1. Формирование памяти



Как ученики убеждают себя, что они учатся

Когда Катина видит свою оценку, у нее на глазах выступают слезы. Вы уже догадываетесь, почему она вот-вот расплачется: она еле сдала экзамен. «Я просто не понимаю, почему я все забываю, когда пора писать тест, – настаивает Катина. – Дома или в классе мне все ясно. Но стоит мне увидеть тест, как я цепенею. Мне кажется, моя проблема в экзаменационной тревожности. Или, может, математика мне не дается. Мама говорит, что я вся в нее: ничего не понимаю в математике».

По всему выходит, что Катина – хорошая ученица. Результаты тестирования не выявили очевидных трудностей вроде нарушенных способностей к освоению чтения или математики. И Катина очень старается сосредоточиться на изучаемом материале. Она делает домашнее задание, хотя и не всегда выполняет его идеально. К тому же у нее отлично получается создавать поделки и заводить друзей. Другими словами, она творческий и приятный в общении человек.

Но не только у Катины математика вызывает стресс. Бен тоже страдает от этого. Федерико с трудом справляется с письмом, Джаред – с испанским, а Алекс – с таблицей химических элементов. В действительности примерно треть ваших учеников уже опустили руки и оставили попытки учить тот или иной предмет, ведь он им просто «не дается». Вы беспокоитесь, что, когда начнутся государственные экзамены, Катина и ее одноклассники со схожими проблемами понизят средний балл по школе. Вместе с общим средним баллом падает и общее настроение. А значит, падает и ваше настроение.

Что же все-таки происходит? Сможете ли вы помочь Катине, Джареду и остальным лучше освоить предметы, в которых они, казалось бы, слабее всего?

Обучение создает связи в долговременной памяти

Чтобы понять, что происходит, стоит сделать шаг назад и взглянуть на основные структурные единицы мозга – клетки под названием нейроны. В каждом из нас живет приблизительно 86 миллиардов нейронов. Нейронов у всех предостаточно – даже у самых трудных учеников их полно! Когда вы или ваши ученики знакомятся с новым фактом, концепцией или методом, в вашем мозге образуются новые связи между небольшими группами нейронов.

Если рассматривать только основные составные части нейронов, они покажутся довольно простыми. У них есть ножки, называющиеся дендриты. У ножек есть множество шипов, почти как колючек у кактуса (строго говоря, они называются дендритные шипики). А еще у них есть ручка под названием аксон.

Когда ученики упорно концентрируются на обучении, они запускают процесс, создающий связи между нейронами. Такие связи начинают формироваться, когда ученики сидят перед вами в классе, читают дома книжку, впервые пытаются совершить бросок из-под баскетбольного кольца или овладевают азами новой компьютерной игры. Другими словами, дети побуждают свои аксоны (ручки нейронов) вытянуться и почти дотронуться до дендритных шипиков.

Когда вовлеченный в процесс обучения нейрон оказывается поблизости от соседнего нейрона, через небольшое расстояние (синапс) между ними проскакивает сигнал. Двигаясь от нейрона к нейрону, такой сигнал формирует наши мысли. Именно на этом процессе завязано обучение.


Основные части нейрона легко запомнить – у него есть шипастые ножки и ручка. На этой иллюстрации некоторые особенности нейрона значительно увеличены для наглядности – теперь аксон, дендриты и дендритные шипики отчетливо видны.


Когда ученики узнают что-то новое, между нейронами формируются связи. Шипик одного нейрона приближается к аксону другого.


Группу связанных нейронов можно упрощенно изобразить как набор соединенных между собой точек. Более сильные связи обозначены толстыми линиями, более слабые – тонкими. Вокруг цепочки связей очерчен закрашенный кружок. Этот кружок и заключенные в него «точки нейронов» со связями представляют собой только что освоенную концепцию или идею.

Новые знания, новые связи

Когда ученики учатся, нейронные связи формируются и укрепляются. Мы называем этот процесс «новые знания, новые связи». Термин основан на теории обучения Хебба – процессе, в ходе которого возбуждающиеся практически одновременно нейроны связываются вместе. (Канадский психолог Дональд Хебб впервые описал этот процесс.) Иными словами, когда несколько нейронов начинают чаще действовать сообща, они превращаются в слаженный хор. На самом деле именно посредством «совместного пения» нейроны формируют последовательности связей друг с другом, как демонстрирует иллюстрация выше.


Новые знания, новые связи: на первой картинке слева видно, как нейроны обнаруживают друг друга, когда ученица знакомится с новой концепцией – например, во время краткого объяснения учителя, за прочтением учебника или просмотром видео. Связи зарождаются, пока ученица осваивает материал на практике (вторая картинка). Ученица активно прорабатывает новую идею, концепцию или методику, и связи закрепляются в долговременной памяти, формируя основы навыка (третья картинка). Применение материала по-новому распространяет процесс обучения дальше (четвертая картинка), что позволяет нейронам связаться с другими нейронами, относящимися к близким концепциям.


Чтобы разобраться, как нейроны связываются друг с другом, взгляните на изображения выше («Новые знания, новые связи»). Когда ученица только начинает изучать что-то, нейроны потихоньку находят друг друга и образуют связи, как показано на первой и второй картинке. Мы называем эту фазу новые знания. (Настоящие нейроны организованы более сложным образом в новой коре [неокортексе] – области головного мозга, которая по меркам эволюции сформировалась недавно и которая ответственна за мышление высшего порядка. Но здесь мы расположение нейронов упростим.)

Когда ученица закрепляет выученный материал, она создает более сильные связи, как видно на третьем изображении. К этому моменту она овладевает навыком. Практикуя то, чему она научилась, в новых стимулирующих условиях, ученица укрепляет базовые связи и распространяет их дальше, как продемонстрировано на четвертом рисунке. Мы обозначаем эту фазу укрепления и распространения как новые связи. Такую расширенную нейронную сеть символизируют крупные связующие звенья, включающие в себя больше нейронов.

Иногда люди думают, что место в долговременной памяти может закончиться. Это не так. Информационная емкость мозга составляет приблизительно квадриллион байтов. (Квадриллион равен единице с пятнадцатью нулями: представьте себе количество долларов на счетах у миллиона миллиардеров.) То есть в мозге может храниться гораздо больше информации, чем песчинок на всех пляжах и во всех пустынях мира.

Настоящая проблема памяти не в недостатке места. Трудность в том, чтобы запомнить информацию или извлечь ее из памяти. Немного похоже на подписку на музыкальный стриминговый сервис с почти бесконечным количеством песен: главное испытание заключается в том, чтобы найти песню, которая вам нужна. В жизни человека примерно 109 секунд, а в мозге – 1014 синапсов, так что мы можем себе позволить выделить 105 синапсов в секунду на восприятие мира.

Нейронные связи, о которых мы говорим, формируются в долговременной памяти. Образовывать такие связи бывает непросто. Представьте-ка вот что: ученица должна вытянуть дендритный шипик одного нейрона, чтобы аксон другого нейрона как-то с ним связался. И нейроны вовсе не обязаны соединяться только в одном месте. В целом кластеры нейронов должны установить десятки, сотни тысяч, иногда миллионы таких связей даже при изучении чего-то относительно простого – например, как произнести слово на иностранном языке или решить задачку на умножение наподобие 5 × 5.

Проблема вот в чем. Катина и Джаред не формируют связи в долговременной памяти, когда учатся. Вместо этого они помещают информацию в совсем другое место – во временное хранилище под названием рабочая память. Вообразите полку, висящую слегка под наклоном. Держать на ней вещи не очень удобно. Когда вы кладете на нее мячики (единицы информации), они падают, стоит вам убрать руку.

Но прежде чем углубиться в работу памяти, давайте пройдем короткий опрос – предварительную оценку[1] материала, который мы скоро рассмотрим.



Отметьте один из последующих пунктов, чтобы обозначить, какая методика помогает вам учиться эффективнее всего:

• перечитать

• выделить маркером или подчеркнуть

• активно запомнить (выполнить упражнения на повторение)

• нарисовать концептуальную карту, похожую на эту:


(Чтобы узнать ответ, проверьте сноску[2].)


Долговременная память и рабочая память

«Падающие с полки мячики», о которых мы упомянули в предыдущем разделе, подводят нас к рассмотрению различий между долговременной и рабочей памятью[3].

Долговременная память – говорящее название: в ней содержится информация, которую мы туда поместили несколько недель, месяцев или даже лет назад, и мы помним ее до сих пор. Как было продемонстрировано ранее, долговременную память можно представить в виде цепочек нейронных связей, которые образуются у детей при закреплении материала. Мы также установили, что нейронные связи накапливаются в новой коре – тонком слое нервной ткани, обволакивающем выступы и углубления в поверхности мозга. Укрепляя связи долговременного обучения посредством разнообразных видов практики, мы приводим механизмы обучения в хорошую форму. (Под разнообразными видами практики мы имеем в виду не только отработку одного и того же материала. Например, изучая иностранный язык, нет смысла просто сидеть и решать тесты на знание новых слов. Следует также использовать эти слова в разных предложениях и контекстах.)

Но рабочая память – временное хранилище идей – отличается от долговременной памяти. В отличие от нейронных связей, счастливо живущих в новой коре, рабочая память похожа скорее на осьминога, кидающего мячики. Такие мячики обозначают мысли, снова и снова скачущие из передней части мозга в заднюю, пока вы удерживаете идеи в рабочей памяти. Среднестатистическая рабочая память может удерживать до четырех «мячиков», не роняя их; при превышении этого числа идеи начинают вылетать из головы, как видно на картинке с четвероногом на странице 18. (К слову, ученики не могут заставить своих осьминогов отрастить дополнительные конечности. Но чем дольше ученик отрабатывает материал, тем крупнее становятся сами мячики информации. Мы скоро вернемся к этому.)

Сперва вам стоит узнать о любопытном нюансе рабочей памяти. Когда осьминог отвлекается от жонглирования мячиками, они могут испариться. Этим обусловливается один из самых занимательных аспектов рабочей памяти – ее коварная способность обманывать учеников, убеждая их, что они точно поместили что-то в долговременную память. Например, ученица внимательно разглядывает список с десятью новыми иностранными словами и думает: «Я все запомнила!» И она действительно помнит эти слова – до тех пор, пока смотрит на список.

Подобная проблема также возникает, когда ученица бросает взгляд на решение сложной математической задачи. «Зачем тратить время и решать все самой? – возможно, подумает она. – Я уже все запомнила». И она и правда помнит какую-то часть. Но лишь временно. Ученики попадают на фокус с исчезновением, когда приходит время сдавать экзамен. («Мне кажется, я слишком тревожусь насчет экзаменов» иногда означает «Я впадаю в панику, когда пытаюсь извлечь информацию из долговременной памяти, а ее там нет».)


Большинство людей способны удерживать в рабочей памяти не больше четырех единиц информации за раз. Но если отвлечься или попытаться держать в уме слишком много мячиков, все мысли до единой могут испариться!


Именно из-за такого «предательства» рабочей памяти ученики сами склоняются к перечитыванию материала и подчеркиванию основных мыслей. Что может быть удобнее и полезнее, чем лишний раз пробежаться глазами по тексту и выделить главное?

Но поместить информацию в долговременную память не так просто. Мы раскроем эту тему подробнее в третьей главе. Однако основная идея заключается в том, что упражнения на повторение – одна из лучших методик для закрепления новых знаний в долговременной памяти. Упражнения на повторение основаны на том, что вы сами вспоминаете выученный материал, а не подглядываете в ответы. Для повторения полезно использовать флеш-карточки для запоминания или попытаться вспомнить ключевые идеи параграфа, не глядя в учебник.

Как мы скоро увидим, упражнения на повторение – вовсе не простая методика бездумного заучивания. Они также способствуют формированию понимания на концептуальном уровне. Но обычно учеников нужно сначала научить, как пользоваться упражнениями на повторение. Им бывает сложно самостоятельно осознать, что эта – на первый взгляд занудная – методика приносит пользу.


Упражнения на повторение – один из лучших способов закрепить нейронные связи в долговременной памяти.


Рабочая память: мастерица обмана

Таким образом, мы подошли к главной мысли: невзирая на то, что разные виды памяти работают по-разному, ученики редко могут понять, хранится ли нужная информация у них в рабочей или долговременной памяти. Глядя в раскрытую книгу, Катина думает: «Я все запомнила!» Но ее знания на поверку хранятся в рабочей памяти, а не в долговременной.

Почему Катине и другим детям с похожими проблемами не удается хорошо сдать экзамены? Возможно, вы уже догадались. Когда Катина осваивает новую тему, она активирует свою рабочую память (отличный способ начать обучение). Но когда приходит пора отвечать на экзамене, в долговременной памяти у Катины почти нет нужной информации. Девочка впадает в панику.

Но почему так происходит, ведь Катина уделяет учебе много времени и сил?

Давайте посмотрим, как Катина изучает математику, а Джаред – испанский. Оба стараются. Но у обоих возникают трудности во время экзамена.

Когда Катина смотрит на учителя, знакомящего класс, например, с алгебраическими формулами, она поглощает информацию и следит за ходом мысли педагога при помощи своей рабочей памяти.

Позднее, когда Катина занимается алгеброй дома, она сперва быстренько пролистывает главу. Примеры кажутся ей понятными. Так что она сразу переходит к домашнему заданию и находит задачи, похожие на те, которые она решала в классе и только что видела в учебнике. Она начинает с решения этих задач: ведя пальцем по примеру, Катина записывает ответ на заданную на дом задачу. Если задача не похожа на пример, она изо всех сил пытается решить ее по образцу примера.

Обратите внимание, что проблема тут не в примерах. Труды педагога-психолога Джона Свеллера и его коллег показали, что демонстрация примеров и работа с ними оказывает неоценимую помощь учащимся в начальном формировании мысленных шаблонов, позволяющих им понимать и решать самые разнообразные задачи.

Дело вот в чем: во время занятий Катина ни разу не попыталась самостоятельно решить задачу, не глядя в решение. Она применяла для решения задач исключительно рабочую память. И хотя вечером перед экзаменом она перечитывает конспект несколько раз, неудивительно, что сам экзамен Катина сдает плохо.

Когда Джаред учит испанский, он рассматривает список новых слов, и ему кажется, что он знает их. И с чего бы ему не знать – они ведь прямо перед ним! Выполняя заданные на дом упражнения, он вставляет пропущенные слова, сверяясь с примерами. Готово? Отлично! Теперь можно и отдохнуть!

Не забывайте: скорее всего, никто не объяснил ни Катине, ни Джареду, как учиться продуктивно. Они делают все, что могут, – ведь они почти не знают, как устроен их мозг.

В следующих главах мы разберемся, как использовать полученные знания о создании связей и о разных видах памяти, чтобы помочь Катине, Джареду и множеству других учеников не растеряться во время экзамена. Мы также рассмотрим учеников, которые ловят все на лету. Как мы выясним, то, что ученик быстро соображает, еще не значит, что он достигнет успехов в учебе.

ТЕПЕРЬ ВЫ!

ЗНАКОМИМСЯ С АКТИВНЫМ ЗАПОМИНАНИЕМ

Как правило, ученики не имеют представления о различиях между рабочей и долговременной памятью. Это способствует тому, что они так легко ведутся на обман рабочей памяти и действительно думают, что выучили материал. Отличный способ справиться с этим – показать ученикам упражнение, которое научит их важной методике обучения – активному запоминанию. (Это одна из форм того, что психологи называют повторение.)

1. Во-первых, объясните ученикам разницу между рабочей и долговременной памятью. (Вы можете воспользоваться иллюстрациями из нашей книги. Их можно найти во вкладке «Загрузки» на сайте barbaraoakley.com.) Расскажите им, что рабочая память похожа на осьминога, которому приходится постоянно жонглировать информацией, чтобы удерживать ее в уме. Осьминог может удерживать всего четыре единицы информации одновременно, и эта информация легко может потеряться. С другой стороны, долговременная память представляет собой цепочку расположенных в мозге связей, за которые ученики могут потянуть и вспомнить что-то без труда – конечно, если им удалось построить длинные и прочные цепочки связей. (Если вы сможете создать у детей ассоциацию рабочей и долговременной памяти с изображениями осьминога и цепочки связей, то, соответственно, им будет проще запомнить.)

2. Потом разбейте учеников на пары и попросите их объяснить друг другу то, что вы им только что рассказали про разницу между рабочей и долговременной памятью.

3. Когда они закончат, объясните им, что они только что применили методику активного запоминания, то есть убедились, что поняли ключевую идею и запомнили ее. В данном случае они проверили себя, объяснив концепцию соседу.

4. Расскажите ученикам, как использовать активное запоминание самостоятельно. Для этого им понадобится только отвести глаза от изучаемого материала и проверить, могут ли они вызвать в памяти основную мысль, или вспомнить слово, или решить задачу без посторонней помощи. В своей чудесной книге «Мощное обучение»[4] Пуджа Агарвал и Патрис Бейн называют такое активное запоминание экзаменом «без оценок» – это простой способ узнать, попал ли материал в долговременную память, где он и должен храниться.

Не слишком удивительно, что, согласно исследованиям, методика активного запоминания формирует гораздо более глубокое понимание темы, чем любой другой подход, включая перечитывание, подчеркивание или выделение и составление концептуальной карты. (Мы объясним, почему так, во второй главе.)


ПРОДОЛЖАЕМ ФОРМИРОВАТЬ ПАМЯТЬ: ЗАМЕТКИ

Активное запоминание легко можно добавить в план занятий посредством заметок. Бодрым тоном напомните ученикам проверить, перенесли ли они материал из рабочей памяти в долговременную.

Заметки по теме урока. Раскрывая самые важные темы урока, сделайте паузу и попросите учеников взять чистый лист бумаги или стикер и набросать краткие заметки по основным идеям, не глядя в тетрадь. Пройдитесь по классу: беглый осмотр позволит вам определить, поспевают ли ученики за ходом урока и понимают ли ключевые концепции. Если позволяет время – после того, как большинство учеников справятся с задачей, попросите их разбиться на группы из трех-четырех человек, свериться друг с другом и обсудить выявленные ими ключевые идеи.

Заметки в виде рисунка. Попросите учеников сопроводить конспект рисунками, иллюстрирующими их понимание изучаемого материала. Если дать ученикам шанс проявить креативность, они могут лучше понять тему и отнестись к заданию с бо́льшим интересом. Заменять слова на рисунки также полезно для совсем юных учеников, которые еще только осваивают навыки письма.

Заметки по учебнику. Когда ученики читают в классе про себя, попросите их делать паузу в конце каждой страницы, чтобы отвернуться и проверить, могут ли они вспомнить основную мысль, не глядя в учебник. Пусть они запишут эту мысль. (Напомните ученикам, что они могут выполнять это упражнение и дома.) Опять-таки, если позволяет время, попросите их разбиться на пары и обсудить найденные ими основные мысли.

Заметки по пройденным темам. Попросите учеников по памяти набросать заметки на темы, пройденные ранее – вчера, неделю или месяц назад. (Это пример интервального повторения, когда между обучением материалу и его повторением имеется временной промежуток.)

Основные идеи главы

Обучение включает формирование, укрепление и распространение цепочек нейронных связей в долговременной памяти, расположенной в новой коре. Мы называем этот процесс «новые знания, новые связи».

Укрепление связи между звеньями цепи, происходящее во время практики, известно как теория обучения Хебба.

Существует много видов памяти, служащих разным целям. Для обучения в классе важнее всего рабочая память и долговременная память. Из рабочей памяти информация может испариться за несколько секунд, а в долговременной памяти она живет дольше и иногда остается там на всю жизнь (претерпевая незаметные, а порой и вполне заметные изменения).

В среднем в рабочей памяти может храниться до четырех «мячиков» информации. При превышении этого числа идеи вылетают у вас из головы.

Ученики часто помещают информацию в рабочую память и ошибочно считают, что сохранили ее в долговременной памяти. Впоследствии они плохо сдают экзамены, потому что не могут извлечь информацию из долговременной памяти, ведь она туда не попала.

Упражнения на повторение поощряют создание нейронных связей в долговременной памяти и укрепляют их, чтобы ученики не попались на уловки рабочей памяти.

Загрузка...