Научный принцип познания диктует нам: ничего не принимай на веру и не полагайся на авторитеты и обыденный опыт. Доверяй только научному эксперименту, выполненному с соблюдением строжайших правил. Получив воспроизводимые результаты, смело ставь под сомнение прошлую гипотезу и выдвигай новую. И хотя я берусь за непростое дело – ведь мифы и предубеждения вокруг старения имеют очень глубокие корни, – но, будучи ученым, считаю своим долгом донести до людей знание, которое способно полностью изменить их жизнь, сделав ее намного лучше.
Научные исследования старения человека выполнить очень сложно, а порой практически невозможно – не позволяют либо этические принципы, либо невозможность получить для сравнения большую выборку одинаковых субъектов, находящихся в одинаковых условиях. К тому же люди живут достаточно долго, и чтобы увидеть результаты, понадобится ждать многие десятилетия. Поэтому в экспериментальной геронтологии, науке о причинах старения и долголетия, исследования часто ведутся на специально выведенных подопытных животных с более коротким сроком жизни – например, на мышах. Эти животные должны быть генетически идентичными, одновозрастными и содержащимися в одинаковых условиях, чтобы требования к чистоте эксперимента были соблюдены.
Именно экспериментальная геронтология принесла нам за последние годы огромный багаж знаний о генетике долголетия, о влиянии на скорость старения диеты, способности противостоять стрессам, и даже об отдельных препаратах, уже сейчас способных замедлять старение. Со временем результаты исследований будут использованы для управления старением у людей, когда мы сможем учитывать особенности генетики и образа жизни пациента индивидуально, и контролировать скорость протекания старения и его замедления с помощью точных диагностических средств.
Разработки в этом направлении продвигаются быстро, так что готовиться к использованию технологий контроля над старением нужно уже сегодня. Для этого стоит овладеть необходимыми знаниями, задуматься о достижении здорового долголетия и начать предпринимать разумные шаги по управлению своим здоровьем и биологическим возрастом. Недаром образованные люди в среднем живут дольше.
Весь наш повседневный опыт говорит о том, что все в мире подвержено старению. Стареют люди, животные, растения, неодушевленные предметы со временем изнашиваются и разрушаются. С демографической точки зрения с возрастом повышаются риски людей умереть. С точки зрения физиологии организмы утрачивают с возрастом функциональные возможности, в частности способность к размножению и росту.
Однако исследования демографических процессов у некоторых видов животных показали, что не все они стареют. У таких видов вероятность смерти половозрелых особей вида не увеличивается с возрастом. Как правило, у этих организмов не угасают и функциональные возможности, они не дряхлеют и не перестают производить на свет потомство. Это явление назвали пренебрежимым старением, а впервые ввел его в науку биогеронтолог Калеб Финч в 1990 году в своей книге «Долголетие, старение и геном».
В список пренебрежимо стареющих видов сегодня законно входят гренландский кит – максимальная продолжительность жизни (МПЖ) которого согласно некоторым оценкам достигает 211 лет, алеутский морской окунь – МПЖ 205 лет, флоридская коробчатая черепаха – 138 лет, морской еж Красного моря – 205 лет, двустворчатый моллюск исландская циприна – 507 лет.
Окончательно убедить ученых в существовании пренебрежимо стареющих видов помогли эксперименты в защищенных от внешних причин смертности условиях, когда выживаемость зависела только от внутренней причины – старения. Известно млекопитающее, смертность которого в лабораторных условиях практически не меняется (рис. 1). Это грызун голый землекоп. В отличие от мыши, при тех же размерах тела голый землекоп не теряет свои функциональные возможности с возрастом. Как показали сотрудники группы Рошель Баффенштайн, у него с возрастом не снижаются важные физиологические показатели, характерные для молодости и зрелости: основной обмен веществ, способность к сосудистой релаксации, плотность костной ткани, состояние суставных хрящей, толерантность к глюкозе, антиоксидантная активность. У землекопа с возрастом не увеличивается образование гликированного гемоглобина, свободных радикалов, не накапливаются оксидативные повреждения. А ведь эти возрастные изменения – биомаркеры старения и у человека.
Рис. 1. Смертность особей голого землекопа в лабораторных условиях, по данным Рошель Баффенштайн
Продолжительность жизни голого землекопа может превышать 30 лет, в то время как мышь живет не дольше 4 лет. В результате своей способности пренебрежимо стареть голый землекоп не только способен прожить в 10 раз дольше лабораторных мышей (сопоставимых с ним в размерах), но у него за многие годы исследования ни разу не наблюдали возникновения рака. Судя по неизменным физиологическим показателям, у него нет диабета 2-го типа и многих других возрастных патологий, присущих человеку. Как выяснил Вадим Гладышев из Гарвардской медицинской школы, у взрослого голого землекопа со временем практически не меняется уровень активности генов, что вполне может объяснить «застревание» большинства физиологических функций на уровне, характерном для молодого возраста. Аналогичный механизм «нестарения» наблюдался еще у одного вида с пренебрежимым старением, морского ежа Strongylocentrotus franciscanus.
Концепция пренебрежимого старения оказалась настолько любопытной, что ученые попытались пойти дальше. Даниэл Мартинес в своей работе 1998 года показал, что потенциальным бессмертием обладают пресноводные гидры (Hydra sp.). Гидры – маленькие пресноводные полипы, дальние родственники кораллов, актиний и медуз. Особи, размножающиеся почкованием, в течение четырехлетнего эксперимента постоянно росли, их репродуктивная способность не снижалась, и они не умирали. Однако, как показал другой ученый, Стивен Остад, процесс полового размножения гидр все-таки вызывает возраст-зависимую смертность и физиологические признаки старения. Кроме того, у гидр обнаруживают возраст-зависимые заболевания, например образование опухолей и снижение способности к почкованию с возрастом.
Американские исследователи Р. Петралия, М. Метсон и П. Яо опубликовали в 2014 году статью, в которой доказали, что выдающимся долголетием или потенциальным бессмертием обладают не только гидры, но и их многочисленные родственники – медузы, кораллы, актинии, а также другие примитивные животные, такие как гребневики, губки, пластинчатые и плоские черви. От человека все они отличаются большим количеством стволовых клеток во взрослом состоянии, а значит – высокой способностью к тканевой регенерации и самоомоложению.
Такая закономерность не уникальна. Она проявляется у некоторых видов растений, фаза молодости у которых может длиться многие десятилетия или даже столетия, а после размножения они быстро стареют и погибают (бамбук, пуйя Раймонда) (рис. 2, 3).
Итак, что нам стоит запомнить? Хотя старение существует у многих видов живых существ, оно проявляется крайне неоднородно. Существуют виды, не желающие подчиняться общим демографическим закономерностям – стареть и умирать, как все остальные. Это виды, обладающие пренебрежимым старением. Их основной особенностью является сохранение ряда физиологических показателей неизменными на протяжении всей жизни, что позволяет им не утрачивать жизненно необходимые функции и не болеть возраст-зависимыми заболеваниями.
Рис. 2, 3. Пуйя Раймонда (слева) и бамбук (справа)
Хотя наш вид не обладает пренебрежимым старением, у людей есть одно важное отличие от других представителей животного мира: благодаря развитию медицины, мы научились контролировать свои физиологические показатели в широком диапазоне. Что произойдет, если нам удастся вызвать пренебрежимое старение за счет специальных лекарственных средств? Ответ на этот вопрос ждет вас в последующих главах.
Откуда возникло представление о пределе продолжительности жизни человека в 120 лет? Такое число нам дает Библия (Быт. 6:3). Однако согласно этой же книге Мафусаил, Ной, Арфаксад, Сала, Иаред, Сиф, да и сами Адам и Ева жили гораздо дольше. Сумеем ли мы уже в этом веке преодолеть психологический рубеж в 120 лет, и какие предпосылки для этого есть?
Среди охотников-собирателей в верхнем палеолите продолжительность жизни была примерно 32 года, а в неолите – всего 20 лет. Тем не менее ожидаемая продолжительность жизни человека заметно выросла за последнее столетие и продолжает увеличиваться (рис. 4). Согласно данным ЦРУ за 2014 год, в целом средняя продолжительность человеческой жизни в настоящее время составляет 68 лет и колеблется от 49 (в Чаде) до 89–90 (в Монако и Японии) лет. Резкий скачок в долголетии вызван хлорированием воды, распространением личной гигиены, улучшением качества питания, снижением детской смертности, появлением вакцинации, антибиотиков и других лекарств.
Рис. 4. Ожидаемая продолжительность жизни человека с неолита до наших дней
В отличие от старения многих других видов живых существ, старение человека протекает постепенно. Максимальная продолжительность жизни человека уже сейчас не укладывается в известные эволюционные правила. Существует взаимосвязь между массой тела позвоночных животных и максимальной продолжительностью жизни вида. Чем крупнее животное, тем дольше оно живет. Это связано с большей продолжительностью индивидуального развития, а также с тем, что более крупные животные могут лучше выносить нехватку пищи и воды, лучше защищены от нападения хищников. Для своих размеров тела человек – чрезвычайно долгоживущий вид млекопитающих. Мы живем даже дольше массивных слонов (рис. 5).
Рис. 5. Зависимость между массой тела позвоночных животных и максимальной продолжительностью жизни вида
Другие виды – исключения из этого закона (летучие мыши, голый землекоп, птицы) хорошо защищены от случайной гибели. Они или живут в малодоступных местах (в норах, пещерах, на деревьях, на глубине), или способны летать. Такая защита позволила им пройти селекцию на долголетие и оставлять больше потомства за длинную жизнь.
Итак, познакомимся со списком животных-долгожителей, чьи рекорды нам предстоит побить с помощью достижений науки (табл. 1).
Вернемся к возможностям нашего вида. Максимальная продолжительность жизни женщин превосходит продолжительность жизни мужчин. Поэтому неудивительно, что официально зарегистрированный рекорд долгожительства принадлежит женщине, француженке Жанне-Луизе Кальман. Он составляет 122 года и 164 дня. Самый старый живущий человек в данный момент – тоже женщина, японка Мисао Окава (116 лет). Существует много недостоверных данных о большей продолжительности жизни, якобы характерной для жителей Осетии, Чили, Гималаев. Биолог и эволюционист С. Н. Остад подробно разбирает и опровергает эти утверждения в своей книге «Почему мы стареем» как научно не доказанные.
Рис. 6. Виды животных с наибольшей продолжительностью жизни
Таблица 1. Виды живых существ, обладающие сверхдолголетием
Разумеется, это не означает, что 122 года – это предельно возможное значение продолжительности жизни человека. Демографы Л. и Н. Гавриловы из Чикаго предполагают отсутствие верхнего предела продолжительности жизни вида. Представления о максимальной продолжительности жизни меняются по мере накопления документированных измерений. То есть вполне вероятно, что с увеличением количества надежных данных этот рекорд будет превзойден, как уже было не один раз за всю историю наблюдений.
Естественное долгожительство, как было сказано при обсуждении первого мифа, опирается на «застревание» физиологических показателей на уровне молодого или зрелого возраста. Обеспечивается такое «застревание» генетическими особенностями живого существа. Но генетика довольно пластична, как мы знаем из работ селекционеров и генных инженеров. Поэтому неудивительно, что основные надежды радикального продления жизни человека связаны с прогрессом в экспериментальной биогеронтологии. Генетические эксперименты показывают, что достаточно простыми вмешательствами в работу определенных генов можно достичь заметного продления жизни. Исследователи сумели целенаправленно продлить жизнь червям-нематодам – в 10 раз, плодовым мухам – в 2 раза, мышам – в 1,7 раза. Если бы те же методы можно было применить к современному человеку, он, возможно, смог бы жить примерно в 2 раза дольше – до 140–160 лет. Не правда ли, привлекательная перспектива?
Использование биогеронтологических знаний в медицине, разработка и применение к человеку адресных лекарств и генотерапий, направленных на контроль над старением, – дело недалекого будущего. А пока приведу слова автора термина «геронтология» и одного из основателей данной науки, нобелевского лауреата Ильи Ильича Мечникова. Он говорил: «Смерть раньше 150 лет – насильственная смерть».
В 1903 году лауреат Нобелевской премии И. И. Мечников в книге «Этюды о природе человека» написал: «Старость наша есть болезнь, которую нужно лечить, как всякую другую». Однако большинство врачей и физиологов против признания старения болезнью. Они полагают, что старение – это нормальный физиологический процесс, наподобие эмбрионального развития или полового созревания. В соответствующей литературе появились специальные термины – «естественное старение», «успешное старение» или даже «здоровое старение». Трудно представить себе что-то более противоречивое, чем «здоровое старение», учитывая, что старение проявляется в нарушении множества функций организма.
Еще одно типичное возражение: конкретным заболеванием страдают не все, а старение приходит к каждому. Однако следует посмотреть на проблему шире: мы уже знаем примеры пренебрежимо стареющих видов, значит, специфически человеческое старение, сопровождающееся постепенным угасанием и перечнем определенных болезней, присуще не всем живым существам, не является всеобщим. Просто мы пока не относимся к тем видам, которые в ходе эволюции приобрели пренебрежимое старение. Признанию старения болезнью мешает его мультифакторность и трудность воздействия на него на данном этапе развития медицины. Однако, как и старение, некоторые общепризнанные болезни могут быть многофакторными и не всегда излечимыми – например, канцерогенез. Отдельные заболевания остаются практически неизлечимыми, в частности СПИД или алкоголизм, и тем не менее прилагаются усилия по созданию методов их лечения.
Часто приходится слышать, что старение не является болезнью, это естественный процесс, задуманный природой. Это не так. Для эволюции было важно, чтобы индивид как можно скорее достиг половой зрелости и произвел на свет потомство, даже если механизмы, обеспечивающие эти события, имеют неблагоприятные последствия в старости. Пострепродуктивный период – своеобразный «постгарантийный» период жизни, ведь то, что происходит с индивидом после оставления и воспитания потомства, для эволюции уже не имеет значения. Таким образом, у нашего вида постепенно накапливались варианты генов, имеющих отсроченные негативные последствия для здоровья. Но эти последствия, то есть старение, не стоит рассматривать с точки зрения физиологической нормы, сформированной естественным отбором, – это не более чем побочный эффект. Старение – это заболевание, имеющее в своей основе генетические факторы.
К счастью, все больше современных врачей высказываются за то, чтобы признать старение болезнью, и у них на это есть серьезные причины. Как считает доктор А. В. Древаль, «до тех пор, пока старение не относится к категории болезни, оно не является медицинской проблемой и практически отдано на откуп парамедицинским специальностям (биологические добавки, немедицинская косметология и т. п.)». Чтобы проиллюстрировать, насколько недальновидно по-прежнему считать старение «естественным» процессом, который не требует лечения, приведем несколько важных фактов.
Рис. 7. Смертность человека от наиболее распространенных заболеваний в зависимости от возраста
Рис. 8. Возраст-зависимые заболевания, в основе развития которых лежит старение
Старение – убийца «номер один» во всем мире. Об этом говорят данные Всемирной организации здравоохранения. Среди 10 ведущих причин смертности в настоящее время лидируют ишемическая болезнь сердца, инсульт и другие цереброваскулярные болезни, рак, сахарный диабет. Смертность от данных причин лавинообразно нарастает с возрастом (рис. 7). Именно старение организма – ухудшение функциональных возможностей различных систем и органов – является основным фактором развития этих и многих других болезней (рис. 8).
И это еще не все. На фоне развития возраст-зависимых болезней увеличиваются и риски людей погибнуть от их последствий. Например, частота несчастных случаев как причин гибели после 65 лет начинает увеличиваться. По-видимому, это связано с прогрессирующим старением нервно-мышечной системы, нарушениями зрения, слуха, равновесия, координации движений. Расстройства мышления при болезни Альцгеймера ведут к неспособности человека заботиться о себе, своем здоровье и безопасности и тоже вносят свой вклад в гибель людей. Разве не очевидно, что старение играет роль спускового крючка, запускающего развитие каждой из связанных с возрастом патологий и сопутствующих рисков? К сожалению, современная медицина борется не с причиной, а со следствиями, что заведомо приносит меньший успех. Действительно, даже если устранить болезнь Альцгеймера или рак, человек продолжит умирать от других болезней старости, список которых очень и очень велик. Да и сама вероятность побороть конкретные возраст-зависимые заболевания без устранения главной причины выглядит иллюзорной.
Цепочку печальных последствий можно продлить. Снижение здоровья, упадок физических сил постепенно отнимают у пожилых людей работоспособность, ведут к бедности, социальной изоляции, к дискриминации. Государство вынуждено вкладывать все больше средств как в социальную поддержку, так и в лечение пожилых людей – причем без перспективы их вылечить, так как, напомним, без воздействия на причины старения это вряд ли получится!
Старение населения в мире идет возрастающими темпами, как показал А. Жаворонков в своей книге «The Ageless Generation» («Нестареющее поколение»), в скором времени есть вероятность обрушения пенсионной системы в ведущих экономиках мира. Если система здравоохранения по-прежнему будет ориентирована только лишь на лечение возрастных заболеваний, без перехода к их долгосрочной профилактике, благосостояние людей всех возрастов во многих странах мира может оказаться под угрозой.
Есть и еще один дискуссионный аспект проблемы. Отсутствие старения в перечне заболеваний тормозит целенаправленное создание фармпрепаратов и методов лечения, направленных против старения. Большие игроки на рынке фармакологической продукции признают, что бороться с причиной эффективнее, чем со следствиями. В частности, гендиректор компании AstraZeneca Паскаль Сорио считает старение болезнью, которая настигает нас, даже если мы ведем рациональный и здоровый образ жизни. Он признает, что эту болезнь надо лечить. Однако пока старение не названо болезнью в ряде официальных правовых документов, препараты для лечения старения просто не получится зарегистрировать и выпустить на рынок. А зачем производить то, что не получится продать?..
Высказываются сомнения в том, что лекарства против старения будут доступны всем через государственную систему здравоохранения. Действительно, поначалу любая новая технология является дорогой, но, как мы можем наблюдать на примере стоимости расшифровки геномов людей или, например, мобильной связи, радикальное снижение ее может произойти буквально за несколько лет. Прогресс не стоит на месте, новая технология по мере совершенствования оказывается все более экономичной в производстве и при этом более производительной. Между тем стоит помнить, что основой развития экономики государства выступает население, а конкретнее – трудоспособное население. Другими словами, государство заинтересовано в трудоспособности как можно большего числа граждан. Вопрос о бесплатном предоставлении инсулина был поднят не только из соображений гуманизма, но и из-за того, что государству выгоднее трудоспособные, а не находящиеся в больнице диабетики. Постепенное внедрение в систему здравоохранения высокотехнологичной медицинской помощи, расширение видов такой помощи связано с тем, что это экономически оправданно в долгосрочной перспективе: здоровый человек с высокой ожидаемой продолжительностью жизни – это активный налогоплательщик и создатель материальных благ.
Время от времени мы слышим пожелание вместо разработки технологий контроля над старением направить средства на что-то другое, что кажется более актуальным, – «на лечение больных детей», «на детские сады», «на пенсии». Но мы усматриваем в таких высказываниях некоторый недостаток логики. Не надо лечить старение, потому что мало детских садов? Построенные детские сады не помогут вылечить возрастные болезни, и маленькие люди, вышедшие из них, будут страдать раком, болезнью Альцгеймера, старческим диабетом, инсультами и артритом так же, как и их родители – разве такого будущего мы хотим для них на самом деле? Не надо лечить старение, лучше отдать эти деньги пожилым на пенсии? Но ведь если старение будет побеждено, пожилые люди будут иметь возможность работать, что повысит их достаток гораздо сильнее, чем мизерная надбавка к пенсии, соответствующая разделенной на всех стоимости конкретных исследований. Не лучше ли вместо нее приобрести благодаря науке дополнительные годы здоровья и жизни для своих потомков? То же самое следует сказать насчет перенаправления средств в систему здравоохранения. Отличия в уровне медицинского обслуживания будут несущественны на фоне таких небольших вливаний, а вот потенциал лечения старости, который можно создать на эти средства, трудно переоценить.
Не менее часто, чем призыв к перераспределению средств, мы слышим опасения, что долгожители будут не востребованы в связи с устареванием их трудовых специальностей, в то время как средств на переобучение у этой категории населения обычно нет. Действительно, структура занятости меняется, и становится необходимым обучение на протяжении всей жизни. Но и здесь развитие новых технологий открывает новые перспективы. В данный момент уже существует несколько организаций, предоставляющих желающим возможность бесплатного и, что немаловажно, дистанционного обучения по программам ведущих университетов мира. Такие организации работают и в России, что одновременно с удешевлением стоимости компьютерной техники и доступа в Интернет делает эти сервисы еще более доступными широкому кругу людей. При желании учиться любой человек любого возраста может приобрести интересующую его специальность, получить новые навыки, овладеть иностранными языками.
Что же делать? Какой подход к профилактике и борьбе со старением будет не только гуманным, но и рационально обоснованным?
Биогеронтолог Михаил Благосклонный предлагает рассматривать старение как основную возраст-зависимую болезнь. Он утверждает: «Возрастные заболевания – это признак старения, как дым – признак огня». С этой точки зрения сердечно-сосудистые патологии, расстройства нервной системы или диабет 2-го типа – это симптомы старения как болезни. Благосклонный считает, что замедление старения отодвинет развитие всех возрастных заболеваний и одновременно продлит жизнь. Его уверенность вполне обоснованна.
Многие из наших генов имеют ту же структуру и функцию, что и у других живых организмов, от одноклеточных грибков до млекопитающих, благодаря чему, изучая лабораторных животных, можно получить представление о тех же процессах у людей. Доказано, что генетические и фармакологические вмешательства, замедляющие старение и приводящие к продлению жизни лабораторных животных, отсрочивают развитие у них возраст-зависимых патологий. Гены, снижение активности которых в экспериментах продлевает жизнь червям, мухам, мышам, у человека известны как гены, избыточная активность которых ответственна за нейродегенерацию, различные виды рака, диабет 2-го типа, сердечно-сосудистые патологии. Это свидетельствует об общих генетических корнях старения и возраст-зависимых болезней. То есть, воздействуя на причины старения, удастся предотвратить развитие возраст-зависимых заболеваний, сохранив здоровье людей на долгие годы. Если признать старение болезнью, произойдет перелом в общественном сознании. Если старение – болезнь, хоть и неизлечимая на данном этапе, можно и до́лжно искать подходы к ее лечению. К счастью, все больше организаций в сфере охраны здоровья это понимают и стремятся подтолкнуть развитие ситуации к ее разрешению.
Например, цель побороть старение открыто поставил себе информационный гигант Google, который в сентябре 2013 года в Кремниевой долине основал компанию Calico. Возглавил этот стартап Артур Левинсон, руководитель компании Genentech и член совета директоров Apple и Hoffmann-La Roche. В руководство вошли известные ученые-биогеронтологи, в том числе профессор Синтия Кеньон, открывшая первый ген долголетия у нематод. В сентябре 2014 года Calico объявила о партнерстве с AbbVie, фирмой по разработке лекарственных средств, для совместной разработки препаратов для лечения возрастных заболеваний, включая нейродегенеративные расстройства и рак.
Весной 2014 года возникла еще одна компания – Human Longevity, Inc. (HLI). Ее основал в Сан-Диего известный генетик Крейг Вентер, который одним из первых полностью расшифровал геном человека. После приобретения самых высокопроизводительных секвенаторов HiSeq X Ten и PacBio RS II Вентер планирует расшифровывать 40 000 геномов человека в год и публиковать результаты, что приблизит научное сообщество к пониманию различий в продолжительности жизни людей и причин возраст-зависимых заболеваний. Таким образом, Калифорния сейчас является одним из центров борьбы со старением.
Завершая тройку лидеров, в 2014 году в Балтиморе основана компания InSilico Medicine, Inc., которая поставила своей целью развитие персонализированной науки и разработку инновационных геропротекторов.
Итак, что же мы узнали из данной главы? С точки зрения физиологии в основе старения и возраст-зависимых заболеваний лежат одни и те же факторы, одни и те же процессы. По существу, старение является собирательным названием для целого спектра заболеваний. Таким образом, старение следует обоснованно считать болезнью или патологическим состоянием, которое можно и нужно лечить. Ради сохранения здоровья людей всех возрастов, а также для избегания негативных социально-экономических последствий старения необходимо разрабатывать и внедрять диагностику старения, лекарства против старения и антивозрастные процедуры в клиническую практику.
Если размышлять философски, у старения действительно одна причина: несовершенство устройства живого организма. Согласно идее профессора Гарвардской медицинской школы Вадима Гладышева, некоторое количество ошибок в работе живых систем преодолевает все защитные барьеры, накапливается и вызывает старение. Единственный способ замедлить старение, как он считает, – замедлить наш метаболизм. Питерский ученый Алексей Голубев придерживается схожих взглядов: в тканях при обмене веществ постоянно происходят побочные реакции, в результате аккумулируются ошибки метаболизма, приводящие к старению.
Однако «несовершенство» – слишком общая причина. Более конкретные факторы старения условно можно разделить на четыре большие группы (рис. 9): это гены, в том состоянии, в котором они нам достались по наследству (генетика); это уровень активности генов в каждой ткани (эпигенетика); это действующие на нас факторы окружающей среды – пища, климат, качество воздуха и воды; и, наконец, наше старение дополнительно определяется случайными сбоями. В результате воздействия этих причин происходит отклонение живой системы от оптимального режима функционирования, то есть нарушение гомеостаза. Ученым известно множество видов таких отклонений: это и окислительные реакции под влиянием свободных радикалов, и разрывы химических связей под действием воды, и нарушение структуры различных молекул под влиянием тепла и химических веществ (например, вредное взаимодействие белков и глюкозы), их повреждение ионизирующей радиацией и ультрафиолетом, и слипание некоторых белков с образованием внутриклеточного и внеклеточного мусора, и нехватка некоторых веществ, сбои в регуляции физиологических процессов и неисправленные ошибки в ДНК… Множество маленьких, но весьма вредоносных случайностей, накладываясь друг на друга, постепенно подтачивают наше здоровье. Системы поддержания постоянства внутренней среды (гомеостаза) сами со временем расшатываются, поэтому с возрастом физиологические функции все дальше отклоняются от оптимума. Если гомеостаз не восстановлен, возникает патологический процесс, который увеличивает риск гибели организма. Именно такие патологические процессы мы называем возраст-зависимыми болезнями.
Разные авторы в свое время выводили на первый план те или иные причины старения, но более правильно считать, что старение вызывается комплексом причин. Уже сейчас известно больше 1500 различных генов, в разной степени влияющих на долголетие подопытных животных и людей-долгожителей. Они меняют степень своей активности под влиянием различных условий, от состава пищи до качества сна, и определяют характер старения конкретного человека. Становится все более очевидным, что все вышеназванные причины действительно лежат в основе процессов старения. Все они располагаются на разных уровнях организации живой системы, провоцируя и дополняя друг друга (табл. 2). Среди приведенных научных терминов, описывающих патологические процессы и состояния, лежащие в основе старения, любознательный читатель, возможно, найдет такие, которые он уже мог слышать из уст лечащего врача…
Рис. 9. Группы причин старения
Таблица 2. Причины старения
Большинство моих знакомых в возрасте около 30 лет удивленно поднимают брови, стоит заговорить с ними о профилактике старения (истины ради, стоит отметить, что женщины удивляются реже). Бытует мнение, что первые серьезные изменения, связанные со старением, начинаются после сорока. А следить за образом жизни, чтобы подольше сохранить форму, нужно начинать после пятидесяти. Такое отношение к старению сформировалось на основании наблюдений за людьми зрелого возраста, ведь внешние проявления ослабления основных физиологических функций организма отмечаются в основном после 40 лет. С возрастом это угасание усиливается, что приводит к снижению адаптационных способностей, болезням и смерти. Однако не следует думать, что функциональный спад начинается в пожилом возрасте.
Как отмечает в своей книге «Как и почему мы стареем» Леонард Хейфлик (кстати, это тот самый ученый, который открыл, что клетка может совершить ограниченное число делений), ослабление функций организма с возрастом начинается очень рано, сразу после достижения возраста полового созревания, примерно в 19 лет, а некоторые функции начинают ослабевать еще ранее (табл. 3). Человеческая смертность увеличивается по экспоненте после 30 лет, удваиваясь примерно каждые 8 лет.
Таблица 3. Возраст начала признаков старения
С развитием современных методов диагностики становится очевидным, что некоторые изменения, выливающиеся в возраст-зависимые патологии, могут начинаться в детстве. Процессы роста и развития требуют интенсивного клеточного деления, поэтому в молодости наиболее активно укорачиваются хромосомы. В процессе удвоения ДНК в делящейся клетке скапливаются ошибки – мутации.
Существуют ли другие доказательства, что старение начинается в раннем возрасте? Существуют. Одна из главных причин ишемической болезни сердца, инфаркта и инсульта – атеросклероз – проявляется в виде жировых отложений на стенках сосудов. Прожилки холестерина во внутренней стенке больших мышечных артерий иногда обнаруживаются даже у детей. У некоторых людей в раннем возрасте в артериях наблюдаются фиброзные бляшки. Развитие такой бляшки делает стенку сосуда уязвимой к разрыву, в результате чего со временем у человека может развиться тромбоз, инфаркт миокарда, инсульт или заболевания периферических артерий. У каждого шестого американского подростка выявляются атеросклеротические бляшки в артериях, питающих сердце. Повышенные концентрации липопротеинов низкой плотности, низкие – холестерина высокой плотности, гипертония, курение, повышение уровня сахара в крови и ожирение способствуют дальнейшему развитию атеросклеротических повреждений и проявлению связанных с атеросклерозом патологий. Основной способ предотвратить пагубные изменения – контролировать вышеперечисленные факторы риска развития атеросклероза с раннего возраста, например помогая ребенку придерживаться здорового питания.
Уже в детстве избыток потребления цельного молока может вызывать нечувствительность к инсулину, которая является предвестником метаболического синдрома и диабета. Скорее всего, именно в силу пренебрежения вопросами правильного питания множество людей все раньше становятся диабетиками.
Низкие и нерегулярные физические нагрузки, несоблюдение режима дня, дисбаланс витаминов, микро- и макроэлементов, определенных жиров и сахаров в питании могут значительно ускорить процессы старения. Результаты неправильного образа жизни могут долгое время не сказываться на внешности, но они начинают проявляться уже в молодости в виде различных физиологических отклонений от нормы.
Неприятная картина, не так ли? Мы начинаем стареть с раннего возраста. И если к этому добавляется неправильный образ жизни, вредные привычки – старение ускоряется, и болезни, которые обычно являются возраст-зависимыми и проявляются после 60, могут настичь нас существенно раньше.
Что сказать в утешение? После 65 лет старение, напротив, начинает замедляться. Возможно, это связано с тем, что человек все же начинает задумываться о своем здоровье.
Теория «запрограммированного старения» стала исторически первой теорией старения. Ее сформулировал в XIX веке немецкий биолог Август Вейсман. Основная идея его теории в том, что старение и смерть индивида предопределены в наших генах. Цель программированной гибели индивида – освобождение жизненного пространства и ресурсов для молодых поколений. Вейсман предположил, что биологический механизм такой программы – ограничение числа делений соматических клеток.
Действительно, такое ограничение существует и называется пределом Хейфлика, в отличие от неограниченно делящихся половых клеток. Наблюдаемые в природе межвидовые различия продолжительности жизни Вейсман пытался объяснить числом клеточных поколений.
Теория запрограммированного старения получила свое развитие в работах академика В. П. Скулачева. Он рассматривает в качестве механизма «феноптоза» – запрограммированной гибели старого организма – интенсификацию образования активных форм кислорода внутри клетки и вызванную ими запрограммированную клеточную смерть (апоптоз).
Как считают американский микробиолог Мартин Блэйзер и математик Гленн Вебб, проблемы со здоровьем в старости могут программировать симбиотические микроорганизмы, живущие в желудочно-кишечном тракте человека. Данные авторы разработали математическую модель, согласно которой микроорганизмы повышают жизнеспособность человека в юности, но способствуют возникновению старческих заболеваний – рака, болезни Альцгеймера, сахарного диабета. Таким образом, в популяциях людей микробы могут регулировать соотношение разных возрастов, как в свое время предполагал Вейсман. Бактерия Helicobacter pylori, например, помогая регулировать кислотность желудочного сока, у пожилых людей, напротив, способствует возникновению язв и рака желудка.
Согласно другой точке зрения, которую мы рассмотрели выше, старение является совокупностью случайных изменений и ошибок, проявляющихся в пострепродуктивный период жизни. Поскольку сила естественного отбора после достижения пика размножения постепенно идет на спад, естественный отбор перестает контролировать здоровье индивида в пожилом возрасте, ведь все равно этот период – «постгарантийный». Поэтому возникновение в ходе эволюции особой генетической программы старения, на наш взгляд, маловероятно.
В то же время продолжительность жизни может быть тесно связана с репродуктивным успехом, и таким образом механизмы, препятствующие старению и потере репродуктивной функции, будут строго контролироваться естественным отбором. Именно это и происходит с видами, обитающими в благоприятных условиях.
Например, если вид достаточно защищен от хищников – живет на деревьях, в пещерах, подземных убежищах или на глубине океана, летает, характеризуется колониальным образом жизни либо обладает большими размерами тела, – естественный отбор эффективно удаляет из популяции все варианты генов, которые имеют отсроченные вредные последствия для здоровья и обусловливают старение, прежде всего репродуктивное. Поэтому такие виды, как киты, черепахи, некоторые рыбы и птицы, отличаются завидным долголетием относительно всех других видов животных и способны оставлять потомство в течение долгих лет. Если бы люди жили в благоприятных условиях не последние сто лет, а десятки тысяч лет, то со временем мы тоже, возможно, приобрели бы защитные механизмы, обеспечивающие пренебрежимое старение.
Если особи вида истребляются в большом количестве хищниками, индивидуумы озабочены как можно более ранним оставлением потомства. В этом случае варианты генов с отсроченными вредными последствиями не отсекаются эволюционным отбором, так как не успевают проявиться и повлиять на воспроизводство потомства.
По этой причине крысы, мыши, дрозофилы, почвенные нематоды и многие другие животные являются быстро стареющими видами.
Несмотря на то что старение эволюционно не запрограммировано, оно проявляется у каждого человека.
Американский биогеронтолог Михаил Благосклонный полагает, что старением управляет квазипрограмма, являющаяся бессмысленным побочным следствием реализации генетически запрограммированного индивидуального развития. После своего выполнения программа развития выключается не полностью, и эта своеобразная «инерция» приводит к разрушительным последствиям.
Образно выражаясь, перестав расти в высоту, человек начинает расти в ширину. Старение начинается с гиперфункции на клеточном уровне. В старой, больше не делящейся клетке активизируются процессы синтеза белков, регулируемые особыми ферментами, роль которых в ходе развития заключалась в организации роста и деления клеток. Клетка увеличивается в размерах, синтезирует больше белка и подает сигналы к росту соседним клеткам.
Когда старых клеток много, функции ткани, состоящей из них, изменяются. Не изнашивание, а болезненное разрастание и гиперфункция клеток вызывают атеросклероз, ишемию, инфаркты миокарда и инсульты, остеопороз и другие возрастные заболевания. Недаром ограничительная диета, за счет которой снижается рост численности старых клеток, способствует долголетию.
Ученые сходятся во мнении, что генетическая программа старения, по-видимому, отсутствует, однако существует особая эволюционная программа долгожительства. Она возникла в ходе эволюции для переживания экстремальных внешних воздействий, таких как перегрев, переохлаждение, снижение калорийности питания. Когда условия для рождения потомства неблагоприятны, более оправданно использовать ресурсы организма на то, чтобы переждать «черную полосу», чтобы приступить к размножению позже. В условиях стресса эта программа позволяет организму замедлить старение и превысить обычную для него продолжительность жизни путем вступления в «режим поддержания». Организм тратит меньше сил на синтез белков, рост и деление клеток, приостанавливает репродукцию, а высвобожденные ресурсы направляет на повышение стрессоустойчивости. Дополнительная устойчивость позволяет не только успешно противостоять неблагоприятным воздействиям внешней среды, но и справляться с внутренними ошибками, ведущими к старению. За последние два десятилетия ученым удалось найти сотни мутаций, продлевающих продолжительность жизни и увеличивающих устойчивость к повреждениям и стрессам у различных живых существ. По-видимому, искусственно вызванные мутации, приводящие к увеличению продолжительности жизни, влияют на программу долгожительства таким образом, что особи переходят в «режим поддержания» уже независимо от изменения условий внешней среды. Кстати, некоторые геропротекторы (вещества, замедляющие старение) способны целенаправленно включать «режим поддержания», способствуя продлению жизни, но об этом – в последующих главах.
Идея программы долгожительства во многом пересекается с концепцией «гормезиса». Гормезис – это стимулирующее воздействие стресса малой силы, в то время как при большой силе тот же стресс может быть губительным. Это своеобразное «закаливание», тренировка защитных систем, только на клеточном уровне. Гормезис могут вызывать тяжелые металлы, ионизирующая и УФ-радиация, гипергравитация, гиперосмотический шок. По-видимому, возникнув в эволюции для выживания популяции в условиях экстремальных температур и кратковременного голодания, молекулярные и клеточные механизмы устойчивости к неблагоприятным факторам среды могут справляться и с другими стрессорами, играющими роль в старении. Но, конечно же, не спешите к ближайшей атомной электростанции «подзаряжаться молодостью»: для достижения позитивного влияния воздействие должно быть подобрано индивидуально и очень точно, а современный уровень развития науки пока не позволяет провести соответствующие расчеты и обеспечить необходимый уровень безопасности.
Приведу таблицу, где я кратко обобщил точки зрения на «Запрограммированность старения» (табл. 4).
Таблица 4. Точки зрения на запрограммированность старения
Свободнорадикальная теория старения родилась в 1956 году, когда Дэнхем Харман опубликовал знаменитую статью «Старение: теория, основанная на свободных радикалах и радиационной химии», которая была процитирована более 5500 раз. Поясним для читателя, что свободные радикалы – это химически крайне активные формы кислорода. Митохондрии – «электростанции» клетки – в ходе производства энергии создают постоянный поток свободных радикалов, являющихся побочным продуктом их работы. Будучи химически гиперактивными, они начинают взаимодействовать с окружающими структурами и веществами, повреждая их, что наносит клетке вред, так как каждый ее элемент должен иметь строго определенную структуру и химический состав для нормальной работы.
Итак, что же попытался выяснить Харман?
В экспериментах, выполненных на мышах, ему удалось доказать, что диета, чрезмерно богатая быстро окисляемыми полиненасыщенными жирными кислотами (которые в избытке содержат, например, подсолнечное, кукурузное, соевое и рапсовое масло), является канцерогенной. Он стал первым исследователем, который пытался доказать потенциальные геропротекторные свойства антиоксидантов – веществ, которые могут химически связываться со свободными радикалами и нейтрализовать их вредные свойства. Он знал, что радиация повреждает ткани, продуцируя огромное количество свободных радикалов. Поэтому он применил в качестве антиоксидантов известные к тому времени радиопротекторы, вещества, снижающие вред от облучения. В частности, был использован 2-меркаптоэтиламин. Подопытные мыши жили в среднем на 12 % дольше, однако продления максимальной продолжительности жизни (что свидетельствовало бы о замедлении старения) добиться не удалось. Для объяснения этого факта Харман выдвинул гипотезу о неспособности искусственных антиоксидантов проникать в очаг образования свободных радикалов – митохондрию.
Академик Н. М. Эммануэль, развивавший свободнорадикальную теорию старения в 1970-e годы в СССР, и его сотрудники тоже искали антиоксиданты-геропротекторы, но продолжительность жизни под их действием существенно не менялась. Даже такой всем известный и активно продвигаемый антиоксидант, как коэнзим Q10, не продлевает жизнь в специально проведенных модельных экспериментах, а разрекламированные витамины-антиоксиданты Е, А и С при переизбытке и вовсе ее укорачивают, в частности помогая выживать раковым клеткам.
Антиоксиданты – не панацея
Датские ученые, опубликовавшие результаты своего исследования в Journal of The American Medical Association, обнаружили, что люди, которые принимали три антиоксиданта: бета-каротин, витамин Е и высокую дозу витамина А, не только не увеличивали свою продолжительность жизни, а, наоборот, подвергались повышенному риску смерти. Такие выводы были сделаны по результатам 78 исследований антиоксидантных добавок, опубликованных в период между 1977 и 2012 годами. В испытаниях участвовало около 300 000 взрослых людей, средний возраст которых составлял 63 года.
«Это исследование подтверждает то, что нам и так было известно. Антиоксидантные добавки не являются эффективным спасением жизни людей и не делают их здоровее», – сказал доктор Питер Коэн, эксперт по безопасности биологически активных добавок и эксперт компании Cambridge Health Alliance.
Современный виток интереса к геропротекторным свойствам перехватчиков свободных радикалов возник благодаря труду большой группы ученых под руководством академика В. П. Скулачева. Как биоэнергетик (ученый, изучающий процессы выработки, распределения и использования энергии в живом организме), Владимир Петрович всю жизнь посвятил изучению функционирования митохондрий, что позволило ему изобрести антиоксидант, способный, как мечтал Харман, проникать в митохондрии, перехватывая радикалы на месте их массового зарождения. Однако максимальная продолжительность жизни в экспериментах, выполненных на животных из разных эволюционных групп, под действием иона Скулачева существенно не изменялась.
УЗНАЙ БОЛЬШЕ
Многие вещества, которые увеличивают жизнь модельным животным, действительно обладают некоторой способностью гасить свободные радикалы в химических реакциях вне живой клетки, в пробирке. Но, как отмечает биофизик В. К. Кольтовер, когда они попадают в клетку, их так мало, что они не могут конкурировать со встроенными защитными механизмами живого организма наподобие фермента супероксиддисмутазы (этот фермент в нашем организме является главным антиоксидантом, именно он способствует связыванию кислородных радикалов). Антиоксидантное действие геропротекторов не играет заметной роли в живом организме, однако многие из них могут стимулировать активность генов стрессоустойчивости клетки (например, вызвать усиленное производство нашей собственной супероксиддисмутазы) или предупредить образование вредных белков, что и обеспечивает замедление старения и продление жизни. Например, байкалеин, компонент некоторых лекарственных растений, продлевает жизнь нематодам на 54 % (максимальную продолжительность жизни – на 24 %). Байкалеин проявляет способность перехватывать свободные радикалы в пробирке, однако в клетке он также подавляет активность токсичных ферментов (липоксигеназы, циклооксигеназы, индуцированной синтазы оксида азота), которые усиливают склонность к воспалительным процессам, и активируют собственные антиоксидантные белки клетки (NRF-2), включая их в борьбу со свободными радикалами.
«В пробирке» изучены антиоксидантные свойства такого большого количества полезных веществ, что создается впечатление, будто эти свойства изучали только для того, чтобы отдать дань устаревшей теории, ведь ранее все старение было принято объяснять свободными радикалами, а антиоксиданты считались панацеей от проблем старости. Впрочем, грех нам жаловаться, так как в результате этих исследований мы получили много любопытных научных данных. Это заставило ученых внимательнее присмотреться к свободным радикалам и их роли в поддержании здоровья.
Наибольшее удивление вызывают даже не низкий геропротекторный отклик известных антиоксидантов. Интереснее всего то, что в небольших концентрациях сильные яды со свободнорадикальным механизмом действия, например паракват, способны вызывать у некоторых подопытных животных продление жизни до 20 %. Как говорил Фридрих Ницше, «что нас не убивает, делает нас лишь сильнее».
У некоторых модельных животных искусственное удаление генов, которые образуют такие ферменты, как супероксиддисмутаза, защищающие клетки от свободных радикалов, не только не снижает, но даже продлевает жизнь. Это явление получило название «митогормезис», которым обозначают защитное и регуляторное действие определенных митохондриальных свободных радикалов. Некоторые из них необходимы для стимуляции защитных реакций клетки, процессов передачи сигналов внутри и между клетками, в частности, для активации внутриклеточных ферментов, управляющих процессами роста и развития клетки. Еще один свободный радикал, оксид азота (NO), имеет большое значение для межклеточной сигнализации, участвуя в расширении кровеносных сосудов, эрекции полового члена, иммунном ответе, передаче нервного импульса. Таким образом, определенные свободные радикалы в малых дозах являются необходимыми и способствуют долголетию, тогда как в избытке они же токсичны и ускоряют старение.
Несколько лет назад при исследовании спортсменов было показано, что прием антиоксидантов перед физическими нагрузками не позволяет сформироваться тренированности. В недавнем исследовании 2014 года сочетание приема антиоксидантов с воздействием некоторых геропротекторов (в частности, D-глюкозамина, хорошо знакомого людям, заботящимся о состоянии суставов) отменяло действие последних и не вызывало увеличения продолжительности жизни.
Если значимость перехвата антиоксидантами свободных радикалов в живой клетке ставится под сомнение по сравнению с собственными защитными системами клетки, то более весомым доказательством справедливости свободнорадикальной теории могло бы стать увеличение продолжительности жизни при искусственной активации собственных антиоксидантных ферментов. В ряде ранних работ было показано, что сверхактивация генов антиоксидантных белков вызывает увеличение продолжительности жизни. Однако позже оказалось, что результаты не воспроизводятся и связаны с неточностями в постановке экспериментов – с заниженной продолжительностью жизни в контрольных группах животных. В других экспериментах, на дрожжах, дрозофилах и мышах, сверхактивация антиоксидантных ферментов либо не вызывала отклика, либо сокращала длительность жизни.
Таким образом, свободнорадикальная теория потерпела фиаско. Сегодня можно с уверенностью сказать, что воздействие свободных радикалов, хотя и вносит свою лепту в развитие процессов старения, не является его основной, а тем более единственной причиной.