Сегодня мы продолжаем изучение АРИЗ. Знакомимся с пятым плакатом.
Человек, проходящий обучение по ТРИЗ, знакомится с несколькими сотнями изобретательских примеров и решенных задач. Примеры эти далеко не случайны, они специально отобраны так, чтобы ученики получили некоторый начальный фонд «задач – аналогов», помогающих при решении. Те, кто продолжают осваивать ТРИЗ: читают ТРИЗовскую литературу, материалы по ТРИЗ в Интернете и т. п., постоянно пополняют этот фонд, повышая свою «решательную мощность».
Задача 2
Каждый знает, как непросто чистить сладкий перец. Нужно аккуратно отрезать и вынуть шляпку с семенами. Но это ещё приемлемо в домашнем хозяйстве, когда перцев немного. А как быть на консервном заводе, где их тонны?
– Вам эта задача ничего не напоминает? Ребята думают. Количество решенных здесь, в летней школе, задач уже приближается к сотне, не так просто перебрать их в памяти. Наконец, вспомнили.
– Была похожая задача. Как раскалывать орехи, её ещё синекторы[4] решали!
– Действительно, была. Помните решение?
– Там предлагали прокалывать орехи шприцом и подавать внутрь высокое давление, которое разорвёт скорлупу.
– Подходит нам такое решение в случае с перцами?
– В принципе подходит… Только…
– Что вас смущает?
– Да решение какое-то не очень идеальное. В каждый перец шприц вводить.
– Вот и сформулируйте ИКР.
К доске выходит Саша и пишет:
«Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, проталкивает воздух внутрь перца…»
– Икс-элемент должен быть из ресурсов, чтобы решение получилось идеальнее, чем со шприцем. А какие у нас ресурсы?
– У перца есть поры! Сквозь них может проникать воздух!
– Но просто так давление внутри перца не станет больше, чем снаружи!
Саша записывает формулировку ФП:
«Давление воздуха внутри перца должно быть больше, чем снаружи, чтобы перец лопнул, и не должно быть больше, потому что воздух не пойдёт внутрь перца».
– Это противоречие разрешается во времени! – кричит Алёша. – Сначала снаружи давление должно быть большим, чтобы воздух зашёл внутрь перца, а потом – стать маленьким, и воздух разорвёт перец.
Теперь смело можно приниматься за проектирование новой несложной установки. В большой бак засыпают сразу несколько сот килограммов перца. Плотно завинчивается крышка, и медленно поднимается давление. Сквозь поры перца воздух постепенно проникает внутрь. За 5–10 минут давление в баке (а значит, и внутри перца) достигает нескольких атмосфер. А потом открывается клапан, и воздух в доли секунды вырывается из бака наружу. Давление в баке сразу падает до атмосферного. А вот воздух, «пленённый» внутри перца, не может так быстро уйти через мельчайшие поры, и на какое-то мгновение внутри перца давление становится намного выше, чем снаружи. Воздух ищет выхода и находит его в самом слабом месте – у шляпки. Она вылетает вместе с семенами – перец очищен! Все сотни килограммов сразу.
– С чего мы начали решение?
– С того, что вспомнили похожую задачу.
– Верно. Такие «похожие» задачи в ТРИЗ называются задачами-аналогами. Нашли приём решения одной задачи, а потом оказывается, что его можно применить и для решения других задач. Не всегда внешне задачи-аналоги похожи. Иногда сходство «прячется» довольно глубоко и становится явным только после того, как сформулированы ИКР или ФП, или нарисованы маленькие человечки. Какой приём мы использовали для решения?
– Мы сначала постепенно поднимали давление, а потом резко сбросили.
– Правильно. Вот ещё задача.
Задача 3
При изготовлении искусственных алмазов иногда получаются кристаллы с мелкими трещинками. Эти трещинки опасны – может преждевременно выйти из строя инструмент, в котором будут использованы такие алмазы. Лучше уж заранее расколоть алмаз по трещинам, пусть будут помельче – это ничего, всем работа найдётся – но зато целые. Но как это сделать? Алмаз хрупок, и, если по нему ударить, он расколется, но при этом могут возникнуть и новые трещины. То же самое может получиться, если использовать термоудар – быстрое нагревание и охлаждение. Как быть?
– Очень просто! Как с перцем, – не задумываясь отвечают ребята.
– Смотрите, что, казалось бы, общего между перцем и алмазом? А проблема была решена точно так же, только давление пришлось поднимать до нескольких тысяч атмосфер! А если нужно чистить картошку в столовой? Или семечки на кондитерской фабрике? Очищать от панцирей мельчайших морских рачков – криль? Снимать с деревьев кору? Ведь это же всё – одна задача! А решения её получены в разное время, разными изобретателями, в разных концах света!
Для будущих изобретателей очень важно знать, что многие идеи, решения могут быть использованы многократно. Именно на этом основаны стандарты на решение изобретательских задач, задачи-аналоги.
С приёмами разрешения физических противоречий мы в основном знакомы. Ребята уже умело пользуются разделением противоречивых требований в пространстве, во времени, получили понятие о системном переходе. Есть ещё фазовый переход, то есть использование фазовых превращений. Впрочем, их мы тоже применяли. Где?
– Мы решали задачу, как увеличить диаметр трубы. Там вода превращалась в лёд.
– Верно. А ещё?
– А ещё задачу про вулканизатор – поддержание температуры во время плавления.
– Хорошо. Следующий шаг – применение «Указателя физических эффектов». Мы уже говорили, что физических эффектов, используемых для решения изобретательских задач, – тысячи. Как среди них найти нужный?
– Сначала «сконструировать» с помощью маленьких человечков, а потом найти.
– В принципе верно. Но даже зная, что нужно, не всегда легко найти это нужное среди множества эффектов. Поэтому в начале 70-х годов был создан первый Указатель. Он представлял собой справочник, в котором кратко рассказывалось о каждом физэффекте, о том, как он может быть использован, приводились ссылки на литературу, где об этом эффекте рассказано подробнее. Поиск нужного эффекта облегчала таблица, состоящая из двух граф: в первой указывалось нужное действие, а во второй приведены эффекты, способные осуществить это действие. Например:
Сегодня несложно найти как сами указатели эффектов, так и описания нужных эффектов в Интернете. В процессе развития ТРИЗ развивалось и применение разных эффектов. Сегодня наряду с указателем физических эффектов существуют также указатели применения химических, геометрических и биологических эффектов, их легко можно найти в Интернете, как и описание самих эффектов.
В АРИЗ есть ещё шестая, седьмая, восьмая и девятая части, о которых мы расскажем лишь в общих чертах. Шестая часть предназначена для изменения или замены мини-задачи на другую, если решение первоначальной задачи не удалось найти. В седьмой части идет проверка, разрешено ли физическое противоречие, достигнут ли ИКР, содержит ли новая система хорошо управляемые элементы – словом оценивается качество найденной идеи. И если оно не удовлетворяет приведенным в тексте алгоритма требованиям, рекомендуется повторить решение. Здесь же выявляются дополнительные задачи и подзадачи, которые необходимо решить для того, чтобы внедрить найденную идею. Ведь для внедрения одного изобретения высокого уровня иногда приходится решить немало задач более низкого уровня.
Задача 4
Знаменитый учёный-изобретатель первой половины 20 века Огюст Пикар прославился изобретением стратостата и батискафа. При их создании ему пришлось решить немало задач, в частности об управлении клапаном гондолы стратостата. Управление производилось с помощью веревки, пропущенной через металлическую оболочку герметичной гондолы внутрь неё. (Электронике Пикар не доверял, считая её ненадёжной.) При этом возникла проблема: через узкое отверстие воздух из гондолы не выходил, но тяжело проходила верёвка. А через широкое – верёвка проходила легко, но также легко уходил и воздух. Как быть?
Решим задачу по АРИЗ, но запишем только узловые шаги.
1.1. Мини-задача. Техническая система для полёта и управления стратостатом включает гондолу, верёвку, отверстие и воздух.
ТП-1: если отверстие большое, то верёвка свободно ходит через него, но выходит воздух.
ТП-2: если отверстие маленькое, воздух не выходит, но верёвка ходит с трудом. Необходимо при минимальных изменениях в системе обеспечить свободное продвижение верёвки без потери воздуха.
1.2. Изделие – верёвка (B1), воздух (B2). Инструмент – отверстие (О) (большое, маленькое).
1.3.
1.4. Главный производственный процесс – управление гондолой. Выбираем ТП-1.
1.5. Отверстие очень большое, огромное.
3.1. ИКР-1. Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет выход воздуха, не мешая проходить веревке.
3.2. Икс-элемент должен быть из имеющихся ресурсов.
3.3. ФП на макроуровне. Оперативная зона (03) должна быть проницаемой, чтобы пропускать веревку, и должна быть непроницаемой, чтобы не пропускать воздух.
3.4. ФП на микроуровне. Частицы оперативной зоны должны быть связаны, чтобы 03 была непроницаемой, и не должны быть связаны, чтобы 03 была проницаемой. Проницаема для веревки (твердого тела) и непроницаема для воздуха… Да это же жидкость! Действительно, если ввести в отверстие жидкость, например воду, то веревка свободно будет проходить, а воздух – нет. Но возникает новая подзадача: как удержать жидкость? Во-первых, она растечется, во-вторых, перепад давления вытолкнет её из гондолы.
– Перепад давления можно уравновесить столбом жидкости.
– Ого! Для этого нужен столб в десять метров воды!
– Почему обязательно воды? Если жидкость тяжёлая, можно и поменьше.
– Ртуть?
– Нет, ртуть нельзя, все в гондоле отравятся.
– Вы решаете сразу две задачи, – замечает Преподаватель. – Сначала решите задачу, как сделать, чтобы вода или ртуть удерживалась в отверстии, а потом – как бороться с отравлением.
– Я знаю, как удержать. Как в школьном манометре – там трубка V-образной формы, заполненная ртутью, через неё можно пропустить верёвку.
– Хорошо. Но как быть с ртутью? Отчего происходит отравление?
– Из-за испарения ртути.
– А можно сделать, чтобы она не испарялась? Вспомните вепольный анализ!
– B1 – ртуть, B2 – воздух, вредное поле П – испарение.
– Вредный веполь можно разрушить введением B3 – прослойки.
– Можно ввести ту же воду или масло. Вот теперь решение готово для использования.
Пришлось решить не одну задачу, а три. И так всегда, задачи «обрастают» более мелкими задачами, нужно только решать их не все сразу, а по очереди.
В восьмой части АРИЗ рассматриваются вопросы применения полученного решения. В первую очередь необходимо выяснить, как должна быть преобразована надсистема, в одной из систем которой произошли существенные (или не очень) изменения. Делать это необходимо, потому что случаются курьёзные случаи.
Задача 5
На одном заводе в цехе, где происходило покрытие деталей электролитическим способом, придумали ценное усовершенствование, позволившее загружать в электролитическую ванну вдвое больше деталей, чем раньше. Производительность возросла в два раза, все радовались. А потом обнаружилась неприятность. Когда детали пошли в дело, оказалось, что половина из них – брак.