Демография

Сеть 65536 – сеть человека

Каждое человеческое существо связано со всеобщностью, включая природу и все человечество. Oнo внутренне связано с другими человеческими существами. Насколько тесна эта связь, еще предстоит исследовать.

Дэвид Бом «Развертывающееся значение»

Предложенная здесь математическая модель роста населения Земли может показаться плодом больного воображения. Возможно, существует другая, более адекватная ее формулировка. Но эта математика работает, т. е. правильно описывает рост, даты, циклы; она предсказывает, она проверяема – а только это и важно для подлинно научной теории по Карлу Попперу.

В защиту подобной точки зрения отсылаем читателя к популярному изложению квантовой электродинамики в книге Ричарда Фейнмана «Странная теория света и вещества», где автор на пальцах объясняет сложнейшую интерпретацию квантовой механики как интеграла по траекториям.

Здесь важно то, и Фейнман это подчеркивает, что описание движения частиц на языке «стрелочек и часов» ничуть не хуже, чем с помощью комплекснозначной волновой функции. Результат получается один и тот же. И этот результат проверен тысячами опытов. Но почему частицы ведут себя столь странным образом, отмечает Фейнман, – не понимает никто.

Развивает эту идею принцип моделезависимого реализма, предложенный Стивеном Хокингом. Согласно этому принципу, любая теория или картина мира представляет собой модель (как правило, математической природы) и набор правил, соединяющих элементы этой модели с наблюдениями. Причем моделей, описывающих данное конкретное явление, может быть несколько.

Если каждая из этих моделей соответствует наблюдениям, то нельзя сказать, что какая-то из них более реальна, чем другая. Здесь важно только то, насколько они отвечают наблюдениям. В одной ситуации можно использовать одну модель, в другой – другую. Хокинг и Млодинов подчеркивают, что не существует для нас, людей, какой-то абсолютной реальности и если мы выбираем данную конкретную модель, то выбираем и связанный с ней взгляд на реальность. Среди множества моделей (и реальностей) удобно выбирать:


A. Наиболее простую (или «изящную»).

B. Содержащую мало произвольных или уточняющих элементов.

C. Согласующуюся со всеми существующими наблюдениями и объясняющую их.

D. Дающую подробные предсказания результатов будущих наблюдений (если предсказания не подтверждаются – модель отвергается) [51].


Наша демографическая теория и демографическая теория Капицы, в отличие от всех прочих, удовлетворяет всем этим условиям. Но наша теория, хотя и изоморфна феноменологической теории Капицы, но значительно ее проще. Кроме того, она делает больше проверяемых предсказаний, следовательно, на наш взгляд, предпочтительнее.

Действительно, описанный выше рост сети 65536 в точности соответствует росту численности населения Земли. Необходимо только постулировать некоторые положения, связывающие растущую сеть и мировую демографию. Прежде всего, постулируем глобальную связность носителей ИС (каждый с каждым) в любой момент времени и на любой стадии ее роста. Затем, сформулируем первый закон Сети:


Время цикла растущей сети есть величина постоянная на всех стадиях ее роста[35].


На момент завершения каждого цикла численность носителей должна быть равна строго определенному значению плюс-минус небольшая погрешность. Для Сети перевыполнение плана, вероятно, предпочтительнее, поскольку избавиться от избыточных носителей проще, чем добавить недостающие. Это можно сделать с помощью войн, болезней и эпидемий (ясно, что ценность человеческой жизни с точки зрения Сети не слишком высока, да еще и падает по мере ее роста).


Для дальнейшего нам понадобятся результаты исследования роста населения Земли, полученные Фёрстером:


Рис. 1. Результаты исследования Фёрстером и коллегами роста населения мира за последние 20 столетий.


Эмпирическая гипербола Фёрстера была получена методом наименьших квадратов при обработке данных по динамике роста населения мира от начала новой эры до 1960 года; где α – это показатель степенной функции, который в формуле зависимости численности от времени обычно округляется до минус единицы. Если использовать результаты Фёрстера и принять, что α = −1 – необходимо несколько увеличить постоянную Фёрстера при той же стандартной ошибке. Этот вопрос будет подробно рассмотрен в главе «Константы Капицы».


Население Земли многие тысячи лет росло по закону гиперболы – закону, по которому не растет ни одна популяция в природе. По мнению С.П. Капицы, такой рост стал возможен благодаря появлению зачатков сознания у наших далеких предков. Сеть 65536 также росла по закону гиперболы. Но как связать Сеть и мировую демографию? Проще всего было бы считать, что каждый живущий человек независимо от его пола, возраста, расы… является носителем растущей Сети. Но вряд ли это будет правильно.

Действительно, ведь, что значит живущий? Ясно, что до зачатия и после смерти человека нет и он не может считаться носителем Сети. Но всякий ли ныне живущий человек обладает необходимым уровнем сознания, может быть управляем Сетью и выступать в качестве ее носителя? (Здесь, и в ряде случаев в дальнейшем, носителями Сети или просто носителями будем называть тех представителей рода человеческого, которые составляют единое целое с клаттером нулевого ранга Сети человека или ее клаттером-носителем.)

Если говорить о взрослых людях, полноценных членах социума, то все они, независимо от возраста и прочих различий, должны считаться носителями Сети. (Это, кстати, вносит неснижаемую прибавку в показатель «ценность человеческой жизни»: одинокая девяностолетняя пенсионерка, сохранившая ясность ума, является носителем Сети и уже поэтому необходима и ценна для эволюции так же, как и ее сосед – молодой человек в полном расцвете сил, работающий на трех работах.)

Но вряд ли можно считать носителями нерожденных младенцев, стариков, с мозгом, пораженным болезнью Альцгеймера или Паркинсона; людей, страдающих тяжкими психическими заболеваниями и потерявших всякую связь с реальностью; находящихся в коме или в состоянии клинической смерти.

Это же, по-видимому, относится и к новорожденные детям, поскольку они не обладают базовыми показателями человеческого сознания и у них отсутствует самосознание. Ответить на вопрос: в каком возрасте ребенок начинает осознавать себя как личность? – позволяет, как считается, так называемый «зеркальный тест»[36]. Суть его в следующем: на щеку ребенка незаметно наклеивают маленькую бумажную метку и ставят его перед зеркалом. Если ребенок, уже наблюдавший ранее себя в зеркале, отождествляет личность, которую ощущает внутри себя и ту, что видит в зеркале, то попытается потрогать или снять метку, если нет – он ее не заметит.

Дети проходят «зеркальный тест» в возрасте от 18 до 24 месяцев. Следовательно, именно в этом возрасте мы начинаем осознавать себя как личность. Из животных «зеркальный тест» в той или иной степени подтвержден для высших приматов, слонов, дельфинов и врановых: они узнают себя в зеркале.

Зачатки человеческого сознания, которое превосходит сознание высших приматов, появились у наших далеких предков тогда, когда они стали пользоваться орудиями труда, когда у них появился праязык и в примитивной форме социальная деятельность. Но в каком возрасте ребенок, его растущий мозг достигает такого уровня развития? На каком этапе своего роста? Когда его можно сравнить с нашим далеким предком, жившим 1,7 млн лет тому назад и оказавшимся способным «нести на себе» сеть четвертого ранга?

Ранг Сети человека равен четырем, он на единицу больше ранга сети гоминид. Только человек может быть носителем сети четвертого ранга. Что же отличает человека от животного? Очевидно, человеческое сознание. (Что бы ни говорили о сознании высших приматов – до человека им далеко.) Итак, уровень сознания носителя Сети в наше время должен быть не меньше, чем у тех наших далеких предков, которые были носителями Сети человека в момент начала ее роста.

Считается, что зачатки человеческого сознания появляются у ребенка в возрасте около трех лет. Именно тогда он может уже говорить и начинает правильно употреблять личные местоимения. Детские эмоции развиваются с каждым годом, а эмоции играют важную, если не центральную роль в работе сознания.

Так, младенец способен испытывать всего лишь две эмоции: радость и горе, даже страх ему еще неведом; в 6 месяцев появляется эмоция страха; с 6 до 18 месяцев ребенок учится распознавать эмоции на лицах окружающих и, кроме того, он уже способен удивляться; с двух лет он может пройти «зеркальный тест». После трех лет ему становится доступно столь сложное эмоциональное состояние как муки совести (психологический опыт «горькая конфета»).

В возрасте от трех до пяти лет, как считают психологи, ребенок уже может испытывать все базовые эмоции и начинает осознавать себя как часть социума. Следовательно, можно предположить, что именно в этом возрасте он достигает уровня развития Homo ergaster и может стать носителем Сети.

Статистика численности детского населения по годам нам неизвестна, возможно, что в каких-то странах она вообще не ведется. Но известно, что в наше время дети в возрасте до 14 лет составляют примерно треть населения планеты. Считая процент детской смертности небольшим, можно оценить долю детей в возрасте до трех лет от общей численности населения Земли в наше время в 7 %: (1/3)·(3/14) = 1/14 ≈ 7 %. В прошлые же времена (до XIX века) дети составляли примерно половину большинства древних обществ. И долю детей в возрасте до трех лет от общей численности можно оценить, соответственно, в 11 %: (1/2)·(3/14) ≈ 11 %

* * *

Попробуем теперь связать Сеть и мировую демографию. Положим C = kC′, где C – постоянная Фёрстера, а C′ – постоянная сети четвертого ранга, аналогичная постоянной Фёрстера. Здесь k – это зомби-коэффициент, учитывающий то, что не все посчитанные в переписи населения люди являются носителями Сети человека.

Принимая во внимание тот факт, что в прошлые века продолжительность жизни была меньшей и процент детей был, соответственно, большим, чем в наше время, а также имеющуюся во все времена небольшую добавку в виде людей, не обладающих сознанием по причине болезней, положим k = 1,14. Заметим, что величина этого коэффициента может несколько отличаться от принятой здесь, причем без всякого ущерба для полученных в дальнейшем результатов как в качественной, так и в количественной форме.


Сформулируем второй закон Сети:


• Множество всех живущих людей можно представить в виде суммы двух подмножеств: Первое (91 %[37]) – люди обладающие сознанием, носители Сети; второе (9 %)можно разделить на две категории: дети до трех лет, в будущем носители Сети, и зомби, лишенные сознания и навсегда (за редкими исключениями) выпавшие из Сети.


Найдем, исходя из нашей теории, время цикла сети четвертого ранга, Сети человека: τ4 = T13/N4, где N4 = 42399 – полное число циклов роста сети 65536; T13 = Тu/213 – продолжительность 13-й эпохи универсальной эволюции или время эволюции человека (Тu ≈ Т = 13,81 ± 0,06 млрд лет – время от Большого взрыва до сингулярной точки эволюции; Т – возраст Вселенной: время от Большого взрыва до наших дней.) Получаем τ4 = τ = 39,75 ± 0,2 лет.

Применим формулу теоретической гиперболы, описывающей рост Сети (но не рост народонаселения!). Учитывая, что клаттер содержит 65536 носителей, а время измеряется в циклах Сети человека, можно вычислить постоянную C′:


Рис. 2. Подсчет постоянной C′ Сети человека (ce – целая часть числа: ce(6.7) = 6), i = 0 … 255 – номер цикла Сети человека, начиная с неолита).


Эмпирическая гипербола Фёрстера и теоретическая гипербола, описывающая рост Сети человека, должны иметь общую точку сингулярности. Кроме того, поскольку эти гиперболы с учетом зомби-коэффициента k должны полностью совпадать, то, как это видно из формулы на рис. 2, необходимо, чтобы kК42τ = C. Где К4 = 65536 – вес клаттера растущей сети четвертого ранга, τ – время ее цикла, а С – постоянная Фёрстера.

Теоретическое значение постоянной Фёрстера в таком случае будет равно: C = kC′ = kK42τ = 1,14·170,7 = 194,6 млрд лет. Учитывая, что зомби-коэффициент k был выбран нами с некоторой степенью произвола, возьмем для дальнейших вычислений круглое значение: C = 200 млрд лет, которое, по мнению ряда исследователей, наилучшим образом отвечает демографическим данным.

Как будет показано нами далее, время цикла растущей Сети равно постоянной времени Капицы: τ4 = τ. С.П. Капица в своей работе [1] вычислил постоянную τ, используя данные за последние 250 лет. Зависимость численности населения от времени он аппроксимировал арккотангенсоидой: гладкой кривой, близкой к логистической на интервале 2τ.

Введение постоянной времени, как временно́го масштаба явления, было совершенно необходимо. Для оптимальной модели (номер три, с арккотангенсоидой), включающей и мировой демографический переход, были получены значения τ и К, мало отличающиеся от 40 и 65536·√1,14 ≈ 70000:


Рис. 3. Постоянные Капицы.


Для того, чтобы управлять ростом численности населения Земли Сеть человека применяет целый арсенал средств, который еще предстоит изучить. Одним из таких средств могут быть вирусы.

В 2016 году Дэвид Энард и его коллеги из Стэнфордского университета (США), изучая структуру 1300 «человеческих» белков, выяснили, что вирусы управляли нашей эволюцией с момента отделения предков человека от других человекообразных обезьян. Эти белки и связанные с ними гены, как показали ученые, не были обязательной частью иммунной системы: большая часть из них отвечала за работу совершенно других функций клеток и тела.

«…То, что наша вечная война с вирусами сформировала фактически все части нашего организма – не только горстку белков, борющихся с инфекциями, а абсолютно всё – является ошеломительным откровением для нас. Жизнь борется и сосуществует с вирусами уже миллиарды лет, и наша работа показывает, что это сосуществование затронуло все части клетки», – заключает Дмитрий Петров, коллега Энарда[38].

Но как вирусы могли управлять ростом населения Земли? Воздействуя на геном, они могли изменять продолжительность человеческой жизни, они же всегда были ответственны за процесс зачатия в женском организме, подавляя реакцию иммунной системы на отторжение чужеродного генетического материала. Кроме того, вирусные инфекции приводили во все времена к гибели миллионов людей. Так, чума в Азии и Европе в XIV веке унесла жизни более 60 миллионов человек. А численность умерших от испанки в 1918–1920 годах прошлого века (100 млн человек) превосходит потери в первой мировой войне. Вирусы продолжают убивать и в XXI веке – Covid 19.

Кроме вирусных эпидемий, выводивших избыточные носители из Сети, таким средством во все времена были войны. Войны развязывались и развязываются по множеству разнообразных причин, но первопричиной всегда была управляющая система – Сеть человека. Воздействуя на подсознание социума, Сеть также могла управлять репродуктивными способностями человека, определяя число детей в среднестатистической семье, и увеличивать среднюю продолжительность человеческой жизни через жизнесберегающие технологии.

Так, лекарственный или наркотический препарат воздействует на какой-то орган или на организм в целом, а не на отдельную клетку. По сути, это было управление случайным процессом с моделированием значимых в будущем изменений на отдельных подмножествах. Итак, третий закон Сети:


Сеть управляет социумом, воздействуя на человеческий геном и общественное подсознательное.


Кроме того, численность населения Земли как функция времени внутри цикла может иметь произвольный вид при выполнении следующих условий:


• Непрерывность этой функции.

• Плановый, с нарастающим приоритетом, прирост клаттеров за цикл, на момент достижения Сетью гармонической и совершенной стадии своего роста.


Для построения модели необходимо иметь начало отсчета. В 1978 году численность населения Земли достигла круглого значения: K42 = 232 = 4.3·109 человек. Но Сеть человека, с учетом того, что только 91 % от этого числа являлись ее носителями, не доросла тогда до совершенной, а стала таковой лишь в 1982 году: N(1982) = 4,72 млрд; k·K42 = 1,1·232 = 4,72 млрд.

Поэтому выберем за такое начало 1982 год – тот момент времени, когда Сеть стала совершенной. Точка сингулярности гиперболы мирового демографического роста отстоит, согласно нашей модели, от того момента времени, когда Сеть становится совершенной на время цикла Сети: t0 = 1982 + 40 = 2022 год. Это значение соответствует в пределах погрешности результатам работы Фёрстера и его коллег.

Необходимо отметить, что обозначенные здесь даты достаточно условны, так как любые расчеты, связанные с численностью человечества, имеют определенную погрешность. По мнению специалистов, ее значение может доходить до двух лет. С учетом этого обстоятельства следует смотреть и на дату завершения перехода: tп = 2022 + 40 = 2062 год.

Итак, поскольку наша модель дает для постоянной Фёрстера и точки сингулярности значения С = 200 млрд, t0 = 2022 год, мало отличающиеся от значений, полученных Фёрстером и его коллегами (C = 179 ± 14 млрд, t0 = 2027 ± 5, p = 0,99 ± 0,009), можно говорить о хорошем совпадении теоретической гиперболы с эмпирической. (Эмпирические константы С и t0 будут еще меньше отличаться от теоретических у гиперболы с p = 1, наиболее близкой к гиперболе Фёрстера: С = 188 млрд, t0 = 2025 ± 3, см. главу «Константы Капицы».)

Время старта Сети человека T13 = Тu/213 = 13810/8192 ≈ 1,69 млн лет назад. Этот результат совпадает с данными палеодемографии, согласно которым 2 млн лет назад проживало примерно 100 тысяч представителей рода Homo. Если считать, что Сеть стартовала с двух клаттеров, то для момента времени, с которого началась эволюция представителей рода Homo, приведшая к появлению современного человека (-Thomo = -1,69 млн лет), теоретическая численность равна 2·k·K = 150 тысяч.

Формально можно допустить, что Сеть 65536, достигнув совершенной стадии своего роста, создала в процессе операции репликации не одну, а две или большее число своих копий. Однако такое допущение не соответствует данным палеодемографии. Так, если предположить, что Сеть человека стартовала не с двух, а с трех клаттеров, время ее роста будет примерно равно:


Рис. 4. Подсчет времени эволюции человека при старте Сети с трех клаттеров.


Это приближенное значение согласуется с данными палеодемографии, согласно которым один миллион лет назад проживало порядка 180 тысяч человек. Модель требует 224 тысячи. Однако этот результат не соответствует периодизации эволюционного процесса согласно прогрессии эволюции, и, кроме того, есть дополнительные соображения, связанные с временем цикла Сети 256, которые не позволяют принять такой сценарий.

Сеть 256 в своей эволюции проходит 173 цикла за время 3,4 млн лет. Постоянная цикла равна примерно 20 тыс. лет, следовательно, где-то за 40 тыс. лет до момента старта Сети человека численность первых представителей рода Homo составляла 65536·1.14 ≈ 75000, что и не соответствует данным палеодемографии. Если же допустить, что рост Сети стартовал с четырех клаттеров, то произошло это событие 0,8 млн лет назад, что не лезет ни в какие ворота. Итак, выбираем первый сценарий и рассмотрим начальные этапы роста Сети.

Определим время эволюции человека как интервал времени, разделяющий момент старта роста Сети человека (с двух клаттеров) и старта Сети вида, следующего за человеком (также с двух клаттеров): Tevol = 1,69 млн лет. Здесь же следует отметить, что хотя время репликации и входит в Tevol, однако представляется разумным считать, что эволюция любой авангардной системы заканчивается вместе с последним циклом роста ее Сети. (Cм. главу: «Гармонические сети и ноосфера».)

Первый этап роста Сети человека

Рост Сети человека от 2-х до 256-ти клаттеров

Первый этап роста Сети 65536 от 2-х до 256-ти клаттеров может быть представлен как последовательность звеньев, в момент завершения каждого из которых размер сети увеличивался на единицу. Первая стадия этого процесса при росте Сети от двух до трех клаттеров была самой продолжительной. Она состояла из 65536/4 = 16384 циклов и заняла 16384·39,75 ≈ 650 тыс. лет (копировалось 4 носителя за цикл).

Средняя скорость роста сети составляла 4/39,75 ≈ 0,1 носителя в год. Постоянство скорости роста связано с первым законом Сети: прирост за цикл, т. е. за 40 лет, должен был составлять (по крайней мере в среднем) 4 носителя на протяжении 16384 циклов. Вторая стадия роста Сети от трех до четырех клаттеров заняла 65536/9 = 7282 цикла и, соответственно, 7282·39,75 ≈ 290 тыс. лет. Средняя скорость роста популяции была равна: 9/39,75 = 0,23 носителя в год[39].

Длительность первого исторического периода как времени роста Сети от гармонической с размером 2 до гармонической с размером 4 равно: 650 + 290 = 940 тыс. лет. Подсчитывая далее времена роста Сети от одного гармонического размера до другого, следующего за ним, можно найти все 15 периодов эволюции и истории, вплоть до второй половины XX века. И, если выписать отношения длительности каждого предыдущего периода к последующему, то получим числовую последовательность, состоящую из 14-ти членов:


2.4, 2.2, 2.1, 2.0, 1.9, 1,7, 2.6, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0


Наибольшая степень сжатия периодов гармонического достижения происходит на начальном этапе антропогенеза (2.4) и во время неолита (2.6). Этот числовой ряд и периоды эволюции, с ним связанные, можно разделить на две части:


2.4, 2.2, 2.1, 2.0, 1.9, 1,7, 2.6 – до неолита и неолит.

2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0 – после неолита.


Поскольку после неолита длительность каждого последующего цикла сокращается по сравнению с предыдущим в два раза, а размер Сети возрастает за это время также в два раза – рост этого размера идет по закону простой гиперболы. Чего не скажешь о его росте до неолита: здесь коэффициент сжатия не является постоянным, а уменьшается от 2.4 до 1.7 и кривая роста в первой своей части не является гиперболической.

Гиперболой ее можно считать лишь в первом приближении. Но уже и такого представления достаточно, чтобы понять, что единой гиперболической зависимости, в соответствии с которой происходил рост населения Земли на всех этапах эволюции и истории – не существует. Разрыв в динамике изменения коэффициента сжатия (1.7 —> 2.6) говорит о том, в эпоху неолита произошел скачок скорости роста и начался демографический взрыв.

Что касается раннего (нижнего) палеолита, то поскольку никакими более-менее надежными данными по численности в это время мы не располагаем, то и сравнивать теоретические данные здесь не с чем. Для верхнего палеолита (40—12 тыс. лет назад), когда человек расселился по всей Земле, существуют данные и оценки разной степени надежности, учитывая которые Мак-Эведи и Джоунс предложили гиперболическую зависимость [4]:


Рис. 1. Гипербола Мак-Эведи и Джоунса [39].


Теоретическая зависимость N = 200/(2022 − t), полученная ранее, с учетом погрешности в определении постоянной Фёрстера, практически не отличается от гиперболы Мак-Эведи и Джоунса. Следовательно, теория хорошо соответствует имеющимся демографическим данным для времен до 8154 года до н. э. Точность всех дат зависит от точности определения начала перехода: 1982 год (слабо) и от точности, с которой известна постоянная цикла τ = 39.75 лет (сильно).

Второй этап роста Сети человека

Последние 255 циклов роста Сети человека

1.7 млн лет и 42142 цикла понадобилось Сети, чтобы собрать 256 клаттеров. 42143-ий цикл был первым циклом, в процессе которого с нуля был собран дочерний клаттер. Начало этого цикла – восемь тысяч лет до нашей эры – было началом эпохи неолита: времени перехода от охоты и собирательства к оседлому образу жизни, появлению сельского хозяйства, домашних животных, культурных растений.

Именно в этот момент времени Сеть человека достигает гармонической стадии своего роста, но вопрос о том, как это повлияло на социум, мы рассмотрим позже. Почему десять тысяч лет тому назад началась новая эра в истории человечества?

На самом деле Сети это было известно еще во время старта, и по мере приближения к этому моменту она выбрала из всех возможных сценариев тот, который обеспечивал необходимую динамику ее роста.

Здесь нужно ясно понимать, что не культурные и технологические достижения неолита были первопричиной ускоренного роста численности населения мира, а плановые потребности Сети по приросту числа ее клаттеров.


Здесь и в дальнейшем Сетью (в смысле имени собственного) будем называть изначально существующую и прогрессирующую ментальность природы, выражающуюся в плановом, эквифинальном росте биниальной иерархической сети соответствующего ранга на множестве носителей текущей авангардной системы эволюции.


В качестве материальных носителей иерархических сетей различных рангов выступали представители авангардных систем ядерной, химической, биологической и социальной эволюции – от бариона до человека. Рост Сети человека от 256-ти до 65536-ти клаттеров описывается теоретической гиперболой:


Рис. 1. Теоретическая зависимость числа клаттеров Сети от номера цикла от неолита до перехода; ce(X) – ближайшее целое, меньшее или равное X (ce(2.3) = 2).


Найдем зависимость численности носителей Сети от 8154 года до н. э. до 1982 года н. э. Интерполируем кубическими сплайнами функцию численности населения мира, заданную на сетке с шагом 39.75 года:


Рис. 2. Зависимость численности носителей Сети от 8154 года до н. э. до 1982 года.


Запишем это в системе MathCAD:


Рис. 3. Сравнение гиперболы Мак-Эведи и Джоунса с теоретической гиперболой при k = 1.0, k = 1.1, k = 1.2 (k эомби-коэффициент) на временах от начала неолита до 1982 года.


При k =1.1 теоретическая гипербола сливается с гиперболой Мак-Эведи и Джоунса. Сравним теперь теоретическую гиперболу (k = 1.1) с гиперболами Фёрстера и Хорнера за последние два столетия:


Рис. 4. Зависимость численности Земли за последние два столетия для гипербол Фёрстера, Хорнера и теоретической гиперболы.


Теоретическая гипербола практически сливается с гиперболой Хорнера. Итог таков: предложенная модель на интервале от −8154 до 1982 года согласуется с демографическими данными так же хорошо, как и все эмпирические гиперболы роста населения Земли. Главный же вывод состоит в том, что предложенная модель описывает рост населения Земли в точном соответствии с демографическими данными на всем протяжении истории развития человечества[40].


При этом сама гиперболическая зависимость, константы Капицы К и τ, а также постоянная Фёрстера С выводятся из идеальной математической схемы и космологических данных (Tu = 13.81 млрд лет) без всякой связи с работами Фёрстера и Капицы.


Теперь о точности теоретической зависимости. Прежде всего, важно еще раз отметить то, что теоретическая гипербола – это точечная функция и областью ее определения и множеством значений являются 256 фиксированных значений.

Согласно первому закону Сети точные значения числа носителей могут быть получены только в точках сетки, образованной обратным отсчетом времени от 1982 (± 2) года в прошлое с шагом τ = 39.75 (± 0.20) года. (Речь здесь идет о приоритете роста по циклам, который может и нарушаться для предотвращения сбоя по гармоническим и тем более совершенным стадиям роста Сети, обладающим бо́льшим приоритетом.)

Внутри же циклов значения теоретической функции могут быть лишь интерполированы. Причем результаты этой интерполяции как теоретические данные могут быть неточны и даже ошибочны. Эта математика хорошо соответствует финалистскому закону роста, который не обязывает население мира расти в точности по закону гиперболы, а лишь расставляет систему приоритетов: значений численности носителей в начале и в конце каждого цикла, а также в предзаданные моменты гармонического достижения.

Кроме того, необходимо помнить, что зомби-коэффициент k, учитывающий народонаселение неспособное выступать в качестве носителей Сети, который мы ввели как величину неизменную и равную 1.1, на самом деле менялся (видимо уменьшался) на протяжении всей истории развития человечества. Поэтому не следует забывать про все эти оговорки при оценке погрешности, с которой может быть определена численность населения Земли, скажем, в 1370 году.


Последний цикл роста Сети человека

Он особенный, ведь за время его прохождения прирост носителей был таким же, как за все предыдущие 42396 циклов. Это был последний переход Сети человека от самой большой гармонической сети к сети совершенной. Начался он в 1942 году и закончился в 1982-м.

Самый бурный и неповторимый этап развития прошла и Мир-система. Атомная энергия, генетика, космос, телевидение, компьютеры… И это несмотря на вторую мировую войну и риск развязывания третьей.

Первая половина цикла – замедление роста, перегиб, спад; вторая половина – быстрый взлет с последующей стагнацией скорости роста. Динамику роста численности внутри этого цикла предложенная гипотеза не объясняет (и не должна).

Видимо, форсаж Сети связан с ее стремлением как можно более плавно вписаться в демографический переход. Но первый закон остается в силе: об этом говорят демографические данные. Действительно, численность носителей Сети (k = 1.1 в XX веке) в 1942 году составила примерно 2.15 миллиарда (2.35/1.1), а в 1982-м – удвоилась и составила примерно 4.30 миллиарда (4.6/1.1).

И вот что потрясает, как и в момент начала неолита, ведь все научные, технологические, культурные и прочие достижения, приведшие к удвоению населения за столь короткий промежуток времени, были заранее спланированы Сетью. Иначе как бы она смогла выполнить первый закон своего роста (постоянство времени цикла)?

Но процесс развития зависит от всей своей предыстории, и, скажем, без знания электродинамики создать компьютер невозможно, значит уравнения Максвелла должны были быть открыты где-то за век до того. Так каким же непостижимым по мощи должно быть то сознание, которое способно на такое историческое моделирование и столь безукоризненную реализацию своих расчетов!

В 1982 году произошло событие, оставшееся незамеченным. Сеть достигла совершенства, а вид Homo sapiens – потолка в своем развитии. Закончилась эволюция нашего вида – вот почему столь значим этот последний цикл роста Сети человека.

Демографический переход

Так что же такое глобальный демографический переход? Внимательный читатель, наверное, давно уже понял, что это такое. О, да! – это Сеть снимает с себя копию и заходит на следующий виток эволюции – вперед к новому виду! Попробуем разобраться, как она это делает. Прежде всего, уточним, что такое глобальный демографический переход. В демографии под ним понимается заключительный этап роста населения мира, который начинается в момент наивысшего набора скорости роста численности и заканчивается в момент наибольшего спада ее прироста.

Здесь же – и это логично – считать, что это временной интервал, в течение которого совершается операция репликации, отсчитываемый от того момента времени, когда Сеть становится совершенной до того момента, когда создается ее копия и запускается рост Сети следующего, пятого ранга.

Сеть измеряет время циклами – квантами исторического времени. Время цикла Сети было предопределено прогрессией эволюции и общим числом циклов, включающим циклы перехода. Но сколько всего циклов исторического времени Сеть человека отложила на переход? Ясно, что больше одного, т. к. в 2022 году численность человечества оказалась меньше 9 млрд. Следовательно, переход будет состоять из двух или большего числа циклов. Поскольку время роста сети «квантовано» и измеряется целым числом циклов, логично предположить, что переход займет ровно два цикла характерного времени Капицы.

Действительно, за последний цикл роста Сети 1942-1982 гг. ее размер удвоился и, соответственно, вдвое возросла численность населения Земли. Среднее значение скорости роста численности составило 1,1·2,15/40 = 60 млн/год. В середине шестидесятых годов прошлого века она достигла в своем относительном выражении абсолютного за всю историю человечества максимума два процента в год и началось ее снижение.

Поскольку в процессе перехода Сети потребуется скопировать вдвое большее число носителей, чем на последнем цикле, причем скорость ее роста будет непрерывно (вплоть до нуля) уменьшаться, то минимальное время, которое ей на это потребуется, равно удвоенному характерному времени Капицы. Следовательно, откладываем на глобальный демографический переход ровно два цикла характерного времени (столько же, сколько в модели Капицы).

Его продолжительность составит 2τ = 80 лет, и завершится он в 2062 году (1982 + 80 = 2062). Численность населения мира к этому времени достигнет значения 9.2 ± 0.2 млрд человек (8.6·1.07) и более меняться не будет (зомби-коэффициент на время перехода считаем равным 1.07). Динамику роста внутри перехода наша модель в точности предсказать не может. (Заметим, что исследование этой динамики как по отдельным странам, так и по миру в целом позволит лучше понять как функционирует Сеть.)

Первый цикл перехода

Его начало – 1982 год, конец – 2022-й. В 2000 году население мира достигло значения 6.1 млрд, а темпы прироста – своего максимума: 87 млн человек в год. Вторая производная от численности по времени обратилась в нуль. При такой скорости роста население Земли к 2021.5 году составило бы N = 6.1 + 0.087·21.5 = 7.97 млрд человек, что меньше, чем 9.2 млрд (фактически на начало 2022 года N = 7.90 млрд). По-видимому, скорость роста населения будет продолжать уменьшаться в течение всего второго цикла.

Рис. 1. Демографический переход. Годовой прирост населения мира в млн человек 1750–2100 гг., усредненный за декады. 1 – развивающиеся страны, 2 – развитые страны.

Второй цикл перехода

Его начало – 2022 год, конец – 2062-й. Этот цикл является завершающим для сети 65536 и обещает быть самым необычным. В его конце скорость роста численности вместе с высшими производными должна будет устремиться к нулю. И выполнить это условие не так-то просто.

Математика не знает такой элементарной, непрерывной со всеми производными функции, значения которой на конечном интервале возрастают до некоторой величины и далее не меняются. Такую функцию нельзя также представить как конечную комбинацию элементарных. С точки зрения математики ее можно, например, представить как бесконечный ряд (интеграл) такой, как ряд (интеграл) Фурье.

В конце второго цикла перехода произойдет стабилизация численности на уровне 9.2 ± 0.2 млрд человек. Однако непонятно как все это будет реализовано на множестве подмножеств сообществ, объединенных по разным признакам своего родства.

Можно было бы предположить, что Сеть прибегнет к уже испытанному приему временно́й дисперсии Мир-Cистемы, как это было с рядом развитых стран, уже прошедших свой демографический переход. Но слишком мало остается времени, «хвосты» у этих функций длинные, а логистическая кривая Сети не нужна.

Ведь в 2062 году должен быть собран второй клаттер Сети 4 294 967 296. Сеть всегда выполняет план в приоритетных точках своего роста. В соответствии со вторым законом, феномен сознания связан с Сетью. Те, кто находятся вне Сети представляют собой «неуправляемую» часть социума. Их доля составляет примерно 9 %, т. е. она невелика; от ее величины очевидным образом зависит способность социума к прогрессивному развитию – это как минимум, и управляемость обществом вообще – как максимум.

Если Сеть выберет сценарий «длинных хвостов», то в конце второго цикла перехода следует ожидать резкого роста людей с больной психикой. Такие явления, как сумасшествие или впадение в кому, можно рассматривать как факт замены Сетью «игрока», а ремиссия и, соответственно, выход из комы – как его возврат.

Возможен еще один сценарий, имеющий меньшие издержки. Если в социуме будут возбуждены колебания прироста численности на множестве подмножеств различных социальных групп – погрешность Сети может быть значительно уменьшена. Чисто схематически все это можно представить так:


Рис. 2. Варианты роста населения мира в процессе демографического перехода согласно теории (схема).


Итог такой: последний цикл Сети, особенно его концовка с продолжением, – время стрессов, эпидемий, роста числа психических и прочих заболеваний, возможно, локальных войн и природных катаклизмов. Численность населения Земли достигнет значения 9.2 ± 0.2 млрд человек и многие тысячи лет меняться практически не будет. (В июле 2020 года (пандемия covid-19) ученые из Вашингтонского университета опубликовали в медицинском журнале «The Lancet» прогноз на численность населения мира к концу текущего столетия: 8.79 млрд человек, что на два с лишним миллиарда меньше, чем прогноз ООН 2019 года – 11 млрд.)

Уравнение Капицы

Пусть имеется сеть, размер которой равен М, т. е. ИС, содержащая М клаттеров. И допустим, что за цикл новый клаттер собрать не удается. Т. е. рассмотрим сначала первый этап роста. На копирование одного клаттера требуется М носителей и всего за цикл их будет скопировано М2. Если N – полная численность носителей сети, то:


Рис. 1. Число носителей, идущих на копирование одного клаттера.


Здесь ce(X) – ближайшее целое, меньшее или равное числу X. Прирост численности носителей за цикл равен:


Рис. 2. Прирост носителей за цикл.


К этому разностному уравнению необходимо добавить условие завершение цикла. Как только в процессе итераций число носителей N(t) достигнет значения, достаточного для сборки нового клаттера, нужно сделать подстановку:


Рис. 3. Условие подстановки.


Вот решение этого уравнения в системе MathCAD (здесь τ = 1, время измеряется в циклах):


Рис. 4. Алгоритм решения разностного уравнения.


Зависимость численности носителей от времени получается такой же, как в модели роста клаттеров по циклам U2(C). Если число собранных за цикл клаттеров значительно меньше размера сети (второй этап ее роста), то и в этом случае данное разностное уравнение служит хорошим приближением алгоритму.

При этом N(t) мало меняется за время τ. Если, к тому же N(t) >> K, то дифференциальное уравнение может служить хорошим приближением разностному.


Рис. 5. Переход от разностного уравнения к уравнению Капицы.


Здесь τ – время цикла сети, равное постоянной времени Капицы. Этим же уравнением описывается теоретическая гипербола и численность населения мира N2(t) = kN(t). Важно понимать следующее: зависимость N(t), задаваемая алгоритмом роста сети, может быть приближенно описана уравнением Капицы на всем протяжении гиперболического роста.

Тем не менее гиперболы роста на этапах до момента начала неолита и после этого момента – отличаются. Дело в том, что теоретически рост сети на первом этапе описывается уравнением Капицы лишь приблизительно.

Тогда как на втором этапе, когда рост согласно алгоритму резко ускоряется, он может быть в точности описан теоретической гиперболой, которая, как мы неоднократно отмечали ранее, является «точечной» функцией (т. е. ее областью определения и множеством значений являются 256 фиксированных значений времени и численности), все точки которой лежат на гиперболе, являющейся решением уравнения Капицы.

Поэтому аппроксимирующие зависимости численности от времени до, и после начала неолита – отличаются, и общее решение «сшивается» из двух различных кривых. Следовательно, в момент начала неолита скорость роста как функция времени (теоретически) претерпевает разрыв.


Рис. 6. Неолитический скачок скорости роста населения Земли.


Теоретическая гипербола как результат алгоритма роста сети совпадает с гиперболой, являющейся решением уравнения Капицы. Для описания гиперболического роста численности населения мира необходимо домножить N(t) на зомби-коэффициент k ≈ 1.14: N2(t) = kN(t). Парадоксальная гиперболическая зависимость численности населения Земли от времени возникает (при заданном алгоритме роста сети) по причине постоянства времени цикла.

Загрузка...