Небесные силы отказали нам в помощи. Остается рассчитывать лишь на могущество человеческой техники, преодолевшей уже немало природных препятствий. Найдем ли мы в ней орудие достаточно могучее, чтобы разорвать оковы тяжести и ринуться в простор мироздания для исследования иных миров?
Надо было обладать оригинальным умом Жюля Верна, чтобы в смертоносном орудии – в пушке – усмотреть средство «вознестись живым на небо». Большинство людей не отдает себе отчета в том, что с механической точки зрения пушка – самая мощная из всех машин, созданных до сих пор человеческой изобретательностью. Пороховые газы, образующиеся в канале орудия при выстреле, оказывают на снаряд давление в 2–3 тысячи килограммов на квадратный сантиметр: это в несколько раз превышает чудовищное давление водных масс в глубочайших пучинах океана. Чтобы оценить работоспособность современной пушки в единицах мощности, т. е. в лошадиных силах, рассмотрим 40-сантиметровое орудие, выбрасывающее снаряд в 600 кг со скоростью 900 м/с. «Живая сила» такого снаряда – полупроизведение массы на квадрат скорости – составляет около 24 000 000 кгм. Если принять во внимание, что столь огромный запас работы развивается в течение небольшой доли секунды – в данном случае 30-й, – то окажется, что секундная работа, выполняемая пушкой, т. е. ее мощность, определяется числом 10 000 000 л. с. Между тем мощность машин величайшего океанского парохода[8] только 200 000 л. с.; понадобилось бы полсотни двигателей подобного исполина, чтобы выполнить механическую работу, совершаемую пороховыми газами орудия в течение секунды.
Не без основания, как видим, предлагал французский романист именно с помощью пушки разрешить проблему заатмосферных полетов. В своих романах он оставил нам самый популярный проект межпланетных путешествий. Кто в юности не путешествовал с его героями на Луну внутри пушечного ядра?
Остроумная идея, разработанная романистом в двух произведениях – «От Земли до Луны» и «Вокруг Луны»[9], заслуживает большего внимания, чем то, которое обычно ей уделяется. Увлекшись фабулой произведения, читатели склонны превратно оценивать его основную мысль, считая ее фантастичной там, где она реальна, и осуществимой там, где она несбыточна. Рассмотрим же поближе проект Жюля Верна как техническую идею.
Признаюсь, не без волнения приступаю я к строгому разбору пленительных повестей увлекательного романиста. За десятки лет, протекших со времени появления (1865–1870 гг.) этих произведений, увенчанных премией Академии, они успели стать любимым чтением молодежи всех стран. В годы моей юности они зажгли во мне впервые живой интерес к астрономии; не сомневаюсь, что тем же обязаны им и многие тысячи других читателей. И если я решаюсь вонзить анатомический нож в поэтическое создание романиста, то утешаю себя мыслью, что следую лишь примеру его даровитого соотечественника, известного физика Шарля Гильома[10].
Вы имеете превратное представление о науке, если думаете, что она безжалостно подсекает крылья воображению и обрекает нас пресмыкаться в обыденности повседневной жизни. Бесплодной Сахарой было бы поле научных исследований, если бы ученые не прибегали к услугам воображения, не умели отвлекаться от мира видимого, чтобы создавать мысленные, неосязаемые образы. Ни одного шага не делает наука без воображения; она постоянно питается плодами фантазии, но фантазии научной, рисующей воображаемые образы со всею возможною отчетливостью.
Научный разбор романа Жюля Верна не есть поэтому столкновение действительности с фантазией. Нет, это соперничество двух родов воображения – научного и ненаучного. И победа остается за наукой вовсе не потому, что романист слишком много фантазировал. Напротив, он фантазировал недостаточно, не достроил до конца своих мысленных образов. Созданная им фантастическая картина межпланетного путешествия страдает недоделанностью. Нам придется восполнить эти недостающие подробности, и не наша вина, если упущенные черты существенно изменяют всю картину.
Надо ли пересказывать содержание романа, который у всех в памяти? Напомню лишь вкратце, словами самого Жюля Верна, главнейшие из интересующих нас обстоятельств.
«В 186… году весь мир был в высшей степени взволнован одним научным опытом, первым и совершенно оригинальным в летописях науки. Члены Пушечного клуба, основанного артиллеристами в Балтиморе после американской войны[11], вздумали войти в сношение с Луной, – да, с Луной, – послав в нее снаряд. Их председатель, Барбикен, инициатор предприятия, посоветовавшись с астрономами Кэмбриджской (в Сев. Америке) обсерватории, принял все необходимые меры, чтобы обеспечить это необыкновенное предприятие.
Рис. 10. Проект Жюля Верна. «Снаряд будет представлять собою алюминиевую гранату»…
«Согласно указаниям, данным членами обсерватории, пушка, из которой будет сделан выстрел, должна быть установлена в стране, расположенной между 0° и 28° северной или южной широты, чтобы можно было навести ее на Луну в зените. Снаряду должна быть дана первоначальная скорость в 16 тысяч метров в секунду. Выпущенный 1 декабря в десять часов сорок секунд вечера, он должен достичь цели через четыре дня после своего отправления, 5 декабря ровно в полночь, в тот самый момент, когда Луна будет находиться в своем перигее, т. е. в ближайшем расстоянии от Земли.
«Решено было, что 1) снаряд будет представлять собою алюминиевую гранату диаметром в 275 см, со стенками толщиной в 30 см, и будет весить 9 т; 2) пушка будет чугунная, длиною 275 м, и будет вылита прямо в земле; 3) на заряд будет взято 107 т пироксилина, который, развив под снарядом шесть миллиардов литров газа, легко добросит его до ночного светила.
«Когда эти вопросы были разрешены, председатель клуба, Барбикен, выбрал место, где после чудовищной работы была вполне успешно отлита эта колумбиада (пушка).
«В таком положении находились дела, когда случилось событие, во сто раз увеличившее интерес, возбужденный этим великим предприятием.
«Один француз, фантаст-парижанин, умный и отважный, попросил заключить его в снаряд, так как он хочет попасть на Луну и познакомиться с земным спутником[12]. Он помирил председателя Барбикена с его смертельным врагом, капитаном Николаем, и в залог примирения уговорил их отправиться вместе с ним в снаряде. Предложение было принято. Изменили форму снаряда. Теперь он стал цилиндроконическим. Этот род воздушного вагона снабдили сильными пружинами и легко разбирающимися перегородками, которые должны были ослабить силу толчка при выстреле. Захватили съестных припасов на год и воды на несколько месяцев, газа на несколько дней. Особый автоматический аппарат изготовлял и доставлял воздух, необходимый для дыхания трем путешественникам.
«1 декабря в назначенный час, в присутствии необычайного скопления зрителей, начался полет, – и в первый раз три человеческих существа, покинув земной шар, понеслись в мировое пространство с полной уверенностью, что достигнут своей цели».
Прежде всего нам предстоит обсудить, конечно, вопрос о том, насколько реальна самая идея закинуть пушечное ядро на Луну. Мысль о возможности бросить тело с такой скоростью, которая навсегда унесла бы его с Земли, кажется многим совершенно нелепой. Большинство людей привыкло думать, что всякое брошенное тело непременно должно упасть обратно. Таким людям идея Жюля Верна о посылке ядра на Луну представляется абсурдной и беспочвенной. Мыслимо ли, в самом деле, сообщить земному телу такую скорость, чтобы оно безвозвратно покинуло нашу планету? Механика дает на этот вопрос безусловно положительный ответ.
Предоставим слово Ньютону. В своих «Математических началах физики», фундаменте современной механики и астрономии, он писал (книга I, отд. I, определение V):
«Если свинцовое ядро, брошенное горизонтально силою пороха из пушки, поставленной на вершине горы, отлетает по кривой – прежде чем упасть на Землю – на две мили, то (предполагая, что сопротивления воздуха нет), если бросить его с двойной скоростью, оно отлетит приблизительно вдвое дальше; если с десятикратною, то в десять раз. Увеличивая скорость, можно по желанию увеличить и дальность полета и уменьшить кривизну линии, по которой ядро движется, так что можно бы заставить его упасть в расстоянии 10°, 30° и 90°, можно заставить его окружить всю Землю и даже уйти в небесные пространства и продолжать удаляться до бесконечности».
Итак, ядро, извергнутое воображаемой ньютоновой пушкой, при известной скорости безостановочно кружилось бы около нашей планеты, наподобие крошечной
Луны (рис. 11). Мы можем вычислить, какая начальная скорость нужна для такого полета ядра. Вычисление это (если пренебречь сопротивлением атмосферы) настолько же просто, насколько любопытен его результат.
Рис. 11. Воображаемый опыт Ньютона с пушечными снарядами
Чтобы найти искомую скорость, отдадим себе отчет в том, почему ядро, выброшенное пушкой горизонтально, падает в конце концов на Землю. Потому, что земное притяжение искривляет путь ядра – снаряд летит не по прямой линии, а по кривой[13], которая упирается в земную поверхность. Но если бы мы могли уменьшить кривизну пути ядра настолько, чтобы сделать ее одинаковой с кривизной земной поверхности, то ядро никогда на Землю не упало бы: оно вечно мчалось бы по кривой, концентрической с окружностью нашей планеты. Этого можно добиться, сообщив ядру достаточную скорость, и мы сейчас определим – какую. Взгляните на рис. 12.
Рис. 12 Вычисление скорости ядра, которое должно вечно кружиться около Земли
Снаряд, выброшенный пушкой из точки А по касательной, спустя секунду был бы, скажем, в точке В, – если бы не действие земного притяжения. Тяжесть меняет дело, и под ее влиянием снаряд через секунду окажется не в В, а ниже настолько, насколько всякое свободное тело опускается в первую секунду своего падения, т. е. на 5 м. Если, опустившись на эти 5 м, снаряд окажется над уровнем Земли ровно настолько же, насколько и в точке А, то значит, он летит параллельно земной поверхности, не приближаясь и не удаляясь от нее. Это и есть то, чего мы желаем добиться. Остается вычислить лишь длину AB, т. е. путь снаряда в одну секунду; результат и даст искомую секундную скорость ядра. Вычисление может быть выполнено по теореме Пифагора. В прямоугольном треугольнике АВО линия АО есть земной радиус, равный 6 371 000 м. Отрезок ОС = АО, отрезок ВС = 5 м; следовательно, OB = 6 371 005 м. По теореме Пифагора имеем:
6 371 0052 = 6 371 0002 + AB2.
Отсюда уже легко вычислить искомую величину секундной скорости:
AB = 7900 м/с.
Итак, если бы пушка могла сообщить снаряду начальную скорость в 8 км/сек, то при отсутствии сопротивления атмосферы такой снаряд никогда не упал бы на Землю, а вечно вращался бы вокруг нее[14]. Пролетая в каждую секунду 8 км, он в течение 1 ч 23 мин успел бы описать полный круг и возвратился бы в точку исхода, чтобы начать новый круг, и т. д. Это был бы настоящий спутник земного шара, наша вторая Луна, более близкая и более быстрая, чем первая. Ее «месяц» равнялся бы всего только 1 ч 23 мин. Она мчалась бы в 17 раз быстрее, чем любая точка земного экватора, и если вы вспомните то, что сказано было выше об ослаблении тяжести вследствие вращения Земли (см. стр. 28–30), то вам станет еще яснее, почему ядро наше не падает на Землю. Мы знаем, что если бы земной шар вращался в 17 раз быстрее, то тела на экваторе целиком потеряли бы свой вес; скорость же нашего снаряда – 8 км/с – как раз в 17 раз больше скорости точек земного экватора.
Рис. 13. Как направлена сила тяжести, действующая на снаряд в воображаемом опыте Ньютона
Человеческой гордости должно льстить сознание, что мы имеем возможность – правда, лишь теоретическую – подарить Земле маленького, но все же настоящего спутника. Пылкий герой Жюль-Вернова «Путешествия на Луну», артиллерист Мастон, не без основания воскликнул, что в создании пушечного ядра человек проявил высшую степень могущества: «Создав пушечное ядро, человек сотворил подобие несущихся в пространстве небесных светил, которые в сущности те же ядра». Еще справедливее это сравнение с небесными светилами для того снаряда, который отсылается в мировое пространство. Это новое небесное тело, при своей миниатюрности, будет не хуже всех остальных подчиняться трем законам Кеплера, управляющим небесными движениями. Нужды нет, что пушечный снаряд – предмет «земной»: приобретя космическую скорость, он превращается в настоящее небесное тело.
Рис. 14. Судьба ядер, выброшенных пушкой с весьма большими скоростями
Итак, сообщив пушечному снаряду начальную скорость 8 км/с, мы превращаем его в маленькое небесное тело, которое, победив земное притяжение, уже не возвращается на Землю. Что же будет, если сообщить снаряду еще большую начальную скорость? В небесной механике доказывается, что при начальной секундной скорости в 8, 9, 10 км/с, снаряд, выброшенный пушкой, будет описывать около Земли не окружность, а эллипс – тем более вытянутый, чем значительнее начальная скорость; центр Земли занимает один из фокусов этого эллипса.
Рис. 15. Какие пути должны описывать в пустом пространстве тела, брошенные с Земли горизонтально со скоростью 8 км/с и более
Когда же мы доведем начальную скорость приблизительно до 11 км/с, эллипс превратится уже в незамкнутую кривую – в параболу (рис. 15). Точнее говоря, он должен был бы превратиться в параболу, если бы Земля была единственным телом, притяжение которого влияет на путь нашего снаряда. Могучее притяжение Солнца также действует на снаряд и мешает ему удалиться в бесконечность. Брошенный с указанной скоростью в направлении годового движения Земли снаряд избегнет падения на Солнце и будет вечно обращаться вокруг него, подобно земному шару и другим планетам. В астрономическом смысле он повысится в ранге: из спутника Земли превратится в спутника Солнца, в самостоятельную планету. Человеческая техника подарит солнечной системе нового миниатюрного члена.
Ради простоты мы начали с рассмотрения тела, брошенного горизонтально. В небесной механике доказывается, однако, что те же выводы справедливы и для тела, брошенного под любым углом к горизонту, даже отвесно, как ядро в романе Жюля Верна. Во всех случаях при достаточной скорости снаряд покидает Землю навсегда и уносится в мировое пространство.
Вот какие чудесные возможности открывает перед нами теория. Что же говорит ее несговорчивая сестра – практика? В состоянии ли современная артиллерия осуществить эти возможности?
Величайшая пушка, действительно сооруженная, – это то знаменитое сверхдальнобойное орудие, которым немцы в 1918 г. обстреливали Париж с расстояния 120 км. В следующей табличке сопоставлены данные об обеих пушках – германской[15] и Жюль-Верновой:
Сравнивая оба исполина – реальный и фантастический, – мы видим, что германские артиллеристы создали орудие, которое по линейным размерам всего в 7–8 раз было меньше Жюль-Верновой колумбиады и выбрасывало снаряд со скоростью 2 км/с. Эта рекордная начальная скорость в 5,5 раз меньше того, что необходимо для переброски снаряда с Земли на Луну.
Переход от 2 к 11 как будто не так уже значителен. Техника в победном шествии своем преодолела гораздо большую дистанцию, когда заменила древние катапульты мощными орудиями современной артиллерии. Римские легионеры назвали бы безумцем всякого, кто сказал бы, что их потомки будут перебрасывать снаряды в тонну весом на расстояние 40 и более километров. Энергия, выбрасывающая снаряд из крупного орудия, в десятки миллионов раз превышает энергию человека, невооруженной рукой бросающего камень. Если мы могли так головокружительно далеко превзойти силу первобытного дикаря, то не опрометчиво ли ставить какие-нибудь границы дальнейшему росту могущества артиллерийской техники?
Досадно, конечно, что земная тяжесть так значительна. На Луне напряжение тяжести вшестеро слабее, чем на Земле, и совершенно отсутствует атмосфера, служащая серьезным препятствием полету снаряда; поэтому там для превращения снаряда в спутник почти достаточна была бы одна из тех дальнобойных пушек, которыми наша техника уже располагает в данный момент (нужна начальная скорость 2,3 км/с). А на спутнике Марса – крошечном Фобосе – можно просто бросить камень рукой, чтобы он никогда уже на упал обратно.
Однако мы живем не на Фобосе и не на Луне, а на Земле. Нам необходимо поэтому добиваться секундной скорости около 13–17 км, чтобы иметь возможность перекидывать пушечные снаряды на иные планеты. Достигнем ли мы этого когда-нибудь?