За последние годы в общественном сознании закрепилась проблема критической нехватки витаминов – авитаминоза. Однако на самом деле с авитаминозом сталкивается лишь отдельная часть населения, тогда как на первый план выходит гиповитаминоз – постоянное низкое содержание в организме одного или нескольких витаминов. Ученые Федерального исследовательского центра питания и биотехнологии установили, что в Российской Федерации всего 14% взрослых и 16,8% детей, которые старше четырех лет, получают все витамины, в которых нуждается организм, в нужном количестве. Более 80% россиян страдают от гиповитаминоза. Наиболее ощутима проблема с нехваткой витаминов D (от 23% до 97% в зависимости от состояния здоровья человека и региона, в котором он проживает), В2 (до 74%) и каротиноидов – в том числе витамина А (до 79%).
Люди забывают, что необходимое количество витаминов, в которых нуждается организм, можно получить, добавив в свой рацион определенные продукты. Одним из таких продуктов является морковь (Барышникова Н. И., Паймулина А. В., 2014; Коденцова В. М., Вржесинская О. А., 2017; Чудайкина А. В., Барышникова Н. И., 2019). Она необходима для детского организма, это связано с тем, что витамин A способствует росту детей. Для них вареная морковь предпочтительнее, чем сырая потому, что в ней меньше грубых растительных волокон. К тому же витамины при варке на пару полностью сохраняются.
Безусловно, очень полезна морковь и для пожилых людей, так как вещества, которые в ней содержатся, замедляют старение головного мозга и улучшают память. Именно при температурной обработке в моркови увеличивается содержание β-каротина, который помогает нашему организму бороться с раком и сохраняет зрение. Также после отваривания количество антиоксидантов в моркови увеличивается на 34% для этого лучше всего отварить морковь в кожуре. Отварная морковь содержит меньше клетчатки и пектина, чем свежая, значит, она будет лучше перевариваться, поэтому ее могут включать в свой рацион люди, страдающие болезнями пищеварения.
Очень полезен сок из моркови. Он применяется при лечении ожогов, обморожений, гнойных ран и кожных заболеваний. Может даже способствовать рассасыванию язв и раковых образований, улучшению пищеварения и структуры зубов, повышает силу и энергию. При ежедневном потреблении морковного сока кормящей матерью, улучшается состав молока. Необходимо готовить морковный сок непосредственно перед употреблением из-за того, что каротин, соприкасаясь с кислородом, теряет свою активность, а польза сока в свою очередь частично теряется. Однако есть и противопоказания при приеме моркови и морковного сока. При язве желудка и гастрите сок нужно разбавлять пополам с водой (Барышникова Н. И., Паймулина А. В., 2014; Коденцова В. М., Вржесинская О. А., 2017; Чудайкина А. В., Барышникова Н. И., 2019).
Морковь издавна используют в лечебных целях при авитаминозах, а пигмент аперенин, который присутствует с желтой сердцевине, способствует снижению усталости сердечной мышцы. Морковь – одна из наиболее древних культивируемых овощных культур. Опираясь на археологические раскопки, наскальные рисунки и письменные свидетельства, можно утверждать, что ей уже около 4 тысяч лет (Исабаева, С.Д. 2020, 2021).
Овощные корнеплодные растения появились издавна, в начале листовые и в диком виде, в настоящее время возделываются повсеместно, где существует земледелие. Морковь, свекла, редис, репа, брюква, пастернак относятся к ценным продуктам рационального питания человека, а морковь, репа, брюква необходимы также для кормления молодняка животных и птицы. Главные достоинства овощных корнеплодов в их неповторимой специфичности. Морковь является важной промышленной культурой.
В последнее десятилетие производственные площади под корнеплодными культурами значительно увеличились. Выращиванием их занимаются овощеводческие компании, фермерские хозяйства, индивидуальные предприниматели и садоводы-любители, которым нужна экономически выгодная продукция высокотоварная, хорошего и отличного качества, пригодная для длительного хранения, современных механизированных технологий и переработки (Федорова М. И., Степанов В. А., 2017).
В культуру морковь введена с глубокой древности. В Европе, в том числе и в Российской Федерации, она получила широкое распространение в XIV веке, а в настоящее время у нас в стране морковь выращивают повсеместно. Среди столовых корнеплодов она занимает первое место (Немирова Н. А. [и др.], 2017; Н. А. Немирова, Н. П. Балуева, 2022).
Конечная цель при выращивании моркови столовой – получение высокого урожая с хорошим качеством продукции. Однако если урожайность в значительной степени определяется сортовыми особенностями, своевременным и качественным выполнением технологических требований выращивания, то качество продукции зависит еще и от правильно выбранного срока уборки в каждой климатической зоне.
Сорта и гибриды моркови столовой должны характеризоваться высокой продуктивностью, способностью к длительному хранению, повышенным содержанием питательных и биологически активных веществ, для использования продукции в свежем виде и в качестве сырья для различных видов переработки.
Морковь употребляют в сыром виде, широко используют в кулинарии, для квашения, маринования. В консервной промышленности морковь является основной составной частью фарша различных консервов, из нее приготавливают соки, пюре, сушеный продукт. В настоящее время в стране имеется много сортов моркови, отвечающие требованиям рынка и консервной промышленности. Практика возделывания овощных культур свидетельствует о том, что высокие потенциальные возможности сорта к формированию урожая не всегда реализуются в конкретных условиях выращивания.
Продуктовый орган моркови столовой – корнеплод. Окраска корнеплодов зависит от соответствующих пигментов:
– каротина (красно-оранжевые, оранжевые),
– антохлора (желтые),
– ликопиноида (кроваво-красная),
– антоциана (фиолетовая).
Сорта моркови различаются размером, окраской, формой, величиной, химическим составом, вкусовыми данными, лежкоспособностью. Лучшими считаются сорта с малой сердцевиной, яркоокрашенной мякотью.
Форма корнеплодов может быть:
– округлая,
– овальная (сердцевидная),
– укорочено-коническая,
– тупоконечная,
– цилиндрическая,
– удлиненно-коническая,
– тупоконечная,
– длинная коническая,
– остроконечная.
Для полной оценки формы корнеплода определяют индекс формы h/d. При установлении индекса формы используют следующую шкалу:
– очень короткие – индекс около 1,
– укороченные – до 2—3,
– полудлинные – 3—5,
– удлиненные – 5—8,
– длинные – свыше 8.
По длине корнеплоды бывают:
– короткие – до 10 см (коротели (3—6 см),
– средние – 10—20 см,
– линные – свыше 20 см.
В условиях Российской Федерации длина корнеплода редко превышает 30—40 см, но известно, что в Мексике выращивают морковь, корнеплоды которой достигают 2-х метров.
Для механизированной уборки более подходят корнеплоды средней длины. Сорта с длинными корнеплодами сильно повреждаются при подкапывании и плохо хранятся. Но при этом, чем больше длина корнеплода, тем выше будет урожайность моркови.
Диаметр корнеплода по наибольшей толщине:
– малый – до 3 см,
– средний – 3—5 см,
– большой свыше 5 см.
При оптимальных условиях выращивания в зависимости от сортовых особенностей масса корнеплодов моркови нарастает:
– небольшая (меньше 80 г),
– средняя (80—150 г),
– большая (больше 150 г).
На участках с рыхлой плодородной почвой масса корнеплодов может составлять 300—500 г и более.
Окраска мякоти (коры) корнеплода разнообразна. У большинства сортов столовой моркови окраска мякоти бывает:
– желтовато-оранжевая,
– розовооранжевая,
– оранжевая,
– интенсивно-оранжевая,
– оранжево-красная, красная.
Окраска сердцевины (древесины):
– желтовато-белая,
– желтая,
– желтоватооранжевая,
– оранжевая,
– розово-оранжевая,
– оранжево-красная,
– красная.
Поверхность корнеплодов бывает:
– гладкая,
– неровная,
– бугристая.
На ней хорошо заметны мелкие или глубокие глазки.
Вкус корнеплода определяют по пятибалльной системе:
– очень вкусный – 5,
– вкусный – 4,
– средневкусный – 3,
– невкусный – 2,
– очень невкусный – 1.
Отмечают также аромат корнеплодов (Немирова Н. А. [и др.], 2017; Н. А. Немирова, Н. П. Балуева, 2022).
Широкое возделывание моркови во всех странах мира обусловлено высокой питательной ценностью корнеплодов. Ее выращивают повсеместно как вкусный овощ и как основной источник каротина. Кроме того, в корнеплодах содержатся такие важные соединения, как сахара, органические кислоты, белки, минеральные вещества, жирные и эфирные масла.
Морковь содержит до 0,6—1,3% азотистых веществ, которые содержат незаменимые аминокислоты и легко усваиваются. Следует отметить, что морковь содержит витамины РР и Е, фенольные соединения, придающие оттенок горечи (Немирова Н. А. [и др.], 2017; Н. А. Немирова, Н. П. Балуева, 2022).
Также морковь накапливает витамины D и С. Немало в ней минеральных веществ, которые необходимы для организма человека. В моркови содержится 1,3 г белка, 0,1 г жиров, 6,9 г углеводов. Калорийность на 100 г составляет 32 кКал. Витамин D участвует в регуляции артериального давления и сердцебиения, препятствует росту раковых клеток. Витамины группы B отвечают за правильное функционирование нервной системы. Витамин E является сильным антиоксидантом. Витамин РР активно участвует в окислительно-восстановительных процессах. Витамин K имеет большое значение в формировании костей. Витамин C обеспечивает упругость и эластичность сосудов (Барышникова Н. И., Паймулина А. В., 2014; Коденцова В. М., Вржесинская О. А., 2017; Чудайкина А. В., Барышникова Н. И., 2019).
Наиболее важным показателем качества растительного сырья является содержание в нем сухих веществ, обуславливающих его пищевую ценность.
В корнеплодах моркови столовой содержится 85—87% воды, 13—14 – сухого вещества, 8—12 – углеводов, в том числе 6—9 – сахаров, 1,5—6 – крахмала, 1—2,2 белка, 0,2—0,3 – жира, 1 -1,1 – клетчатки, 0,6—1,7 – золы. Нежная консистенция мякоти и большое содержание сахаров (сахароза, глюкоза и фруктоза) делают морковь вкусным и питательным продукто.
Корнеплоды являются богатым источником необходимых для организма минеральных солей, содержащих 200—282 мг калия, 35—50 – кальция, 40 – марганца, 21 – магния, 45 – натрия, 31—50 – фосфора, 0,7 – железа,3,8 мг йода.
Наиболее важным показателем качества растительного сырья является содержание в нем сухих веществ, обуславливающих его пищевую ценность.
В результате исследований, проведенных Манжесовым В. И., Максимовым И. В. и Курчаевой Е. Е., установлено, что наименьшее содержание сухих веществ в морковном сырье – 8—9% – отмечено в растительном материале сорта Сладкоежка и Шантенэ 2461, а наибольшее – в сортах МО и Король осени – 11—12%.
Морковь является ключевым источником каротина – провитамина А, из которого в организме образуется витамин А. Он играет важную роль в поддержании устойчивости организма к различным инфекциям. В корнеплодах каротин сохраняется всю зиму, после варки усваивается еще лучше. По содержанию каротина морковь превосходит многие другие овощи (4—20 мг/100 г, а в некоторых новых сортах до 37 мг), уступая лишь перцам сладким и тыкве мускатной. Сорта с оранжевой окраской корнеплода содержат больше каротина (Манжесов В. И., Максимов И. В., Курчаева Е. Е., 2009; Максимов И. В., Попов И. А., Веселева И. Д., 2014).
Морковь имеет низкую кислотность, близкую к нейтральной (6,3). Каротиноиды – жирорастворимые пигменты, которые придают окраску от желтой до красной большей части объектов живой природы. Основным свойством, присущим каротиноидам, являются их антиоксидантныесвойства, которые объясняются их антимутагенным, иммуномодулирующим, антиинфекционным, антиканцерогенным и радиопротекторным действиями (Старовойтов Р. В., Влащик Л. Г., 2018).
Каротиноиды пищевых продуктов растительного происхождения – растительные пигменты, обладающие биологической активностью и антиоксидантными свойствами, биодоступность которых зависит от механической и термической обработки и присутствия жиров.
Из 40 каротиноидов, поступающих с пищей, главными являются каротины – β- и α-каротины, ликопин и ксантофиллы – лютеин, зеаксантин, β-криптоксантин.
Свежие овощи содержат каротиноидов больше, чем плоды и ягоды, но обладают низкой биодоступностью. Основными источниками картиноидов среди овощей являются морковь, плодовые и салатно-шпинатные овощи. Морковь является источником каротинов (β-и α-каротин до 58,4 и 40,4%, соответственно) с максимальным количеством в оранжевой моркови.
Каротиноиды – группа биологически активных соединений, которая всегда привлекала внимание как диетологов за счет их пользы для здоровья и безопасного источника природного витамина А, который образуется при ферментативном метаболизме, так и работников пищевой промышленности – для формирования оптимальных цветовых характеристик и пищевой ценности пищевых продуктов. Химическая природа каротиноидов определяет их множественные свойства: так, наличие системы сопряженных двойных связей обуславливает их окраску, количество двойных связей – антиоксидантную активность, наличие ионовых колец – провитаминные свойства.
В природе обнаружено около 750 каротиноидов, в большей степени они имеют растительную природу, но также содержатся в рыбе и морепродуктах (астаксантин) и водорослях (фукоксантин).
В организм человека вместе с пищевыми продуктами поступает только 40 каротиноидов, из них 10% проявляют А-витаминную активность.
Каротиноиды представляют собой соединения, содержащие 40 углеродных атомов, построенных из 8 изопреновых фрагментов и образующих полипреноидную цепь с сопряженной системой двойных связей. Эта цепь может циклизироваться на концах, образуя несколько типов иононовых колец. Длина цепи оказывает влияние на окраску каротиноидов (от желтого и оранжевого до глубокого красного), а наличие иононовых колец – на витаминную активность. При наличии в структуре каротиноидов 9 и более сопряженных связей они проявляют максимальное защитное действие от синглетного кислорода.
Каротиноиды делят на каротины, состоящие из атомов углерода и водорода, и ксантофиллы, имеющие в своем составе дополнительно атомы кислорода в виде гидрокси-, метокси-, эпокси- или кетогрупп. Представители каротинов обычно оранжевого цвета (α- и β-каротины). Более разнообразны по цвету ксантофиллы: астаксантин – ярко-алый, капсантин – темно-красный, лютеин, зеаксантин и виолаксантин – желтые. При включении в цепь сопряжения кето-групп, например, при окислении зеаксантина до капсантина и капсорубина в перцах (Capsicum annuum) происходит замена оранжевой окраски на красную. Довольно часто оранжевая окраска каротиноидов маскируется другими пигментами, например хлорофиллом или антоцианами. Это наблюдается в листовых овощах, зеленых плодах, сине-окрашенных ягодах и др.
Из 40 каротиноидов, поступающих с пищей, основными являются три каротина (α- и β- каротин, ликопин) и три ксантофилла (βкриптоксантин, зеаксантин и лютеин), имеющие типичное строение для соответствующей группы каротиноидов.
В растительных объектах каротиноиды представлены в транс-, транс-цис- и цисформах, а также этерифицированы жирными кислотами. Более стабильной и энергетически выгодной считается транс-форма, но теоретически цис-транс-изомеризация может происходить по каждой двойной связи, что частично или полностью происходит при приготовлении пищи. Цис-изомеры обладают большей биологической активностью, более легко встраиваясь в биомембраны и липопротеины, чем транс-изомеры.
Химическая структура каротиноидов, наиболее часто встречающихся в свежих плодах и овощах и пищевых продуктах с их использованием А-витаминные свойства. Каротиноиды являются безопасным и единственным источником природного витамина А, который образуется при ферментативном метаболизме каротиноидов в организме человека и животных. Однако не все каротиноиды обладают А-витаминной активностью. Из 40 каротиноидов, регулярно потребляемых человеком вместе с пищевыми продуктами, только некоторые из них (10%) с β-кольцом без кислородсодержащих функциональных групп и полиеновой цепью не менее 11 атомов углерода, проявляют А-витаминные свойства. К ним относятся транс- и транс-цис-изомеры α-, β-, γ-каротинов и β-криптоксантина. Среди них β-каротин является наиболее мощным каротиноидом провитамина А, у которого каждая молекула расщепляется на два ретинола витамина А.
Биоконверсия β-каротина в витамин А происходит путем окислительного метаболизма молекулы по центральной 15—15 πсвязи под влиянием фермента β-каротин-15-15 диоксигеназы. В растениях этого фермента нет, поэтому растительные объекты витамина А не содержат. Из 1 молекулы β-каротина образуется 2 молекулы витамина А, а из α- и γкаротинов – только одна. 6 мкг β-каротина эквивалентны 1 мкг витамина А. Ликопин и δ-каротин витаминной активностью не обладают.
Каротиноиды сами нетоксичны, а образование из них витамина А энзиматически лимитировано. Поэтому при потреблении пищевых продуктов, содержащих каротиноиды, передозировки витамина А не происходит и верхний допустимый уровень потребления не установлен. Среднее потребление β-каротина в разных странах колеблется в пределах 1,8— 5,0 мг/сутки.
Для населения России установлена физиологическая потребность β-каротина для взрослых, которая составляет 5 мг/сутки (МР 2.3.1.2432—08).
Количество сопряженных двойных связей полиеновой цепи в структуре каротиноидов за счет обобщения π-электронов обуславливает их роль липофильных антиоксидантов. Каротиноид может взаимодействовать со свободными радикалами, передавая электроны, с образованием аддукта или отдавая водород с образованием относительно стабильных каротиноидных радикалов. С увеличением окислительного потенциала каротиноидов их антиоксидантная активность возрастает.
Каротиноиды являются наиболее эффективной «ловушкой» синглетного кислорода, переводя его в нормальное триплетное состояние, при этом рассеивая избыток энергии возбуждения. Каротиноиды принимают энергию возбуждения «триплетного» хлорофилла или реагируют непосредственно с синглентным кислородом. Каждая молекула β-каротина способна разрушить до 300 молекул синглентного кислорода. По сравнению с витамином Е каротиноиды улавливают его более активно: β-каротин в 25 раз, ликопин в 100 раз, астаксантин в 500 раз. Наибольшее защитное действие от УФ-излучения за счет кето-группы с обоих концов системы сопряженных двойных связей проявляет астаксантин. Его требуется в 100 раз меньше, чем β-каротина и в 1000 раз меньше, чем лютеина. Совместное присутствие ликопина, лютеина и β-каротина способно подавлять 40—50% индуцированное УФ перекисное окисление липидов, но максимальную активность проявляет ликопин.
На моделях in vitro установлен ряд антиоксидантной активности каротиноидов: ликопин> α-токоферол> α-каротин> β-криптоксантин> зеаксантин> β-каротин> лютеин. Цис-изомеры каротиноидов обладают большей антиоксидантной активностью, чем их транс-изомеры. Обнаружен синергизм антиоксидантного действия каротиноидов с другими жирорастворимыми антиоксидантами – α-токоферолом и коэнзимом Q10.
Каротиноиды защищают токоферолы от окисления, в первую очередь, синглентным кислородом, а токоферолы улавливают пероксильные радикалы каротиноидов, способные инициировать развитие цепей свободно радикального окисления. Синергизм β-каротина с α-токоферолом проявляется лишь при соотношении 1:4, а для более ненасыщенного астаксантина с α-токоферолом в соотношении 1:12. Увеличение концентрации каротиноидов приводит к антогонизму. Включение в систему фосфолипидов увеличивает эффективность антиоксидантного действия даже при высоких концентрациях каротиноидов.
Каротиноиды обладают многими биологическими свойствами, и их высвобождение из пищевой матрицы наиболее важно для усвоения человеком. Усвояемость каротиноидов зависит от пищевых источников. Из свежего (необработанного) растительного сырья в 3 раза большей биодоступностью обладают фрукты и ягоды, чем овощи. Причем биодоступность β-каротина сырой моркови составляет 17—25%.
Биодоступность каротиноидов оценивается в следующем порядке: желтый перец> морковь> сладкий картофель> соцветия брокколи. Повышает биодоступность каротиноидов в растительном сырье или пищевом рационе присутствие жиров в среднем в 2 раза, термическая и механическая обработка – в 3 раза. Измельчение растительного сырья приводит к разрыву клеточных стенок, и с уменьшением размера частиц, например, моркови скорость высвобождения каротиноидов увеличивается. Добавление липидов значительно улучшает биодоступность каротиноидов как из свежих, так и из сушеных овощей.
Основными источниками природных каротиноидов в питании человека являются свежие овощи. Из них морковь является основным источником провитамина А и накапливает высокие уровни β- и α-каротина. При общем содержании каротиноидов 268,64 мг/100 г сухих веществ, количество β-каротина составляет 156,91; α-каротин – 108,53 мг/100 г сухих веществ или 58,4 и 40,4%, соответственно.
В зависимости от окраски моркови содержание каротинов изменяется и может составлять, мг/кг сухих веществ:
– желтая – 2—6,
– оранжевая – 98,
– темно-оранжевая – 160,
– красная – 73,
– фиолетово-желтая – 92,
– фиолетово-оранжевая – 40.
Существуют желтые и красные разновидности, которые богаты лютеином и ликопином соответственно (R. K. Saini, Sh. H. Nile, S. Park, 2015; H. Schulz, 2016; Q. Li, T. Li, Ch. Liu, Ju. Chen, R. Zhang, Z. Zhang, T. Dai, D. Ju, 2016; F. Bot, R. Verkerk, H. Mastwijk, M. Anese, V. Fogliano, E. Capuano, 2018; K. Fredea, M. Schreinera, S. Baldermanna, 2019; Yu. Gao, A.L. Focsan, L.D. Kispert, 2020; A. Abliz, Ji. Liu, L. Mao, F. Yuan, Ya. Gao, 2021; K. Yao, D. Ju. McClements, Ch. Yan, Jie Xiao, H. Liu, Zh. Chen, X. Hou, Yo. Cao, H. Xiao, X. Liu, 2021; Нилова Л. П., Потороко И. Ю., 2021).
Количество пектиновых веществ (желирующей способностью не обладают) в корнеплодах моркови столовой колеблется от 0,37 до 2,93% сырого вещества (Манжесов В. И., Максимов И. В., Курчаева Е. Е., 2009; Максимов И. В., Попов И. А., Веселева И. Д., 2014). Пектиновые вещества – сложные эфиры полигалактуроновой кислоты и метилового спирта. Полиурониды, состоящие, главным образом, из остатков галактуроновой кислоты, соединены α- (1—4) -гликозидной связью.
В клеточных стенках растений, образованных из целлюлозы, они вместе с гемицеллюлозами выполняют структурные функции, являются цементирующим материалом этих стенок, объединяют клетки в единое целое в том или ином органе растений. Высокомолекулярные линейные биополимеры, присутствуют в растворимой (растворимый пектин) или нерастворимой (протопектин) форме во всех наземных растениях и в ряде водорослей.
Пектиновые вещества были открыты в 1825 г. Однако, несмотря на то, что их изучение продолжается более 150 лет, химическое строение этих соединений выяснено лишь во второй половине XX в. Причиной этого является трудность получения чистых препаратов пектиновых веществ в неизменном состоянии. Пектиновые вещества способствуют удержанию тканей в состоянии тургора, повышают засухоустойчивость растений и устойчивость овощей при хранении. Размягчение плодов при созревании происходит вследствие изменения количества и качества пектиновых веществ под влиянием пектолитических ферментов.
Пектиновые вещества – аморфные вещества, растворимые в воде (особенно при нагревании), осаждаются спиртом и ацетоном, осадок имеет вид студня. Они довольно устойчивы к кислотному гидролизу. Пектиновые вещества способны образовывать прочные гели и студни, образование которых стимулируется в присутствии сахарозы и органических кислот. Получают пектиновые вещества из различных плодов и очищают многократным переосаждением.
Для количественного определения и установления строения пектиновых веществ, используются обычные методы анализа полисахаридов. Для нерастворимых пектиновых веществ существует общее название – протопектин. Протопектин легко расщепляется, переходя в растворимую форму, поэтому его строение и состав в деталях не известен. Превращение протопектина в растворимый пектин наблюдается при созревании овощей, приводит к уменьшению жесткости, улучшению их вкусовых качеств. В образовании протопектина вместе с пектиновыми веществами участвуют целлюлоза, ионы Ca, Mg, и H3PO4. Протопектин переходит в растворимый пектин после действия на него разбавленными кислотами или ферментом протопектиназой.
Поскольку пектиновые вещества представляют собой природные органические соединения – полисахариды, то и содержатся они в различных количествах в овощах и корнеплодах. Наиболее богаты пектинами овощи – свекла столовая, морковь, перец, тыква, баклажаны. Высоким содержанием пектинов характеризуются также овощные соки с мякотью (морковный, яблочно-морковный, томатный).
Содержание пектиновых веществ – важный технологический показатель овощей, влияющий на выход и качество соков прямого отжима. Превращение пектиновых веществ из нерастворимой формы в растворимую и обратно определяет консистенцию мякоти овощей и влияет на извлечение сока при прессовании, то есть на такой важнейший экономический показатель, во многом определяющий рентабельность производства, как выход целевого продукта.
Цигир М. В. и Егорова З. Е. определили количества пектиновых веществ в образцах моркови сортов Нерак, Престо, Дордонь, Нантская 4 и Бангор.
Общее содержание пектиновых веществ в корнеплодах моркови колебалось в пределах от 2,14 до 2,22%, что свидетельствует об отсутствии значимого различия между изучаемыми сортами моркови по данному показателю. При этом наибольшее количество протопектина было обнаружено в сорте Дордонь – 1,77%, а наименьшее – в сорте Нерак – 1,19% (Цигир М. В., Егорова З. Е., 2016).
Морковь является одной из ведущих овощных культур, возделываемых в открытом грунте. Несмотря на значительные объемы производства, достаточно большая доля моркови на российском рынке представлена импортной продукцией. Необходимость ее импорта в значительной степени обуславливается большими потерями продукции на этапе ее жизненного цикла, от уборки до конечного потребителя, которые можно снизить путем совершенствования технологий хранения и переработки.
Морковь традиционно является сырьем для различных способов переработки. Потребительские свойства готовой продукции определяются комплексом факторов, среди которых следует выделить технологические параметры сырья (химический состав корнеплодов, их физико-морфологические свойства). Считается, что высококачественный корнеплод моркови должен иметь максимально развитую кору (флоэму) и небольшую сердцевину (ксилему). Соотношение ксилемы и флоэмы в лучших образцах соответствует 1:3 по диаметру поперечного разреза, так как каротин и сахара накапливаются в основном в клетках флоэмы, а нитраты в большей степени аккумулируются в ксилеме (Гаспарян Ш. В., Замятина М. Е., Бебрис А. Р. [и др.], 2014).
Уже давно доказано, что морковь необходима как взрослым, так и детям. Но наибольшую потребность в ней испытывают малыши. Это объясняется тем фактом, что период раннего детства связан с формированием организма. В этот период происходит активный рост, физическое и умственное развитие, формирование скелета и зубов. В связи с этим в рацион ребенка должны включатся белки, углеводы, витамины, а также минеральные веществ (Ю. Г. Скрипников, И. В. Барабанов, 2012; Приступко О. В., 2016).
Дальнейшее развитие пищевой и перерабатывающей промышленности в Российской Федерации предусматривает строительство новых заводов и цехов по переработке плодоовощной продукции и создание собственной сырьевой базы. Важная роль в реализации этих задач отводится созданию в небольших городах и сельских поселениях малых предприятий, занимающиеся широким спектром переработки местного сырья. Еще одной актуальной задачей сегодня является совершенствование ассортимента продуктов здорового питания населения за счет расширения использования местной сырьевой базы, в том числе и увеличения рынка моровкого сырья (Carotenoids and Human Health, 2013; Костко И. Г., 2016).
В моркови содержатся эфирные масла, которые обусловливают ее своеобразный запах. В моркови так же содержится в небольшом количестве йод. В организме человека и животных каротин превращается в ретинол – витамин А. Минимальная суточная доза витамина А для человека составляет 3300 МЕ, что соответствует 1 мг чистого витамина или 2 г каротина. Всемирная организация здравоохранения рекомендует потреблять в год 120—140 кг овощей, в т.ч. 20 кг моркови. Морковь как источник каротина назначают после инфаркта миокарда. Каротин моркови необходим для нормального роста детей, хорошего зрения, он улучшает состояние кожи и слизистых оболочек. Морковь отличается высоким содержанием натрия и фосфора по сравнению с другими овощными культурами (Назирова Р. М., Усмонов Н. Б., Тухташев Ф. Э., Сулаймонов Р. И., 2019; Назирова Р. М., Усмонов Н. Б., Тухташев Ф. Э., Тожиев Б., 2019; Назирова Р. М., Усмонов Н. Б., Хаитов Р., Тухташев Ф. Э., 2020).
Мякиньков А. Г. с коллегами изучал товарное качество, безопасность и состав биологически активных веществ сортов моркови Шантанэ 2461 и Нантская 4, выращенных в Краснодарском крае.
Товарное качество корнеплодов сравнивали с требованиями ГОСТа 1721—85 «Морковь столовая свежая заготовляемая и поставляемая. Технические условия». Установили, что по внешнему виду, вкусу, запаху, размеру и наличию дефектных корнеплодов оба сорта полностью соответствовали требованиям ГОСТа.
Сорт Шантанэ 2461 имел более крупные корнеплоды (наибольший поперечный диаметр 5,4 мм против 4,5 мм у Нантская 4), что обусловило большее количество поломанных корнеплодов и прилипшей земли в партии (0,6 и 0,5% у Шантанэ 2461 против 0,5 и 0,4% у Нантская 4).
Содержание мышьяка и кадмия у обоих сортов было на уровне 0,02 и 0,01 мг/кг, свинца – 0,05 (у Нантская 4) и 0,04 мг/кг (у Шантанэ 2461), нитратов – 85 (у Нантская 4) и 91 мг/кг (у Шантанэ 2461), при допустимом уровне в 250 мг/кг. Наличие ртути, пестицидов и диоксинов у Нантская 4 и Шантанэ 2461 не установлено.
Массовая доля влаги, углеводов, липидов, белков, органических кислот и золы у Шантанэ 2461 было на уровне 88,0; 9,3; 0,1; 1,2; 0,4; 1,0, а у Нантская 4 – 87,0; 10,1; 0,1; 1,3; 0,4; 1,1% соответственно. В составе Шантанэ 2461 преобладали моносахариды (4,12 против 3,40% у Нантская 4), а у Нантская 4 – дисахариды (4,25 против 2,67% у Шантанэ 2461).
Существенных различий между Нантская 4 и Шантанэ 2461 по содержанию пектина (0,31 и 0,29%), протопектина (0,48 и 0,50%), целлюлозы (0,54 и 0,59%) и гемицеллюлозы (1,12 и 1,13%) не установлено.
Сорт Шантанэ 2461 превосходил Нантская 4 по содержанию витамина C, β-каротина, калия, магния и железа, меди, марганца (8,20; 14,2; 274,0; 51,0 мг/100 г и 810, 87, 320 мкг/100 г против 8,05; 13,7; 270,0; 42,0 мг/100 г и 720, 85, 280 мкг/100 г соответственно) и уступал ему по содержанию кальция и цинка (34 и 430 против 30 мг/100 г и 400 мкг/100 г соответственно).
Следовательно, что корнеплоды Шантанэ 2461 и Нантская 4 являются хорошими источниками витамина C, β-каротина, калия, железа, цинка и марганца (Мякиньков А. Г., Купин Г. А., Викторова Е. П., Алёшин В. Н., Гораш Е. Ю., Великанова Е. В., 2017).
Удельный вес столовой моркови в общей площади овощных культур составляет в зависимости от региона Российской Федерации от 10 до 20%, что соответствует 2-3-му месту после капусты и лука. Потребление корнеплодов моркови всегда было очень высоким, это связано с тем, что она является источником биологически активных веществ и витаминов, так нужных для полноценного питания человека. Особо важна культура. в питании детей, и связано это с тем, что она, являясь ценным диетическим продуктом содержащим необходимый набор питательных элементов.
Но и нельзя обойтись без моркови при производстве комбикормов для животных. Возрастает роль потребления корнеплодов моркови для питания людей в зимний и весенний периоды (Курчаева Е. Е., Рязанцева А. О., Максимов И. В., 2016; Манжесов В. И., Максимов И. В., 2018).
Среди корнеплодных овощных растений морковь является наиболее распространенной культурой. Столовую морковь возделывают везде, где возможно овощеводство в открытом грунте, но наиболее широко в Центральном, Волго-Вятском, Северо-Кавказском, Северо-Западном, Западно-Сибирском и Восточно-Сибирском районах.
Столовую морковь употребляют в пищу в сыром и вареном виде, ее используют для приготовления различных приправ, супов, борщей, гарниров, соусов, салатов, винегретов, консервируют, сушат. Морковный сок используют для питания детей, а также как лечебное средство против малокровия и гипертонии. Эфирное масло, содержащееся в семенах, используют при производстве ликеров и в парфюмерно-косметической промышленности. Кормовая и столовая морковь является ценным кормом для всех видов животных, особенно для племенного скота, молодняка и птицы, причем используют не только корнеплоды, но и ботву растений.
В состав углеводов входят сахара (до 50%) – сахароза (53%), фруктоза, глюкоза – и крахма. В корнеплодах моркови обнаружены цепные аминокислоты: аланин, аспорагин, гютамин, глицин, лизин и др.
Морковь называют кладовой каротина (провитамина А). Особенно богаты каротином корнеплоды с оранжево-красной сердцевиной, в них содержится 15—17 мг% каротина, при благоприятных условиях роста и хранения корнеплодов может достигать 20—27 мг%, у некоторых сортов даже 37 мг%.
Кроме этих витаминов в моркови содержится: пантогеновая (В3), фоливая кислота, инозит, тоноферолы. Согласно средним показателям, сумма зольных элементов больше в красной моркови (1%), содержание калия больше в желтой моркови (234 мг%). Также минеральный состав представлен натрием (до 65 мг%), Mg (38 мг%), Р (60 мг%) и Fe (1,4 мг%).
Сырая морковь укрепляет десны, варенная рекомендуется при отдышке, кашле, туберкулезе. Препараты витамина А ускоряют заживление ран, ожогов, излечивают фурункулез, экзему, повышают сопротивляемость организма к инфекционным заболеваниям (Перфилова О. В., Бабушкин В. А., Парусова К. В., Евдокимова И. П., 2016; Винницкая В. Ф., Перфилова О. В., 2018; Диков М. В., Данилин С. И., 2020).
Содержание в моркови витамина С в количестве 5 мг/100 г массы играет важную роль для органов кровообращения и обладает антитоксическим действием к ядовитым веществам, а белок моркови более богат незаменимыми аминокислотами, чем животного происхождения. По содержанию бора морковь стоит на первом месте среди других овощей.
Пюре моркови способствует нормализации давления у больных гипертонией. Ее также рекомендуют употреблять при атеросклерозе, варикозе, инсульте и других болезнях сердечно-сосудистой системы. Она обладает мочегонным и желчегонным эффектом, используется
при профилактике желчнокаменной болезни (Абай Г. Қ., Жонысова М. У., Тултабаева Т. Ч., 2019) (Манжесов В. И., Максимов И. В., Курчаева Е. Е., 2009; Максимов И. В., Попов И. А., Веселева И. Д., 2014).
Польза моркови заключается в том, что она укрепляет иммунную систему и очищает сосуды. Также специалисты отмечают роль моркови
в борьбе с различными заболеваниями: малокровие, слабое зрение, туберкулез, астма, болезни сердца и почек. Суточная норма для каждого человека составляет от 50 до 100 г. Лучше всего употреблять морковь
со сметаной, так как она способствует полному усвоению витамина А. Самое полезное содержится в верхней части моркови и кожице (Барышникова Н. И., Паймулина А. В., 2014; Коденцова В. М., Вржесинская О. А., 2017; Чудайкина А. В., Барышникова Н. И., 2019).
В рационе человека пищевые продукты растительного происхождения занимают особое место. Они отличаются по составу и физиологической значимости для организма человека, являются источником витаминов, микроэлементов, углеводов и белков. Усвояемость и ценность продуктов растительного происхождения зависят, прежде всего, от их доброкачественности и безопасности.
На безопасность данной продукции влияют, прежде всего, различные болезни, пороки сельскохозяйственных культур. Некачественная продукция служит источником заболеваний людей. С целью недопущения реализации недоброкачественной продукции необходимо обязательно проводить ветеринарно-санитарную экспертизу.
В состав пищевых продуктов растительного происхождения (корнеклубнеплоды) входят нужные для организма легкоусвояемые элементы. К обязательным лабораторным исследованиям продуктов растительного происхождения в условиях лаборатории ветеринарно-санитарной экспертизы продовольственного рынка относится определение содержания нитратов и удельной активности радионуклидов.
Содержание нитратов и радиоизотопов не должно превышать допустимые уровни, установленные СанПиН2.3.2.1078—01 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов». Превышение показателей недопустимо. Малое количество нитратов не представляет угрозы для здоровья животных и людей. Они находятся в продуктах растительного происхождения. Их содержание увеличивается в случае внесения в почву повышенного количества азотных удобрений, птичьего помета и т. д.
В чем же заключается опасность нитратов? В результате обменных процессов в организме человека и животных нитраты превращаются в нитриты. Нитриты по своей природе более ядовиты, чем нитраты. Они долгое время, постепенно откладываются в органах и тканях. Через определенное время их накопление отражается на здоровье человека и животного в виде нарушений метаболизма и появлении различных заболеваний. Например, происходит нарушение деятельности эндокринной железы, возникают онкологические заболевания и др. Основными симптомами интоксикации нитратами является нарушение деятельности сердечно-сосудистой и дыхательных систем.
Григорьева В. В. с коллегами провела оценку качества корнеплодов моркови столовой, выращенных в условиях в Чувашии. Поведены органолептические исследования растительной продукции; определено содержание нитратов и радионуклида 137Csв растительной продукции.
Органолептические показатели моркови поздней соответствовали требованиям, предъявляемым государственным стандартом. Они имели удлиненную форму, размер по наибольшему диаметру составлял 3—3,5 см. При сгибании корнеплоды ломались, имели специфический запах, сладковатый, нежный, без горечи вкус.
Содержание нитратов в исследуемых пробах корнеплодов соответствовало нормативным показателям СанПиН 2.3.2.1078—01 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов» и составило 80±6,24 мг/кг (ПДК – 250 мг/кг).
Удельная активность радионуклида 137 Csв корнеплодах не превышала допустимый уровень содержания – 32±4,04 Бк/кг (ПДК – 120 Бк/кг) (Григорьева В. В., Иванов Н. Г., Тихонова Г. П., Никитина А. П., 2022).
Аккумуляция нитратов является естественным процессом азотного питания растений. Избыточное содержание нитратов в овощной продукции значительно ухудшает ее питательные свойства. Наряду с агрохимическими способами регулирования содержания нитратов в моркови, выбор сортов также может быть эффективным.
Волковой Е. Н. изучено 27 сортообразцов из мировой генетической коллекции Всероссийского института генетических ресурсов растений имени Н. И. Вавилова. Исследования показали, что различия в содержании нитратов в корнеплодах моркови могут варьироваться от 6,1 до 8,3 раза. Выявлены сорта с максимальным и минимальным количеством NO3-, при выращивании на повышенном азотном фоне условиях Ленинградской области.
Интенсивное вовлечение в природный цикл технического азота удобрений приводит к увеличению скорости потоков неорганического азота и загрязнению продуктов питания и питьевой воды его минеральными соединениями – нитратами и нитритами. Аккумуляция растениями нитратов является биогеохимическим барьером в их миграции в сопредельные с агросистемой среды. С одной стороны, нитраты являются естественным и необходимым компонентом азотного обмена в растении, а с другой стороны – это один из основных регламентируемых в настоящее время санитарно-гигиенических показателей качества овощной продукции, которая преимущественно употребляется в свежем виде, а также часто является компонентом детского и диетического питания.
Овощные культуры, в том числе морковь, предъявляют высокие требования к азотному питанию. Существуют различные способы оптимизации азотного питания моркови с целью получения устойчивых урожаев экологически безопасной продукции, в том числе за счет выбора сорта.
Основные источники азота в питании растений – азот почвы, биологический азот, технический азот. За счет любого из этих источников может происходить ухудшение качества овощной продукции, в первую очередь за счет избыточной аккумуляции нитратов. Растения способны усваивать азот в разных химических соединениях, таких как нитрат, аммоний, мочевина, аминокислоты и атмосферный азот, что зависит от вида растений, типа почв, погодных условий, системы земледелия и антропогенного воздействия на окружающую среду.
В настоящее время отсутствует единый подход к установлению ПДК нитратов в моркови в различных странах. Так, в Российской Федерации установлено для ранней продукции – 400 мг/кг, для поздней продукции (после 1 сентября) – 250 мг/кг. В Германии ПДК NO3- в моркови – 900 мг/кг, в Австрии – 1500 мг/кг. В продукции моркови для детского питания в Германии – 600 мг/кг, в Австрии – 250 мг/кг, в Венгрии и Швейцарии – 400 мг/кг, в странах бывшей Югославии – 100 мг/кг. Такие различия в ПДК объясняют неодинаковыми почвенно-экологическими условиями производства и использования в практике разных стран различных сортов овощных культур, а также товарным предназначением овощной продукции.
Содержание нитратного азота в растениях определяется соотношением между двумя процессами: поглощением растениями минерального азота из почвы и ассимиляцией его в процессах биосинтеза. Поэтому все приемы, направленные на ограничение содержания нитратов в растении, должны быть нацелены на оптимизацию условий роста растений, при котором максимально возможное потребление азота должно сопровождаться наиболее продуктивным его использованием на формирование урожая хорошего качества.
На содержание нитратов в овощных культурах влияют более 30 различных факторов, которые можно сгруппировать следующим образом:
– экологические факторы,
– агротехнические приемы возделывания,
– генетические свойства сорта,
– условия хранения,
– способы кулинарной обработки.
Накопление нитратов различными культурами имеет наследственно закрепленный характер, то есть они обладают сортовой спецификой, которая выявлена у ряда овощных культур. Сортовые различия могут быть обусловлены разной реакцией на условия окружающей среды и режим минерального питания, а также генетически закрепленным уровнем активности нитратредуктазы, отвечающей в клетке за усвоение нитрат-иона, разной продолжительностью вегетационного периода сортов. Безусловно, каждый сорт любой культуры уникален по своим характеристикам, в том числе и по способности накапливать нитраты.
Сорта моркови характеризуются значительной изменчивостью биохимического состава. У моркови между разновидностями разница в содержании нитратов может достигать 35% и основную роль в накоплении нитратов играют сортовые особенности, а не уровень азотного питания. А по данным бельгийских ученых, при испытании сортов моркови в течение 3 лет не было отмечено определенных закономерностей и разницы по содержанию нитратов. Считают, что сорта этой культуры отличаются по содержанию нитратов в том случае, когда между ними имеются четкие морфологические различия. А так как морфологические признаки растений генетически наследуются, то и уровень накопления нитратов разными сортами моркови должен быть генетически закрепленным признаком.
Причиной сортовых различий в накоплении нитратов морковью может являться и разная их реакция на уровень азотного питания. Накопление нитратов сортами моркови также зависит от анатомического строения корнеплодов, в частности от соотношения тканей ксилемы и флоэмы и должно быть равным соответственно 1:3 (по диаметру поперечного разреза).
При изучении коллекции сортов Всероссийского института генетических ресурсов растениеводства им. Н. И. Вавилова в Московской области, выделена группа образцов моркови с минимальным накоплением нитратов при выращивании на умеренном фоне азотного питания. В среднем их содержание колебалось от 58,6 до 112,9 мг/кг при ПДК 250 мг/кг, а у стандартов Шантенэ 2461, Нантская 4, Лосиноостровская 13 соответственно 58,6; 109,5 и 112,9 мг/кг.
Отдельные образцы имели четкую тенденцию к минимальному накоплению нитратов независимо от лет изучения. Это образцы НИИОХ 336, Parniex, Rosal, Nagono F1, Kaliber, Kometa F1, Napoli F1, Лосиноостровская 13.
Волковой Е. Н. в микрополевом опыте на повышенном фоне азотного питания (N180 кг д.в./га), изучена коллекция сортов и гибридов моркови различного географического происхождения, различающихся по морфолого-физиологическим признакам и представляющих основные сортотипы и разновидности этой культуры: Местная (Япония), Nantes (Швеция), Guerande (Франция), Грибовская (Российская Федерация), Нантская (Болгария), Nantes ½ Long (Италия), Amager (Дания), Rugulus Hal. (Швеция), Amsterdam Sp. (Дания), Nakamura dosan (Япония), Red cored Аutumn (Великобритания), Western Red (Австралия), Autumn King (Великобритания), Red Giant (США), Carrino F1 (Швеция), Vates Tog (Ямайка), Figaro (Нидерланды), Flakkese Iar. (Нидерланды), Famino F1 (Нидерланды), Flakkese F1 (Нидерланды), Kaliber (Швеция), Picmo (Швеция), Местная (Испания), Giganta (Чехословакия), Silka (Нидерланды), Baby Long (Нидерланды), Autumn King (Великобритания).
Раннеспелые сорта, в отличие от позднеспелых, имели, как правило, небольшую компактную розетку листьев с тонкими черешками. Например, средняя длина наибольшего листа у сорта Вaby Long была – 37,0 см, количество листьев – 6,3 шт, а у позднеспелого сорта Autumn King – соответственно – 58,0 см и 8,0 шт.
Коллекционные образцы моркови значительно отличались по размерам и форме корнеплода и листовой розетки, что связано с их скороспелостью и географическим происхождением. Сорта Guerande (Франция) и Thumbelina (США) имели короткий корнеплод (> 10см), остальные сорта – средний (11—15 см) или длинный (> 15 см). Форма корнеплода была круглой (индекс 1,0) у Thumbelina, конической (индекс 2—3) у Nantes, Guerande и Грибовская или циллиндрической (индекс 4—6) у остальных сортов (Артек, Витаминная, Лосиноостровская13, Kaliber, Silka, BabyLong и другие).
Доля корнеплодов в урожае для некоторых сортов являлась устойчивым признаком, лучшие показатели составляли: 57% у Нантской, 60% у Nakamura gosun, 43—64% у Red Giant, 58—71% у Carrino F1 и т. д. Сортообразцы моркови при выращивании на одинаковом повышенном азотном фоне значительно отличались по урожайности – в среднем в 3,6 раза.
Некоторые сорта формировали высокий урожай, то есть имели более высокий коэффициент использования элементов минерального питания по сравнению с другими сортами – Грибовская (9,6 кг/м2), Flakkese Iar. (10,6 кг/м2). Минимальный урожай сформировали Red cored Аutumn, Figaro. Товарность корнеплодов (соответствие ГОСТу на товарные корнеплоды моркови, предназначенной для употребления в свежем виде) в среднем изменялась от 47 до 85%. Наиболее выровненные по форме и размеру корнеплоды были у сортов Kaliber, Figaro, Flannese.
Сорта Нантская, F1 Carrino, Western Red (Австралия) выделялись по высокому содержанию сухого вещества в корнеплодах (11,8—12,3%). Изучаемые сортообразцы существенно отличались по этим показателям. Самая высокая сумма сахаров в корнеплодах была у сортов – Amager – 9,4%, Giganta – 9,3%. Максимальное количество каротина содержалось в корнеплодах сорта Vates Top Weight (Ямайка), F1 Famino, BabyLong – 7,2 мг%.
Содержание нитратов в ранней продукции моркови (убираемой до 1 сентября) изменялось от 712 до 117 мг/кг в среднем в 6,1 раза и от 593 до 71 мг/кг в среднем в 8,3 раза в поздней продукции.
У шести образцов содержание нитратов в фазу пучковой спелости превышало ПДК (400 мг/кг), в сентябре – у 13 выше ПДК (250 мг/кг). Максимальное содержание нитратов в ранней продукции накапливали сорта Vates Tog, Giganta, Kaliber, Нантская и другие. Прослеживалась тенденция – сорта, формирующие более высокую биомассу накапливали и больше нитратов (Нантская, AutumnKing, Nantes ½ Long, Giganta), чем другие сортообразцы.
Минимальное количество нитратов как в ранней, так и в осенней продукции аккумулировали сорта Nakomura gosun (Япония) —156—71 мг/кг, F1 Carrino F1 (Швеция) – 131—145 мг/кг, Famino F1 (Нидерланды) —141—117 мг/кг, Грибовская – 117—103 мг/кг. Содержание нитратов в осенней продукции в целом было заметно меньше, чем в предыдущую фазу. Можно отметить, что у моркови наблюдалась тенденция к увеличению нитратонакопления у более скороспелых сортов, однако четкой зависимости между аккумуляцией нитратов и длиной вегетационного периода для изучаемых сортов не установлено.
Полученные результаты позволяли сделать вывод о необходимости учитета генетических особенностей сортов и гибридов моркови по способности аккумулировать нитраты при разработке экологически безопасных и биологизированных технологий в овощеводстве. Также возможна селекция этой культуры по этому показателю (Ranasihgle R., Marapana R., 2018; Волкова Е. Н., 2020).
Азот – органоген, элемент, входящий в состав всех органов и тканей живых организмов. Круговорот этого важнейшего элемента живого вещества охватывает все составные части геосферы и является одним из основных биогеохимических циклов, обеспечивающих поддержание жизни на нашей планете. Использование минеральных удобрений активизировало изучение механизмов, способов трансформации и накопления нитратов в различных овощах и фруктах.
В настоящее время известно, что сами нитраты, попадающие в организм человека с пищей, не так опасны, как нитриты, образующиеся в результате ряда превращений последних. ВОЗ установила следующий показатель для человека: 3,7 мг нитратов на 1 кг массы тела.
Савкиной Е. О. и Раскатовой Е. А. исследованы корнеплоды моркови сорта Нанская-4, выращенных на участках с различным уровнем освещенности, на содержание нитрат-ионов колориметрическиим методом анализа в Уральском регионе.
Наибольшее количество нитратов отмечено в корнеплодах, выращенных на затененном участке, наименьшее количество – на участке с наиболее высоким уровнем освещенности. Выявлено, что в верхней части корнеплодов, выращенных на всех участках, с различным уровнем освещенности, содержание нитрат-ионов меньше по сравнению с нижней хвостовой частью и средней частью (Савкина Е. О., Раскатова Е. А., 2021).
Малхасян А. Б. и Ивановой Ю. В. проведены двухлетние исследования о влиянии биопрепаратов Экориз и Биоплант Флора на качество трёх сортов моркови столовой.
Результаты исследования показали, что на содержание сухого вещества существенное влияние оказывали применяемые биопрепараты Экориз и Биоплант Флора. Наибольшим содержанием сухого вещества отличался сорт Император – 13,5% при обработке биопрепаратом Биоплант Флора. Данный препарат на всех сортах способствовал увеличению содержания сухого вещества. Биопрепарат Экориз повышал содержание сухого вещества в корнеплодах сортов моркови только на 0,2—0,5%.
В среднем по сортам моркови содержание водорастворимых сахаров в корнеплодах контрольных вариантов без применения биопрепаратов было 5,0—5,7%, а при обработке биопрепаратом Экориз содержание сахаров составляло в среднем 5,6—6,4%. При обработке семян и растений сортов моркови биопрепаратом Биоплант Флора содержание сахаров возросло и составило 6,5—7,6%.
Таким образом, наибольшее содержание сахаров было отмечено в корнеплодах сорта Император при обработке биопрепаратом Биоплан Флора – 7,6%, что на 0,8 и 1,6% больше, чем у сортов Кардинал и Сахарный гигант. Установлено максимальное содержание каротина в корнеплодах сорта Император – 11,0 мг на 100 г сырой массы при применении биопрепарата Биоплант Флора.
В корнеплодах сортов моркови содержание нитратов было на уровне 96—125 мг/кг, что ниже установленных норм для данной категории продукции. Использование биопрепарата Биоплант Флора приводило к снижению содержания нитратов в продукции сортов моркови на 9—25 мг/кг. Среди сортов наибольшее снижение нитратов на 25 мг/кг продукции от действия биопрепарата Биоплант Флора было у сорта Император (Малхасян А. Б., Яловик Л. И., 2015; Малхасян А. Б., Нефедова А. Н., 2019; Малхасян А. Б., Иванова Ю. В., 2021).
В условиях крайне напряженной экологической ситуации, сложившейся во многих регионах страны, повышение продуктивности растениеводства должно быть неразрывно связано с контролем качества получаемой сельскохозяйственной продукции. Микроэлементы, поступая из почвы в растения, влияют на протекание биохимических реакций, изменяя содержание в растении необходимых для жизнедеятельности веществ.
Однако избыточное поступление химических элементов может стать причиной накопления в растении веществ, опасных для здоровья человека и животных. Продовольственной и сельскохозяйственной комиссией ФАО установлено предельно допустимое потребление нитратов человеком в сутки, которое составляет 500 мг.
Синдиревой А. В., Шойкиной О. Д. и Трубиной Н. К. изучено влияние микроэлементов никеля и цинка на показатели качества моркови столовой.
Известно, что существует прямая зависимость между содержанием сухого вещества и сахаров в растениях. Внесение Ni22 и Zn36 способствовало стимулированию процессов биосинтеза сухого вещества и сахаров в корнеплодах.
Исследования показали, что внесение применение никеля способствовало небольшому повышению содержания сахара в корнеплодах моркови. Внесение цинка повышало количество общего сахара на 5,9% по сравнению с фоном (Синдирева А. В., Шойкин О. Д., Трубина Н. К., 2016).
Биологические особенности растений, такие как характер распределения в почве корневой системы, продуктивность, продолжительность вегетационного периода, расположение и опушенность листовой пластинки и стебля, количество и размеры плодов, их опушенность или гидрофобность и т. д. оказывают влияние на накопление в них радионуклидов. Знание особенностей накопления токсикантов играет большую роль для повышения безопасности и культуры питания.
Особенно важно учитывать их для овощей, поскольку у них в пищу используются весьма разнообразные продуктовые органы, различающиеся по способности аккумулировать токсичные вещества. В то же время овощи разных видов являются важнейшими элементами в питании человека. Особенно следует учитывать то, что овощи – основа диетического питания. Они являются источником биологически активных веществ и антиоксидантов, обладают лечебными свойствами, используются для создания продуктов функционального действия. Это определяет особенно строгие требования к экологической безопасности овощной продукции.
Солдатенко А. В., Пивоваров В. Ф. и Добруцкая Е. Г. изучили вопрос о поступлении и распределении в столовой моркови Марлинка и Нантская 4 радионуклидов – 137Cs и 90Sr на базе лаборатории экологических методов селекции Всероссийского научно-исследовательского института селекции и семеноводства овощных культур.
При изучении образцов моркови столовой отмечено, что закономерности в накоплении радионуклидов в различных частях корнеплода не проявились. Уровень накопления у сортов не совпадал и различался по элементам. Единственная четкая тенденция – максимальное содержание обоих элементов в верхней части корнеплода сорта Марлинка – 1,5 и 1,7 Бк/кг 137Cs и 90Sr соотвественно. При анализе продукции моркови столовой по уровню накопления радионуклидов в различных частях, данные по содержанию радионуклидов во флоэме не однозначны. Только по одному сорту Марлинка в большей мере была загрязнена верхняя часть флоэмы. В ткани корнеплодов ксилемы обоих сортов наименьшее содержание обоих радионуклидов наблюдается в верхней части – от 0,2 до 0,6 Бк/кг (Солдатенко А. В., Пивоваров В. Ф., Добруцкая Е. Г., 2015).