическому мировоззрению. Вибрация струн – это источник музыкального звука. Она представляет собой не что иное, как периодическое движение, т. е. движение, которое повторяется через определенные интервалы времени. Мы также видим, что Солнце и планеты совершают периодические движения по небу, и делаем логический вывод об их периодических движениях в космосе. Таким образом, они тоже должны производить звуки. Эти звуки формируют Музыку сфер, музыку, которая наполняет космос.

Пифагор увлекался пением. Он также заявлял, что действительно слышал Музыку сфер. Некоторые современные ученые строят предположения о том, что исторический Пифагор страдал от тиннитуса, т. е. от шума в ушах. Конечно, с настоящим Пифагором не происходило ничего подобного.

В любом случае более широкий смысл этих открытий состоит в том, что все есть числа и что числа поддерживают гармонию. Пифагорейцы, помешанные на математике, жили в мире, наполненном гармонией.

Послание – в частоте

Я полагаю, что музыкальные правила Пифагора заслуживают того, чтобы считаться первыми количественными законами природы, когда-либо открытыми человеком. (Астрономические закономерности, начиная с регулярной смены дня и ночи, были, конечно, замечены намного раньше. Составление календарей и гороскопов, использование математики для предсказания или воспроизведения имевшего места в прошлом положения Солнца, Луны или планет являлись особыми практическими искусствами задолго до рождения Пифагора. Но эмпирические наблюдения за отдельными объектами весьма отличаются от изучения общих законов Природы.)

Странно поэтому осознавать, что мы до сих пор не понимаем до конца, почему они верны. Сегодня мы намного лучше понимаем физические процессы, связанные с получением, передачей и восприятием звука, но связь между этими знаниями и ощущением «нот, которые звучат хорошо вместе» пока что ускользает от нас. Думаю, по поводу этого существует большое количество многообещающих идей, которые близки к центральному понятию нашей медитации, поскольку (если они верны) проливают свет на важный аспект происхождения нашего чувства красоты.

Наше описание того, как и почему работают правила Пифагора, состоит из трех частей. В первой части звук колеблющейся струны достигает барабанной перепонки в нашем ухе. Во второй – звук, достигший барабанной перепонки, превращается в первичные нервные импульсы. В третьей – первичные нервные импульсы приводят слушателя к ощущению гармонии.

Колебания струны проходят несколько трансформаций, прежде чем достигают нашего мозга как послание. Они воздействуют на окружающий воздух напрямую, просто толкая его. Тем не менее само по себе дрожание отдельной струны достаточно слабое. На практике у музыкального инструмента есть звукоотражающая поверхность – дека, которая в ответ на колебания струны сама вибрирует гораздо сильнее. Движение деки толкает окружающий воздух более чувствительно.

Сотрясение воздуха вокруг струны или деки порождает свое собственное возмущение, которое становится нарастающим: звуковая волна распространяется во всех направлениях. Любая звуковая волна является повторяющимся циклом сжатия и разрежения. Воздух, колеблющийся в каждой точке пространства, оказывает давление на соседние участки, и они тоже начинают колебаться. В конце концов часть этой звуковой волны, пройдя сквозь ухо с его сложной геометрией, неизбежно достигает мембраны, которая называется барабанной перепонкой и находится на глубине нескольких сантиметров в слуховом проходе. Наша барабанная перепонка работает как антипод деки: теперь колебания воздуха вызывают механические движения, а не наоборот.

Колебания барабанной перепонки порождают дальнейшую реакцию, о которой мы сейчас расскажем. Но перед этим мы должны сделать одно простое наблюдение, которое тем не менее является фундаментальным. Может вызвать удивление, как в этот длинном ряду преобразований значимый сигнал, отражающий поведение струны, передается так далеко по цепочке. Дело здесь в том, что во всех этих трансформациях одно свойство сигнала остается неизменным. Число колебаний в единицу времени или, как мы говорим, частота остается одинаковой, независимо от того, была ли это вибрация струны, деки, воздуха или барабанной перепонки – или слуховых косточек, кохлеарной жидкости, базилярной мембраны или волосковых клеток, следующих далее по очереди. Поскольку во время каждой трансформации толчки и натяжения на предыдущей стадии вызывают сжатие и разрежение на следующей, в точном соответствии с изначальным сигналом, то, таким образом, различные виды колебаний оказываются синхронизованными или, как мы говорим, «одновременными». Вследствие этого мы можем ожидать и действительно увидим, что, если мы хотим, чтобы наше восприятие отражало свойства изначальных колебаний, полезно отслеживать частоту тех колебаний, которые в конце концов возникают в наших головах.

Таким образом, первый шаг к пониманию правил Пифагора – это перевод их на язык частот. Сегодня мы можем положиться на уравнения механики, которые позволяют вычислить, как меняется частота колебаний струны, если мы изменим ее длину или натяжение. Используя эти уравнения, мы находим, что частота уменьшается пропорционально длине и возрастает пропорционально квадрату натяжения. Следовательно, оба правила Пифагора, переведенные на язык частот, передают одно и то же простое утверждение. Они гласят, что ноты звучат хорошо вместе, если их частоты соотносятся как небольшие целые числа.

Теория гармонии

Теперь вернемся к тому, что происходит со звуком на второй стадии. Барабанная перепонка крепится к трем маленьким слуховым косточкам, которые, в свою очередь, прикреплены к мембранному «овальному окну», открывающемуся в спиралевидную улитку, которая является критически важным для слуха органом, играющим примерно такую же роль, как глаз для зрения. Она наполнена жидкостью, приходящей в движение от вибрации овального окна. В эту жидкость погружена длинная базилярная мембрана постепенно уменьшающейся толщины, которая, извиваясь, проходит через завитки спиралевидной улитки. Параллельно базилярной мембране пролегает кортиев орган. Именно в нем сигнал от струны наконец – после множества трансформаций – переводится в нервные импульсы. Детальное описание этих преобразований очень сложно и интересует только специалистов, но в целом картина проста и не зависит от этих деталей. Она состоит в том, что частота первоначальных колебаний переводится в серию возбуждений нейронов, имеющую ту же частоту.

Один важный аспект этого перехода особенно красив и соответствует духу учения Пифагора; в 1961 г. Дьёрдь фон Бекеши получил за него Нобелевскую премию. Поскольку толщина базилярной мембраны уменьшается вдоль длинной оси, различные ее части стремятся колебаться в разном темпе. У более широких частей инерция больше, поэтому они вибрируют медленнее, на более низких частотах, в то время как более узкие части вибрируют на более высоких частотах. (Из-за этого эффекта существует разница в общем тоне типично мужских и типично женских голосов. Во время пубертатного периода мужские голосовые связки утолщаются, что приводит к более низким частотам вибрации и более глубокому голосу.) Итак, после того, как звук после множества преобразований приводит окружающую жидкость в движение, реакция базилярной мембраны оказывается различной в разных местах по ее длине. Низкочастотные звуки приведут более широкие части в интенсивное движение, в то время как высокочастотные звуки затронут более узкие части[7]. Таким образом, информация о частоте перекодируется в информацию о местоположении.

Если спиралевидная улитка является для слуха тем же, чем глаз для зрения, то кортиев орган – это его сетчатка. Он работает параллельно с базилярной мембраной и находится очень близко от нее. Его детальная структура сложна, но, грубо говоря, он состоит из волосковых клеток и нейронов, причем каждая волосковая клетка связана со своим собственным нейроном. Движение базилярной мембраны, проходящее через промежуточную жидкость, передает усилие на волосковые клетки. Волосковые клетки двигаются в ответ, и их движение вызывает электрическое возбуждение[8] в соответствующих нейронах. Его частота остается той же, что и частота стимуляции, которая, в свою очередь, абсолютно такая же, как частота первоначального звука. (Для тех, кто хочет знать больше: частотные характеристики возбуждения зашумлены, но они содержат сильный компонент с частотой исходного сигнала.) Из-за того, что кортиев орган примыкает к базилярной мембране, его нейроны возбуждаются с частотой, зависящей от их пространственного расположения. Для нашего восприятия созвучий очень важно, что сигналы от нескольких одновременно звучащих тонов не полностью смешиваются. На различные тоны преимущественно отзываются разные нейроны! Таков физиологический механизм, который позволяет нам так хорошо различать тоны.

Другими словами, наше внутреннее ухо следует совету Ньютона – и предвосхищает его опыты со светом, проводя великолепный анализ с разложением поступающего звука на чистые тона. (Как мы обсудим позже, наша сенсорная способность анализировать частоту световых сигналов или, другими словами, цветовую составляющую света основана на других принципах и гораздо более ограничена.)

Теперь мы можем перейти к третьей части нашей истории. В ней сигналы от первичных сенсорных нейронов в кортиевом органе сочетаются и переходят в последующие нейронные слои в мозге. О том, что происходит здесь, мы знаем не так точно. Но только на этой стадии мы можем подойти вплотную к нашему главному вопросу:

«Почему звуки, частоты которых соотносятся как небольшие целые числа, дают приятное созвучие?»

Давайте рассмотрим, что происходит в мозге, когда звуки двух различных частот проигрываются одновременно. Тогда мы получаем два набора первичных нейронов, активно реагирующих с той же частотой, как и вибрация струны, породившая всю цепочку процессов. Эти первичные нейроны передают свой сигнал в глубины мозга «более высоким» уровням нейронов, где сигналы сочетаются и объединяются.

Некоторые из этих нейронов следующего уровня получат входящие сигналы от обоих наборов первичных возбужденных нейронов. Если частоты первичных нейронов соотносятся как небольшие целые числа, тогда их сигналы могут быть синхронизированы. (В этом обсуждении мы упрощаем реальный отклик, игнорируя шум и считая его в точности периодичным.) Например, если звуки формируют октаву, один набор нейронов будет колебаться в два раза быстрее другого и каждый нейрон из более медленной группы будет вступать в те же предсказуемые отношения с нейроном быстрой. Таким образом, нейроны, воспринимающие сигнал от обоих первичных наборов, получат вполне предсказуемый повторяющийся шаблон, который легко интерпретировать. Из предыдущего опыта (хотя, возможно, это врожденный инстинкт) эти вторичные нейроны – или более поздние нейроны, интерпретирующие их поведение, – «поймут» сигнал. Таким образом, для них становится легче предсказать будущие входящие сигналы (следующие повторы), а простые предсказания будущего поведения будут порождаться на протяжении многократных восприятий вибрации, пока звук не изменит свой характер.

Хочу отметить, что звуки, которые мы можем слышать, имеют частоты в пределах от нескольких десятков до нескольких тысяч колебаний в секунду, так что даже краткие звуки производят множество повторений, за исключением самых низкочастотных. На низких же частотах наше чувство гармонии иссякает, точно так же, как и эта мысль, которую я сейчас пытаюсь додумать.

Более высоким уровням нейронов, которые сочетают уже объединенные сигналы, нужен понятный входной сигнал, чтобы справиться со своей работой. Поэтому если наши «объединители» производят имеющий смысл сигнал и в особенности если их предсказания проходят проверку по времени, то в интересах нейронов более высокого уровня вознаградить их какой-либо положительной обратной связью или по крайней мере оставить в покое. И наоборот, если «объединители» производят неправильные предсказания, ошибки будут распространяться на более высокие уровни, немедленно породив дискомфорт и желание прекратить этот процесс.

Когда «объединители» будут производить неверные предсказания? Это произойдет, когда первичные сигналы почти, но не совсем синхронизированы. В этом случае колебания будут усиливать друг друга в течение нескольких циклов, и «объединители» проэкстраполируют эту модель. Они будут ожидать, что она продолжится, но этого-то и не произойдет! И в самом деле, звуки, которые только слегка различаются (как до и до-диез, например), особенно неприятны, если проигрываются вместе.

Если эта идея правильна, тогда в основе гармонии лежит успешное предсказание на ранних стадиях восприятия. (Этот процесс предсказания не нуждается и обычно не сопровождается привлечением сознательного внимания.) Успех в нем воспринимается как удовольствие или красота. Напротив, неудачное предсказание – источник боли или ощущения безобразия. Отсюда следует, что, расширяя наш опыт и знания, мы можем услышать гармонию, которая раньше была скрыта от нас, и избавиться от источников боли.

В историческом развитии западной музыки набор приемлемых комбинаций звуков постепенно расширялся. Отдельные люди при повторяющемся воздействии незнакомых им ранее мелодий также могут научиться наслаждаться сочетаниями звуков, которые изначально показались им неприятными. В самом деле, если мы заточены под то, чтобы получать удовольствие, учась делать удачные предсказания, тогда предсказания, давшиеся нам слишком легко, не доставят нам того огромного удовольствия, которое и должно быть в новизне.

Загрузка...