Глава 3 Дирижеры генома

“Мы открыли секрет жизни!” Рассказывают, что именно этим гордым восклицанием Фрэнсис Крик (1916-2004) в пабе “Орел” в Кембридже оповестил Джеймса Уотсона и весь остальной мир о начале эры ДНК. Через год, в 1953-м, научное объявление об этом открытии было сделано совсем в другом тоне. Статью в знаменитом журнале Nature Уотсон и Крик начали в характерной для британцев чрезвычайно сдержанной манере, которой с тех пор многие подражают. Как они отмечали, их открытие “содержит новые элементы, имеющие значительный биологический интерес”.

Оба объявления ознаменовали открытия, которые следующие поколения восприняли как догму. Дуэт Уотсон – Крик создал модель структуры ДНК, продемонстрировав, что она существует в виде пары нитей, разделение которых позволяет синтезировать белок или новые копии ДНК. Таким образом, молекула ДНК делает две замечательные вещи: она содержит информацию, необходимую для синтеза белков, из которых состоит тело, а также передает эту информацию следующим поколениям.

Основываясь на результатах Розалинд Франклин и Мориса Уилкинса, Уотсон и Крик обнаружили, что каждая нить ДНК состоит из других молекул, как ожерелье состоит из бусин. Эти молекулы, называемые основаниями, бывают четырех видов; их принято обозначать буквами А, Т, G и С. В каждой нити ДНК может содержаться миллиард букв, образующих последовательности типа AATGCCCTC с любым сочетанием четырех букв.

Это довольно уничижительная мысль: многое из того, что мы собой представляем, определяется последовательностью химических молекул. Но если вы думаете о ДНК как о носителе информации, можно сказать, что в каждой клетке нашего тела содержатся миллионы сверхмощных компьютеров. Человеческая ДНК представляет собой цепочку, содержащую примерно 32 миллиарда оснований. Эта цепочка разделена на хромосомы, свернутые и упакованные в ядре каждой клетки. ДНК очень плотно упакована, но если ее развернуть и соединить все фрагменты, каждая нить окажется длиной около шести футов[6]. И каждая из триллионов наших клеток содержит молекулу длиной шесть футов, скрученную так плотно, что она становится в десять раз меньше размера самой маленькой песчинки. Если развернуть ДНК из всех четырех триллионов клеток вашего тела и соединить их в одну нить, эта ДНК дотянется почти до Плутона.

В результате слияния яйцеклетки и сперматозоида в момент зачатия оплодотворенная яйцеклетка получает ДНК от обоих родителей. И так генетическая информация передается из поколения в поколение. Наша ДНК содержит ДНК наших биологических родителей, ДНК наших родителей – ДНК их родителей и т. д., до самого глубокого прошлого. ДНК обеспечивает непрерывную связь во времени между живыми существами. Одна из величайших догадок Дарвина состоит в применимости простого понятия о семейном родстве в более широком историческом масштабе. На молекулярном уровне это означает, что, если мы имеем общих предков с другими видами, следовательно, существовал непрерывный поток их ДНК в нашу ДНК. Как наша ДНК передается от одного поколения следующему, от родителей детям, так же она должна была передаваться от предковых видов потомкам на протяжении всех четырех миллиардов лет истории жизни на Земле. Если это так, ДНК представляет собой библиотеку, хранящуюся в каждой клетке каждого живого существа на планете. В последовательности всех этих А, Т, G и С должны быть записаны миллиарды лет эволюции живой природы. Самое трудное было научиться эти записи читать.


Эмиль Пукеркандль (1922-2013) родился в Вене в атмосфере идей, науки и искусства, поскольку среди его родственников были известные ученые, философы, художники и врачи. Когда в Германии к власти пришли нацисты, семья попыталась найти убежище в Париже и Алжире. Друзья познакомили их с Альбертом Эйнштейном, который использовал свои связи, чтобы юному Эмилю разрешили въехать в США на учебу. Пукеркандль оказался в Университете Иллинойса, в лаборатории, где занимались изучением белков. Он интересовался жизнью океанов и поэтому проводил лето в морских лабораториях США и Франции. Здесь внимание Пукеркандля привлекли крабы и те молекулярные механизмы, которые позволяют им расти и линять, превращаясь из малюсеньких зародышей во взрослых особей.

Пукеркандль занялся биохимией в правильное время. В конце 1950-х годов исследователи из Национальных институтов здравоохранения, а также Фрэнсис Крик, начали разгадывать смысл последовательностей букв А, Т, G и С. Каждая последовательность ДНК содержит инструкции для синтеза другой последовательности молекул. В зависимости от ситуации ДНК может служить матрицей для синтеза белка или копировать саму себя. Для синтеза белка последовательность букв А, Т, G и С транслируется в последовательность, состоящую из молекул другого типа – аминокислот. В свою очередь, разные последовательности аминокислот образуют разные белки. Существует 20 основных видов аминокислот, и любая из них может находиться в любой точке белковой последовательности. Такой способ кодирования позволяет создавать гигантское количество разных белков. Проведем простой расчет: если есть 20 аминокислот, которые могут соединяться в любом сочетании, а последовательность белка состоит примерно из юс аминокислот, получаем, что количество разных белков такой длины равно единице с 130 нулями. Но реальное количество возможных белков еще больше, поскольку мы выбрали для расчета белок сравнительно небольшой длины (100 аминокислот). Самый крупный белок в теле человека, титин, насчитывает 34350 аминокислот.

Постарайтесь запомнить, что ДНК состоит из последовательности оснований, обозначаемых буквами, и эта последовательность кодирует последовательность аминокислот, из которой формируется белок. Поскольку разные белки состоят из разных последовательностей аминокислот, последовательности ДНК кодируют самые разнообразные белки, что позволяет заново создавать живые организмы в каждом следующем поколении.

К концу 1950-х годов ученые научились определять аминокислотные последовательности разных белков и начали понимать, как они функционируют в организме. Эти открытия ознаменовали начало эпохи, когда ученые смогли анализировать структуру белков для понимания природы заболеваний. Например, при серповидно-клеточной анемии появляются аномальные красные клетки крови (эритроциты), которые живут всего от десяти до двадцати дней, тогда как здоровые эритроциты живут почти в десять раз дольше. Кроме того, серповидные клетки, как следует из названия, имеют специфическую форму. Из-за этой особенности они гораздо быстрее разрушаются в селезенке, чем нормальные эритроциты в форме диска. В результате при самой тяжелой форме серповидно-клеточной анемии почти в 70 % случаев больные умирают уже в трехлетием возрасте. Чем же различаются белки нормальных и аномальных эритроцитов? Одной-единственной аминокислотой в белковой цепочке: аминокислота глутамат в шестой позиции в последовательности белка заменена на аминокислоту валин. Минимальное изменение аминокислотной последовательности оказывает огромное влияние на структуру белка, на клетку, в которой содержится этот белок, и на жизнь людей с такими клетками.

Вдохновленный новыми возможностями биологии Цукеркандль обратился к изучению организмов, которые были в его морской лаборатории. Он предположил, что за линьку крабов при их превращении из маленьких зародышей в полноразмерных взрослых особей отвечают определенные белки. Он занялся изучением структуры белков и тем, как они контролируют дыхание, рост и линьку крабов.

Загрузка...