Любой, кто прошел бы по улице города тысячу лет назад, вероятно, получил бы совершенно другие сенсорные впечатления, чем мы сегодня. Если бы мы попали в 1021 год, то не увидели бы ни машин, ни самолетов, ни кораблей. Может быть, нам не удалось бы даже пройти по настоящей улице в современном понимании этого слова. Мир, без сомнения, тогда был значительно тише. Таковы были бы наши слуховые и зрительные впечатления. Но как же запахи?
Обоняние имеет несколько уровней, и в этом контексте можно задать множество вопросов: пахнем ли мы и наша окружающая среда сегодня иначе, чем тысячу лет назад? Или чем сто лет назад? Как изменились запахи в нашей среде за эти годы? Как мы, люди, повлияли на сложный ландшафт ароматов вокруг нас? Изменилось ли наше собственное обоняние и восприятие запахов? Как наша деятельность повлияла на способность чувствовать запахи? Какие процессы привели к изменениям обоняния человека и животных?
Во-первых, в 1021 году мы не почувствовали бы волну автомобильных выхлопов или зловоние местных очистных сооружений. Синтетические запахи – например духов, дезодоранта или новой машины – тогда тоже отсутствовали. И даже естественные запахи, вероятно, были другими.
С тех пор как люди вторглись во все уголки земли, мы всегда находили способы изменять и эксплуатировать окружающую среду. Приведу лишь несколько примеров: мы вырубили леса, засадили поля зерновыми, уничтожили многие растения и животных и индустриализировали мир. Эту новую геологическую эпоху, в которую мир резко изменился в результате деятельности человека, часто называют антропоценом{1}.
Четкое определение времени начала этой эпохи до сих пор является предметом обсуждения. Гипотезы зарождения антропоцена основываются на самых разных исторических моментах: от начала сельскохозяйственной революции, около десяти или пятнадцати тысяч лет назад, до конца Второй мировой войны, то есть периода, отмеченного испытаниями ядерного оружия, экономическим бумом 1950-х годов и сопровождавшими его резкими социально-экономическими и климатическими изменениями.
Но какую бы точку отсчета мы ни выбрали, ясно одно: люди оказывают огромное влияние на планету в целом, а также на каждый вдох и выдох, которые делаем мы и другие животные. Точно так же мы воздействуем на молекулы, которые содержатся в каждом из этих вдохов и выдохов.
Во-первых, давайте посмотрим на естественные запахи и на то, как они меняются. Тысячу лет назад природа практически не подвергалась влиянию человека. Многие виды растений и животных вместе населяли поля и леса. Повсюду росли цветы. Ель и сосна соседствовали с лиственными деревьями. Ключевое понятие, характеризующее природу того времени, – биологическое разнообразие. Со временем люди все активнее вырубали или выжигали леса, превращали цветущие луга в пахотные земли. Все эти изменения привели к массовому распространению нашего вида и увеличению количества человеческих особей. В то же время постепенно происходили глубокие изменения в обонятельном ландшафте нашей среды.
Вместо смешанных лесов с их разнообразием пород мы создали крупномасштабные монокультуры деревьев. Соответственно, и запахи стали более простыми – сравним запах современного елового леса с ароматом древнего смешанного. Вы и сами можете сравнить, когда в следующий раз окажетесь в лесу.
Такое же упрощение происходило параллельно на полях. Огромные монокультуры теперь можно найти там, где раньше было большое биологическое разнообразие. Прерии Северной Америки превратились в бескрайние поля кукурузы и пшеницы. Та же участь постигла и европейские луга. Ощущая так называемые естественные запахи вокруг нас, мы должны осознавать, что обонятельный ландшафт претерпел значительные изменения. Как это произошло?
Когда мы ведем автомобиль, летим в самолете или занимаемся промышленной деятельностью, мы выделяем много веществ, влияющих на климат и молекулярный состав атмосферы. Одним из наиболее широко освещаемых изменений, связанных с антропоценом, является увеличение в окружающей среде объема углекислого газа, CO2: оно способствует возникновению парникового эффекта, то есть резкому изменению глобальных температур, а также повышению кислотности океанов и общей дестабилизации климата{2}.
CO2 представляет собой слабо реакционноспособное соединение и не влияет напрямую на запахи в атмосфере, но может влиять на то, какие летучие вещества выделяет растение. Причина – в физиологических изменениях внутри растения. Углекислый газ увеличивает фотосинтез за счет сниженного потребления воды и изменения химического состава тканей растений{3}. Колебания уровня CO2 также могут влиять на способность насекомых находить растения-хозяев. Мотыльки ощущают выброс CO2, который происходит при раскрытии цветка, и используют его, чтобы найти своих поставщиков нектара. Если насекомым трудно найти нужные цветы из-за повышенного фонового уровня CO2 в воздухе, это сказывается как на опылении, так и на заражении вредителями{4}.
При повышенном фоновом уровне CO2 комарам труднее найти «донора крови», потому что этот газ является одним из основных обонятельных сигналов, которые комары используют для распознавания своих хозяев (см. главу 9){5}. С точки зрения человека, это можно считать преимуществом, но есть и обратная сторона.
Уже доказано, что видообразование комаров резко ускоряется в периоды повышенного содержания CO2 в атмосфере{6}. Это приводит к тому, что другие, более специфические запахи становятся эффективными в качестве потенциального механизма изоляции между новыми видами. С этой точки зрения прогнозируемое антропогенное повышение уровня CO2 в атмосфере имеет важные последствия для здоровья человека и, потенциально, для эффективности опыления за счет изменения численности и распределения насекомых.
Так что на суше перспективы безрадостны. Но и в море не лучше. CO2 растворяется в воде и образует угольную кислоту (H2CO3), которая увеличивает кислотность воды{7}. Исследования показали, что такая вода ухудшает обоняние морских обитателей. И независимо от того, помогает ли им обоняние избегать врагов, находить пищу или партнера, более низкий уровень pH океана значительно влияет на их жизнь и затрудняет подобную деятельность{8}. Пока неизвестно, смогут ли морская экосистема и пищевая сеть адаптироваться к изменившимся условиям.
В отличие от CO2, озон (O2) и оксиды азота (NOx) могут оказывать прямое влияние на состав аромата благодаря своей окисляющей способности. В последнее время уровень обоих экологических токсинов в атмосфере увеличился и, как ожидается, продолжит расти{9}. По мере повышения уровня этих газов все более вероятно, что смесь запахов, которая помогает насекомым в поиске пищи, организмов-хозяев или мест откладывания яиц, изменится. Хотя каждый из этих аспектов имеет свои собственные последствия, взаимодействие между ними, в свою очередь, приведет к новым изменениям.
Газы NOx образуются везде, где мы сжигаем какое-либо топливо. Они опасны для здоровья сами по себе и, кроме того, вызывают кислотные дожди и смог. Закись азота, также известная как веселящий газ, тоже способствует глобальному потеплению.
Метан вырабатывается в ходе многих естественных процессов: часто приводят в пример газы в кишечнике и отрыжку у коров. Однако сейчас он в том числе высвобождается в результате оттаивания тундры и таким образом способствует еще большему повышению температуры.
Озон образует в стратосфере вокруг Земли естественный защитный слой, поглощающий солнечную радиацию. Одновременно в нижних слоях атмосферы это основной компонент смога: он получается при взаимодействии солнечного света с различными техногенными выбросами.
Помимо различных газов, существует много гербицидов, фунгицидов и инсектицидов, используемых для борьбы с вредными сорняками, грибками и насекомыми. Такие химические вещества также оказывают заметное влияние на восприятие запаха. И, наконец, многочисленные виды деятельности человека высвобождают ионы металлов, которые могут напрямую влиять на обоняние.
Изменения температуры воздуха и моря являются ключевыми признаками антропоцена. Повлияют ли они на то, как мы ощущаем мир? Повышение температуры окружающей среды может непосредственно воздействовать на состав аромата, поскольку количество отдельных веществ в смеси зависит от их летучести. Но в результате могут измениться и физиологические реакции отправителя и получателя.
В последние годы появились вызывающие тревогу исследования, показывающие, что насекомые исчезают. В некоторых регионах Германии, например, биомасса насекомых сократилась более чем наполовину{10}. Столь резкое изменение среды обитания имеет серьезные последствия и для людей. Популяции пчел снижаются, а это означает, что фруктовые деревья не опыляются и мед не производится. Также страдают шмели и некоторые другие полезные виды насекомых.
И это еще не все. Насекомые являются основой питания многих птиц, поэтому пернатым не хватает пищи. Может ли уменьшение численности насекомых быть вызвано воздействием газов и загрязнения на запахи и обоняние? Это кажется вероятным, по крайней мере частично. Несколько исследований различных систем показали, что запахи меняются из-за выделяемых нами газов.
Например, опыление насекомыми. Коэволюция на протяжении миллионов лет настраивала взаимодействие цветов и насекомых к их взаимной выгоде (ну, в большинстве случаев; см. главу 13). Насекомые используют внешний вид цветов в первую очередь для ориентирования на больших расстояниях, а запах – при приближении. Если насекомое находит цветок, оно опыляет растение и получает в награду нектар и пыльцу. Однако здесь мы имеем дело с уязвимой системой. Мы можем доказать эту уязвимость, нарушив близкое обонятельное взаимодействие между цветком и насекомым (подробнее об этом исследовании см. в главе 7).
Если аромат цветка исчезает, то и опыление не происходит, и насекомое не может собрать нектар. Но поскольку это очень уязвимая система, для прерывания связи достаточно не полного исчезновения, а просто изменения запаха. И именно это происходит в результате загрязнения атмосферы газами, особенно озоном.
Озон обладает сильным окислительным действием, то есть он запускает химические реакции в других молекулах. В ходе эксперимента в моей лаборатории табачные бражники летели к определенному цветку в аэродинамической трубе. Сначала мы смоделировали условия, существующие сегодня в природе. Бражники быстро нашли цветок, опылили его и забрали нектар. Затем мы подвергли цветок воздействию озона в повышенной концентрации и снова наблюдали за поведением бабочек. Теперь насекомые явно потеряли ориентацию и уже не могли найти цветы. Когда мы проанализировали, какие молекулы выделяются из бутонов, оказалось, что вместо некоторых из них возникло другое вещество с совершенно другим запахом.
При таких концентрациях озона, которые возникают в теплые дни в ряде регионов мира, эффективность опыления растений насекомыми заметно снижалась. В ходе наших экспериментов мы исследовали, может ли воздействие озона уменьшить умение насекомых приспосабливаться. Именно это мы и обнаружили.
Если бы мы предложили мотыльку «новый» цветочный запах вместе с мощными визуальными сигналами, однократного восприятия нового запаха вместе с наличием нектара было бы достаточно, чтобы бабочка в будущем летела к богатому озоном запаху и воспринимала его как сигнал присутствия пищи{11}. Как сказал Ян Малкольм в «Парке юрского периода»: «Жизнь всегда находит выход».
Однако в большинстве случаев выяснялось, что высокий уровень озона оказывает пагубное влияние на эффективность опыления пчелами, шмелями, мотыльками и другими насекомыми. То же самое относится и к другим газам – например, к выхлопным газам дизельных двигателей{12}. Очевидно, что мы должны сделать все возможное, чтобы ограничить выбросы таких газов и максимально сократить их количество.
В другом исследовании моя коллега Джеральдин Райт изучала воздействие современных пестицидов на пчел-опылителей. Неоникотиноиды, в настоящее время наиболее широко используемые в мире инсектициды, менее вредны для птиц и млекопитающих, чем старые карбаматы и фосфорорганические соединения. Считалось, что меньшие количества менее вредны для полезных пчел. Однако, когда Джеральдин изучала обонятельные способности у медоносных пчел, подвергшихся воздействию неоникотиноидов в очень низких концентрациях, было обнаружено, что они серьезно нарушены{13}. И в этом случае обонятельная коммуникация и навыки, лежащие в ее основе, пострадали от действий людей.
Температура также влияет на жизнь насекомых. При более высоких температурах все молекулы запаха испаряются намного быстрее и все пахнет сильнее. Поскольку у насекомых отсутствует терморегуляция – им не хватает способности поддерживать стабильную температуру тела, – их физиологические функции обычно точно настроены на температуру их среды обитания. Обоняние не является исключением. Жук, живущий в пустыне, может лучше всего ощущать запахи при 40 ℃. Тогда как мои измерения обонятельных нейронов в усиках зимней моли показывают, что оптимальная температура для этих бабочек составляет около 10 ℃ и система практически не функционирует при 20 ℃. Таким образом, постоянное повышение температуры, вызванное изменением климата, напрямую влияет на обоняние насекомых и, предположительно, многих других нетеплокровных животных.
Кроме того, повышение температуры позволяет насекомым продвигаться в новые регионы. Хотя их распространение не имеет прямого отношения к восприятию запахов, очевидно, что несколько общеизвестных видов насекомых, ориентирующихся на запахи, стремительно развиваются. В главе 9 речь пойдет о малярийном комаре. Это всего лишь один из многих видов, распространяющих болезни по всему миру. В настоящее время мы наблюдаем, как он перемещается на новые территории – в Европу и Северную Америку. Распространение вируса Зика из Южной и Центральной Америки на юг США также произошло благодаря комарам рода Aedes. Другие болезни, такие как лихорадка Западного Нила и лихорадка Чикунгунья, также распространяются по мере проникновения комаров-переносчиков в новые регионы{14}.
В главе 10 мы рассмотрим обоняние жука-короеда. Всего десять лет назад эти жуки каждый год производили одно поколение потомства, то есть каждая самка оставляла шестьдесят новых жуков. Сегодня в Центральной Европе мы имеем дело с тремя поколениями в год, то есть на одну самку приходится три тысячи потомков, которые впадают в спячку, уничтожив большое количество елей.
Если мы хотим знать, что именно, когда, как и где происходит, нам, безусловно, нужны дополнительные исследования. Решив лучше понять, как антропоцен влияет на обоняние насекомых, я основал Центр химической экологии насекомых нового поколения Общества Макса Планка (NGICE), где объединил для исследований в этой области специалистов из трех учреждений: из моего отдела эволюционной нейроэтологии в Институте химической экологии Общества Макса Планка в Германии, Шведского университета сельскохозяйственных наук и группы, исследующей феромоны на кафедре биологии университета Лунда (также в Швеции).
Наша общая цель – изучить влияние изменения климата, парниковых газов и загрязнения воздуха на химическую коммуникацию между насекомыми. Таким образом мы хотим внести свой вклад в решение глобальных проблем, связанных с климатическим кризисом, голодом и болезнями{15}.
В 1907 году в Нью-Йорке бельгийский химик Лео Бакеланд изобрел бакелит – первый пластик, изготовленный из синтетических компонентов. С тех пор производство пластмасс приняло огромные масштабы. Сегодня мировое производство пластика оценивается в 360 миллионов тонн в год. Но почему это имеет значение для обонятельного восприятия?
Как подробно рассказывается в главе 4, птицы используют обоняние для разных целей. Для морских птиц способность чувствовать запах диметилсульфида (ДМС) – важная часть их обонятельной функции. Это соединение высвобождается из измельченного фитопланктона, часто при потреблении зоопланктоном. Так что для птиц сернистый газ – верный признак того, что поблизости много еды.
К сожалению, то, что животные воспринимают ДМС как сигнал о наличии корма, в век пластика создает проблему. Когда пластик плавает в воде в течение нескольких месяцев, он также выделяет ДМС, тем самым обманывая морских обитателей и заставляя их поверить, что он съедобен{16}. По данным Программы ООН по окружающей среде (ЮНЕП), мы ежегодно выбрасываем восемь миллионов тонн пластика в мировой океан{17}, и это, по примерным оценкам, более пяти триллионов крупных и мелких пластиковых частиц, и количество только увеличивается… Птицы по ошибке едят пластик, который забивает их пищеварительный тракт и в конечном итоге убивает их. Каждый год умирает около миллиона морских птиц, потому что их желудки полны наших пластиковых отходов.
Способность находить пищу в океане с помощью ДМС развилась не только у птиц. Тюлени и киты (см. главу 5), вероятно, используют ту же стратегию, подвергая себя таким же опасностям. При исследовании детенышей черепах у ста процентов этих крошечных существ уже был пластик в желудках{18}. Таковы серьезные экологические последствия массового производства одноразовых пластиковых предметов.
В Большом тихоокеанском мусорном пятне (одной из пяти свалок, обнаруженных в наших океанах) течения и ветра сгоняют выброшенный мусор (включая пластмассу и рыболовные снасти) на площадь примерно в два раза больше Техаса, или в три раза больше Франции, если сравнивать в масштабах Европы{19}. Поверхность воды в основном покрыта микропластиком. Согласно исследованиям, таких частиц уже может быть больше, чем зоопланктона, и они определенно нашли свой путь в Марианскую впадину, самую глубокую точку мирового океана{20}. Нетрудно представить, какую роль играет эта негативная тенденция в жизни птиц и других морских существ, которых привлекает запах.
Помимо запаха диметилсульфида в воздухе, воздействующего на птиц и других животных, существует также антропогенное химическое загрязнение, распространяющееся по водным путям, океанам, озерам и рекам. Рыбы, ракообразные и другие обитатели водной стихии плавают в бульоне из искусственных молекул. Некоторые из этих молекул наносят ущерб животным и их экологическим системам.
Подобно нашим обонятельным нейронам, нейроны рыб подвержены прямому воздействию окружающей воды и всех растворенных в ней веществ. В том числе меди. Согласно исследованиям, высокая концентрация меди пагубно влияет напрямую на функцию обонятельных нейронов рыб, морских и речных ракообразных. При продолжительном воздействии нарушается нормальное поведение при спаривании и поиске пищи, обусловленное запахом{21}.
Чтобы защитить наши посевы, мы распыляем разнообразные пестициды, которые рано или поздно попадут в водоемы. Большинство владельцев садов для борьбы с сорняками используют гербициды, содержащие глифосат. В экспериментах это соединение препятствовало поиску корма рыбами даже в тех концентрациях, которые встречаются в природе, а функция обоняния у кижуча была нарушена{22}. Многие другие химические вещества также оказывают прямое влияние на поведение рыб. Поскольку некоторые виды лосося чрезвычайно важны с экономической точки зрения, было проведено множество исследований того, как пестициды влияют на это семейство рыб. Как выяснилось, большое количество промышленных химикатов, которые мы используем в сельском и лесном хозяйстве, влияет на сексуальное поведение рыб и на поиск ими корма (см. главу 5). Интересно, что циперметрин, который используется для защиты лосося от лососевых вшей в рыбоводной промышленности, также оказывал влияние на его поведение.
Другой пример – 4-нонилфенол, который широко используется в качестве смачивающего агента как в промышленности, так и на очистных сооружениях. Это соединение в настоящее время можно обнаружить почти в каждом водоеме по всему миру. Когда ученые подвергли социальные виды рыб воздействию 4-нонилфенола в концентрациях, встречающихся в природе, эксперимент имел серьезные последствия. Рыба больше не реагировала на феромоны, которые обычно вызывают образование косяков, и вместо этого демонстрировала противоположное поведение. По-видимому, загрязнение этим веществом напрямую влияет на поведение, касающееся как избегания хищников, так и поиска пищи{23}.
При изучении количества производимых нами химикатов и их влияния на природное химическое разнообразие становится ясно: рыбы и другие водные обитатели сильно страдают от них. В частности, из-за негативного воздействия на обоняние: иногда токсины окружающей среды напрямую нарушают обонятельную способность или оказывают косвенное влияние на поведение и на функции гормонов.
Вернемся в 1021 год и подумаем о собственном запахе. Как подробно рассказывается в главе 2, одна из крупнейших мировых индустрий процветает благодаря нашей вере в то, что от природы мы плохо пахнем. Духи и парфюмеры существовали в Индии, Египте и Месопотамии тысячи лет назад, но только в XVIII веке они стали популярны в Европе благодаря королю Франции Людовику XV и мадам де Помпадур. Эти двое стали законодателями парфюмерной моды, которой все хотели следовать. Но раньше, в 1021 году, большинство людей источали свой естественный запах.
Еще одна привычка, которая оказала большое влияние на запах нашего тела, – частое мытье и душ. Эти очистительные ритуалы также стали популярными в XVIII веке, когда вода впервые начала считаться полезной для здоровья даже в городах. Купание и использование мыла изменили микрофлору нашего тела, а вместе с ней и запах.
Вот почему в антропоцене мы пахнем меньше и иначе, чем люди в другие эпохи. Регулярно моясь, мы уменьшаем запах своего тела, а используя посторонние, сильно пахнущие вещества, кардинально его меняем. Дезодорирующие вещества, часто используемые в таких средствах, убивают микроорганизмы на нашей коже и таким образом серьезнее меняют наш запах.
Такое изменение, вероятно, означает и то, что мы можем получать меньше знаний о наших собратьях. В главе 2 и других частях этой книги на примере других видов рассказывается, что в запахах, которые мы испускаем, скрыто много информации. Значительная ее часть теряется в наших попытках замаскировать свое настоящее обонятельное «я».
Поскольку мы постоянно пытаемся скрыть свой запах, то рискуем потерять способность чувствовать запахи. Современный мир частично виноват в этой обонятельной дисфункции. Общепризнано, что плохое качество воздуха может привести к серьезным респираторным и сердечным заболеваниям, а вот нарушения обоняния, связанные с загрязнением воздуха, стали изучать лишь недавно{24}.
Кроме того, может существовать связь между загрязнением воздуха и риском психических расстройств или неврологических заболеваний, таких как болезнь Паркинсона или Альцгеймера. Плохое качество воздуха не является явной причиной таких неврологических расстройств, но исследования показывают, что риск возрастает, когда люди живут или работают в сильно загрязненных районах, особенно если в воздухе присутствуют частицы сажи{25}.
А как эти болезни связаны с обонянием? Аносмия (острая потеря обоняния) – часто один из первых признаков болезни Паркинсона и болезни Альцгеймера. Также аносмия нередко связана с депрессией и биполярным расстройством (см. главу 2).
В этой области, безусловно, необходимы дальнейшие исследования. Но вполне вероятно, что существует связь между обонятельными нервами и потоком спинномозговой жидкости, которая работает как «подушка» вокруг нашего головного и спинного мозга, а также помогает выводить продукты жизнедеятельности из клеток головного мозга. По некоторым данным, спинномозговая жидкость покидает наш организм не только через лимфатическую систему, но и через носовую полость. Если наши обонятельные нервы или связанные с ними нервные пути повреждены – например, вследствие загрязнения воздуха, – это может вызвать и неврологические расстройства из-за эффекта домино. Однако научные выводы в этой области не окончательны и дальнейшая исследовательская работа еще продолжается.
Люди приручили животных несколько тысяч лет назад. Вероятно, первыми спутниками человека были собаки, за ними последовали свиньи, коровы, лошади и другие. В 1021 году многие люди делили кров не только с родственниками, но и с домашними животными. Соответственно, у них с животными были общие микроорганизмы, и это послужило причиной возникновения многих болезней.
По мере того как люди размножались и популяция увеличивалась, мы создавали оптимальную среду для распространения таких болезней, и некоторые из них напрямую влияли на обоняние. Последний пример – пандемия COVID-19. При этом, согласно актуальным данным, вирус распространился через китайские рынки, где люди имеют непосредственный контакт с живыми дикими животными и торгуют ими в очень стесненных условиях. Здесь у вируса были обширные возможности заразить множество снующих людей – а затем начать циркулировать по всему миру.
Среди симптомов, с которыми сталкивались большинство пациентов с COVID-19, – полная потеря обоняния и вкуса. Однако до сих пор до конца неясно, действительно ли исчезает именно вкус, потому что то, что большинство считает вкусом, в действительности является запахом в носу и горле. В любом случае исследования потери обоняния при COVID-19 сосредоточены как на периферии – носе, так и на центральном уровне, то есть на мозге. На сегодняшний день некоторые результаты указывают на то, что могут быть затронуты специфические поддерживающие клетки вокруг обонятельных нейронов в носу. Углубленное исследование также изучает влияние COVID-19 на обонятельную луковицу больных{26}.
Через несколько лет мы, вероятно, будем точно знать, какой механизм использует этот вирус для отключения обоняния у пострадавших. Какова бы ни была причина, ясно одно: привычка к сосуществованию людей и животных стала причиной передачи вредных микроорганизмов от одного вида к другому. Мы должны учитывать это в наших отношениях с животными. Это касается и диких животных, и домашних. Чем плотнее они обитают, тем легче распространяются болезни. Совсем другой вопрос – частое применение антибиотиков, с помощью которых в промышленном животноводстве достигается высокая плотность поголовья. Но исследование этой проблемы – тема для другой книги.