Человек и все живые объекты окружающей среды постоянно подвергаются воздействию электромагнитных полей естественного и искусственного (антропогенного) происхождения. Возникновение многочисленных искусственных источников ЭМП привело за последние 100–120 лет к резкому возрастанию интенсивности электромагнитного излучения.
Средняя интенсивность электромагнитного излучения Солнца и других внеземных источников, которые создают естественный электромагнитный фон Земли в радиочастотном и микроволновом диапазонах, изменяется в пределах от 10–24 (спокойное Солнце) до 10 –12 Вт/м2 (максимальная солнечная активность), в то время как общий электромагнитный фон в условиях современного города составляет 10–1 – 10 Вт/м2 [2]. Таким образом, суммарная интенсивность ЭМП различного происхождения на несколько порядков превышает интенсивность естественного электромагнитного фона.
Источники ЭМП антропогенного происхождения чрезвычайно разнообразны. Это линии электропередач (ЛЭП), электротранспорт, промышленные установки, телевизионные и радиовещательные станции, бытовая техника, мониторы компьютеров, радары, медицинская и научная аппаратура, системы мобильной связи, Интернет и т. д., которые являются источниками излучения электромагнитного излучения в широком диапазоне частот [1–3]. Среди перечисленных источников электромагнитного воздействия на человека наибольший вклад вносят базовые станции сотовой связи и мобильные телефоны. Суммарная экспозиция населения от ЭМП беспроводных телекоммуникационных технологий постоянно растет и сейчас составляет не менее 60 % от общей экспозиции в радиочастотном диапазоне [27]. Невероятно широкое распространение мобильных средств связи в сочетании с неопределенностями в оценке опасности для здоровья человека, по существу представляет собой небывалый по размаху эксперимент, который человечество проводит на себе [28, 29].
ЭМП, обладая высокой биологической активностью, вызывают в организме, его отдельных системах разнообразные эффекты, выраженность которых зависит от многих факторов, но, прежде всего, от энергии квантов излучения, обусловленных диапазоном частот и их интенсивностью.
Чтобы понять действие электромагнитного излучения (ЭМИ) на организм, необходимо рассмотреть физическую природу ЭМП и более подробно остановиться на его особенностях в диапазоне мобильной связи.
ЭМП – особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами, представляющая собой совокупность электрического и магнитного полей. Электромагнитные волны возникают вследствие связи между изменениями электрического и магнитного полей. Всякое изменение напряженности электрического поля вызывает появление переменного магнитного поля, изменение которого, в свою очередь, порождает меняющееся электрическое поле. Именно поэтому происходит передача колебаний напряженностей электрического и магнитного полей, т. е. происходит распространение электромагнитной волны.
В вакууме ЭМП характеризуются вектором напряженности электрического поля (Е) и магнитной индукцией (В), которые соответственно определяют силы, действующие со стороны поля на неподвижные и (или) движущиеся заряженные частицы. Наряду с векторами Е и В, измеряемыми непосредственно, ЭМП может характеризоваться скалярным φ и векторным А потенциалами, которые определяются неоднозначно, с точностью до градиентного преобразования. В среде, например в тканях, ЭМП характеризуется дополнительно двумя вспомогательными магнитными величинами: напряженностью магнитного поля (Н) и электрической индукцией (D). При ускоренном движении заряженных частиц ЭМП излучается в виде квантов (фотонов) и существует в виде электромагнитных волн, которые представляют собой взаимосвязанные изменения напряженности электрического и магнитного полей [2, 30–32].
Основными параметрами электромагнитной волны (электромагнитного излучения) являются длина волны (λ) – расстояние, на которое распространяется волна за один период (Т), частота колебания (F) – число колебаний за 1 с, скорость (С) распространения электромагнитной волны, равная (λ/Т) [30, 31]. Электрическая Е- и магнитная Н-составляющие в распространяющейся электромагнитной волне перпендикулярны друг другу и направлению распространения [2].
Действие ЭМП в зависимости от энергии квантов может вызывать или не вызывать ионизацию атомов. ЭМИ, вызывающее ионизацию атомов, является ионизирующим излучением, к числу которых относятся γ- и рентгеновское излучения. ЭМИ, не вызывающее ионизацию атомов, – неионизирующее излучение, к спектру которых принадлежат ультрафиолетовое, оптическое (видимый свет), инфракрасное, гипервысокочастотное, сверхвысокочастотное или микроволновое и радиочастотное излучения. Условной границей между ионизирующими и неионизирующими излучениями принята энергия кванта в 12 эВ, соответствующая длине 100 нм. Эта граница находится в ультрафиолетовой области электромагнитного спектра. Таким образом, неионизирующее излучение не обладает достаточной энергией для ионизации вещества. Оно характеризуется энергиями фотонов ниже 12 эВ, длиной волны выше 100 нм, частотой ниже 3·1015 Гц. Тем не менее неионизирующее излучение обладает высокой биологической активностью, вызывая в зависимости от его интенсивности такие эффекты, как нагревание, изменение химических реакций, наведение электрических токов в тканях, информационное воздействие [2].
Согласно Международной классификации, электромагнитный спектр до 3000 ГГц в зависимости от частоты и длины волны разделяется на 12 диапазонов (табл. 1.1).
Весь спектр электромагнитных излучений, используемых в медико-биологической практике, также принято относить к низким (низкие частоты (НЧ), диапазон частот от 3 до 300 кГц), радио- (радиочастоты (РЧ), диапазон частот от 0,3 до 300 МГц) и сверхвысоким (СВЧ, диапазон частот от 0,3 до 3000 ГГц) частотам.
Различают естественные (природные) и искусственные (антропогенные, техногенные) ЭМП.
Природные источники ЭМП условно делят на две группы. К первой группе относят постоянное электрическое и постоянное магнитное поле Земли, ко второй группе – радиоволны, генерируемые космическими источниками (Солнце, звезды и др.), и атмосферные процессы (разряды молний и т. д.). Естественное электромагнитное поле Земли является источником энергии и распространяется в виде электромагнитных волн в диапазоне от 10 МГц до 10 ГГц – от инфракрасных до ультрафиолетовых лучей.
А излучение атмосферных разрядов показало, что возникающие при этом электромагнитные излучения охватывают широкий диапазон длин волн – от сверхдлинных до ультракоротких; и наконец, были открыты радиоизлучения Солнца и Галактик в диапазоне от метровых до миллиметровых волн.
Все виды магнитной активности являются результатом солнечной активности, связанной как с увеличением числа солнечных пятен, так и со вспышками на Солнце. В реальных условиях естественные ЭМП изменяются в течение суток и по сезонам, зависят от географических координат (широта, долгота, высота над поверхностью Земли) и от 11-летнего цикла активности Солнца и других факторов [3]. Поэтому естественная магнитная активность носит соответствующий периодический характер.
Таблица 1.1. Международная классификация ЭМИ по диапазонам частот и длинам волн [2]
Человек, все живые существа находятся под постоянным воздействием ЭМП Земли, которое изменяется во времени. На протяжении миллиардов лет естественное ЭМП Земли, все диапазоны естественного электромагнитного спектра, являясь первичным экологическим фактором, оказывали постоянное воздействие на все объекты живой природы и это, несомненно, не могло не отразиться на процессах их жизнедеятельности.
В ходе эволюционного развития структурно-функциональная организация живых существ адаптировалась под воздействием колебаний естественного электромагнитного фона, наблюдаемых в периоды как обычной, так и повышенной солнечной активности, когда мощный корпускулярный поток вызывает резкие кратковременные изменения магнитного поля Земли.
Природные ЭМП совершенно необходимы для нормального протекания процессов жизнедеятельности на всех уровнях организации от субклеточного и клеточного до органов и тканевых систем. Диапазон интенсивностей естественных ЭМП является «привычным» для живых организмов, его называют зоной оптимальных условий [3]. В случае нарушения их действия возникает опасность изменения нормального функционирования организма и его систем.
Однако наряду с природными (естественными), жизненно необходимыми ЭМП в ХIХ в. возникли искусственные ЭМП, созданные людьми для коммуникации и передачи энергии. Они характеризуются высокой когерентностью, т. е. частотной и фазовой стабильностью, более простым частотным спектром, обладают значительной интенсивностью и большой неравномерностью локализации в пространстве [2, 3, 32, 33].
Разнообразные антропогенные источники ЭМП не только существенно повышают электромагнитный фон в местах их нахождения, поскольку электромагнитное излучение носит локальный характер, но отражаются и на общем уровне электромагнитного фона Земли, существенно увеличивая его. Это явление получило название «электромагнитное загрязнение окружающей среды», или «электромагнитный смог». В настоящее время излучение искусственных источников ЭМП, существенно превышая естественный электромагнитный фон, превратилось в опасный экологический фактор.
Спектр искусственных источников ЭМП весьма обширен и также делится на две группы.
К первой из них относятся источники низкочастотных излучений в диапазоне от 0 до 3 кГц. Эта группа включает в себя все системы производства, передачи и распределения электроэнергии (ЛЭП, трансформаторные подстанции, электростанции, различные кабельные системы), домашнюю и офисную электро-и электронную технику, в том числе и мониторы персональных компьютеров, железнодорожный транспорт и его инфраструктуру, а также метро, троллейбусный и трамвайный транспорт.
Ко второй группе искусственных ЭМП относятся источники высокочастотных излучений, частота которых составляет от 3 кГц до 300 ГГц. Сюда входят функциональные передатчики – источники электромагнитного поля в целях передачи или получения информации. Это передатчики (радио, телевидение), радиотелефоны (авто-, радиотелефоны, радио средних волн (СВ), любительские радиопередатчики, производственные радиотелефоны), направленная радиосвязь (спутниковая радиосвязь, наземные релейные станции), навигация (воздушное сообщение, судоходство, радиоточка), локаторы (воздушное сообщение, судоходство, транспортные локаторы, контроль за воздушным транспортом), беспроводная связь и т. д.
Сюда же относится различное технологическое оборудование, использующее СВЧ-излучение, переменные (50 Гц – 1 МГц) и импульсные поля, бытовое оборудование (СВЧ-печи), средства визуального отображения информации на электронно-лучевых трубках (мониторы персональных компьютеров, телевизоры и др.). Для научных исследований в медицине применяют токи ультравысокой частоты.
Основные диапазоны частот, применяемые в различных сферах деятельности человека, приведены в табл. 1.2.
Таблица 1.2. Основные области применения источников ЭМИ в соответствии с выделенными для этих целей диапазонами частот (длинами волн) [2]
Установлено, что в формировании ЭМП наблюдается определенная зональность. Вокруг источника электромагнитного излучения выделяют три зоны: ближнюю, или зону индукции, промежуточную, или зону интерференции, и дальнюю, или волновую зону (зону излучения).
При излучении от источников ближняя зона простирается на расстояние λ/2π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний, равных λ×2π, т. е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.
В ближней зоне (зоне индукции) на расстоянии r < λ ЭМП с удалением от источника убывает по закону обратно пропорционально r–2 или r–3. В ближней зоне, в которой еще не сформировалась бегущая электромагнитная волна, электрическое (Е) и магнитное (Н) поля следует считать независимыми друг от друга, их измерение проводят раздельно, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным.
Для промежуточной зоны характерно наличие как поля индукции, так и распространяющейся электромагнитной волны.
Дальняя зона (или зона сформировавшейся электромагнитной волны) начинается с расстояния r > 3 λ; там интенсивность поля убывает обратно пропорционально расстоянию до источника r–1 и связь, существующая между электрической (Е) и магнитной (Н) составляющими, выражается в соответствии с формулой
Е = 377 Н,
где 377 – волновое сопротивление вакуума (Ом).
В волновой зоне воздействие ЭМП определяется плотностью потока энергии (ППЭ), переносимой электромагнитной волной. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны. ППЭ обозначается как S, единицы измерения – ватт на квадратный метр (Вт/м2), милливатт на квадратный сантиметр (мВт/см2) или микроватт на квадратный сантиметр (мкВт/см2).
Установлено, что ЭМП способно взаимодействовать с живыми организмами. Биологическое действие ЭМП на объекты определяется величиной наведения внутренних полей и электрических токов, отражением, поглощением и их распределением в теле человека и животных. Это зависит от размера, формы, анатомического строения тела, электрических и магнитных свойств тканей, содержания воды в них, ориентации объекта относительно поляризации тела, а также от характеристик ЭМП (частота, интенсивность, модуляция и др.). Биологическое действие ЭМИ также зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный), условий воздействия на организм (постоянное, прерывистое, общее, местное, интенсивность, длительность). Биологическая активность ЭМИ уменьшается с увеличением длины волны (или снижением частоты) излучения, поэтому наиболее активными являются метровые, дециметровые, сантиметровые и миллиметровые диапазоны [34, 35].
При взаимодействии ЭМП с живыми организмами возникают явления отражения, проведения, поглощения и преобразования электромагнитной энергии тканями и жидкостями. С увеличением частоты колебаний величина отражения энергии тканями уменьшается, а поглощение увеличивается. Однако биологический эффект обусловливается не только величиной поглощения, но и глубиной проникновения энергии. Чем больше она, тем больше вероятность поражения жизненно важных органов. Волны миллиметрового диапазона поглощаются поверхностными слоями кожи, сантиметрового – кожей и прилегающими к ней тканями, дециметровые проникают на глубину 8–10 см. В среднем глубина проникновения равняется 1/10 длины волны [2, 32, 35].
Поглощение энергии ЭМИ в тканях существенно зависит от содержания воды. Ткани с высоким содержанием воды (кровь, мышцы, сердце, почки, мозг, семенники) обладают значительно большим коэффициентом экранирования, так как лучше поглощают энергию ЭМП. Ткани с низким содержанием воды – костная и жировая ткань [36]. Глубина проникновения для ЭМИ различных частот в некоторых биологических тканях с низким и высоким содержанием воды в диапазоне частот от 300 до 3000 МГц представлена в табл. 1.3.
Глубина проникновения ЭМИ в ткани находится в прямой зависимости от длины волны, а величина поглощения – в обратной. Воздействие излучений миллиметрового (от 30 до 300 ГГц) и сантиметрового (от 3 до 30 ГГц) вызывает в основном термические ожоги, а излучения дециметрового (от 0,3 до 3 ГГц), проникают глубже, поражая внутренние органы. В табл. 1.4 представлены данные о глубине проникновения ЭМИ в тканях человека в диапазоне 100–3000 МГц.
Исследования биологического действия антропогенных источников ЭМП в широком диапазоне частот указывают на высокую чувствительность различных систем организма к их воздействию.
Таблица 1.3. Глубина проникновения электромагнитных волн в биологических тканях с низким и высоким содержанием воды [2]
Таблица 1.4. Глубина проникновения ЭМИ в тканях человека, см [32]
Несмотря на существование различных точек зрения, наиболее распространенными являются представления о тепловой природе воздействий на живые организмы любых неионизирующих ЭМИ [37]. Поэтому сообщения о влиянии на исследуемую систему воздействий, энергия которых оказывается меньше средней тепловой энергии, т. е при hf << kT (h – постоянная Планка, f – частота излучения, k – постоянная Больцмана, T – абсолютная температура), представляются априори ложными. Тем не менее еще в 80-е годы ХХ в. было показано, что принципиальных теоретических запретов для такого влияния нет. При весьма низком уровне (нетепловом) ЭМП принято говорить об информационном характере воздействия на организм (к примеру, для радиочастот выше 300 МГц интенсивность такого излучения должна быть менее 1 мВт/см2) [38]. Предполагается, что для биологических систем воздействие таких полей лежит ниже порога включения защитных биологических механизмов и способно накапливаться на субклеточном уровне, т. е. на уровне генетических процессов. Полагают также, что такие системы могут находиться в состоянии весьма далеком от равновесия и достаточно слабого (информационного) воздействия, чтобы система прошла через точку бифуркации в качественно новое состояние. Информационное воздействие приводит к формированию биологического эффекта за счет энергии самого организма, т. е. при этом передается информация, необходимая для развития той или иной реакции организма. Особенно интенсивно развиваются исследования нетепловых биологических эффектов в дециметровом – миллиметровом диапазоне длин волн. Результаты биологических исследований свидетельствуют о том, что, несмотря на чрезвычайно малые значения мощности, их излучение оказывает существенное влияние на организм. Показано, что возможные механизмы взаимодействия могут быть связаны с возбуждением элементов жидкокристаллической структуры воды и наличием у живых организмов информационно-волновой составляющей неэлектромагнитной природы [32, 39–43]. Высокая действенность слабых ЭМИ, возможно, объясняется резонансным характером их воздействия, которое способно как усиливать, так и ослаблять функциональные возможности отдельных органов [32, 44, 45].
Тепловое действие ЭМИ наблюдается при высоких интенсивностях излучения – при ППЭ порядка 10 мВт/см2 и выше.
При слаботепловом действии ЭМИ в интервале ППЭ от 1 до 10 мВт/см2 нагревания всего облучаемого объекта не происходит, однако возможны единичные или множественные локальные повышения температуры в отдельных его частях или точках – «горячие пятна». В этом случае говорят о «микротепловом действии». Нетепловое действие наблюдается при ППЭ менее 1 мВт/см2, когда облучение не вызывает повышения температуры в биологическом объекте, однако эффекты в нем выявляются [2].
Поглощение электромагнитной энергии живыми тканями сопровождается повышением их температуры, если поглощаемая мощность превосходит мощность рассеяния тепловой энергии. Последняя определяется теплоотдачей, которая осуществляется с поверхности тела посредством излучения, конвекции, теплопроводности и испарения влаги. Отведение тепловой энергии от глубоких тканей к поверхности тела обеспечивается кровообращением. Механизмы теплоотдачи функционируют в организме непрерывно, поскольку ему свойствен постоянный высокий уровень производства теплоты в ходе обмена веществ. Нарушение теплового гомеостаза в организме в результате облучения ЭМИ наступает в тех случаях, когда возникшая в результате этого дополнительная тепловая нагрузка, по меньшей мере, вдвое превышает уровень основного обмена [2].
Легко подвержены тепловому действию ЭМП паренхиматозные органы (печень, поджелудочная железа), полые органы, содержащие жидкости (мочевой пузырь, желчный пузырь, желудок). Нагревание указанных органов может обострить хронически протекающие в них воспалительные процессы, провоцировать возникновение язв, кровотечения, прободений. При интенсивном общем облучении повышается температура тела и наступает смерть. Пороговые интенсивности теплового действия электромагнитных волн находятся в пределах 10–15 мВт/см2.
При низком уровне ЭМИ (как, например, при излучении мобильного телефона) характер воздействия носит преимущественно нетепловой – информационный характер. В этом случае величина кванта энергии у ЭМИ слишком низка, чтобы влиять непосредственно на какую-нибудь химическую связь, даже водородную, энергия которой мала по сравнению с другими. Однако и низкоинтенсивное ЭМИ способно вызывать биологические эффекты в различных тканях организма, которые можно характеризовать как сигнальные, регулирующие и дестабилизирующие. Сигнальное действие происходит при величинах ЭМИ, сопоставимых с уровнем естественных источников излучения, и воспринимается организмом как сигнал, несущий определенную информацию. Регулирующее действие наблюдается у биологических объектов различных уровней организации способностью изменять их функциональное состояние. При дестабилизирующем действии ЭМИ низкого уровня может происходить увеличение отклонений некоторых изучаемых показателей в облученном организме по сравнению с интактным контролем [2].
При нетепловом действии (нетепловая концепция) биологическую реакцию вызывает не энергия ЭМИ. В этом типе взаимодействий ответная реакция осуществляется за счет собственных энергетических ресурсов организма, а ЭМИ является только инициирующим сигналом. Нетепловое действие для ЭМИ радиочастотных и микроволновых диапазонов (РЧ- и МКВ-диапазонов) начинается с величины ППЭ ~ 10–12 Вт/м2, которая является минимальным порогом чувствительности для многих биологических объектов. Тепловые взаимодействия для ЭМИ РЧ- и МКВ-диапазонов наблюдаются на всех уровнях биологической организации – от организма до молекул, тогда как нетепловые, несмотря на крайне низкие интенсивности, проявляются преимущественно на уровне целого организма [2].
Функциональные изменения в организме под действием ЭМП могут накапливаться, но являются обратимыми до достижения определенных величин, если это излучение прекращается. Биологические эффекты ЭМП в условиях длительного многолетнего воздействия накапливаются с возможным развитием отдаленных последствий, включая дегенеративные процессы, нарушения регуляторных процессов в нейроэндокринной системе.