Глава 1. Введение

1.1. Почему эту книгу нужно прочесть

В фокусе данной книги находятся практические вопросы управления высокотехнологичными проектами и программами, недооцененные или отсутствующие, к сожалению, в отечественной литературе.

Есть много проектов, которые включают системы и ведут себя в соответствии с законами систем, что связано со спецификой инженерных программ. Методы традиционного управления проектом направляют общее планирование, организацию, контроль, управление ресурсами, однако не детализируют основное содержание управления программами разработки сложных технических систем. Управление проектами в рамках системного подхода ликвидирует указанный пробел, предоставляет руководство и инструменты для управления техническими аспектами программной деятельности, мониторинга и контроля прогресса проекта, адаптируя процессы, специфичные для инженерной программы, с целью оптимального удовлетворения потребностей заказчика.

Процессы создания новых образцов высокотехнологичной продукции в XXI веке стремительно развиваются в связи с требованиями рынка. При этом в разработках новой продукции в мире используются эффективная методология системной инженерии и техника командной работы. Данной теме посвящено значительное количество монографий, часть из которых приведена в перечне литературы в конце книги [1…10]. Обусловлено это тем, что на сегодня системно-инженерный менеджмент является самой важной практической дисциплиной реализации сложных проектов и программ с подтвержденным положительным эффектом, полезным мощным профессиональным навыком инженеров и менеджеров. Системная инженерия (СИ) оформилась на рубеже ХХ… ХХI веков на основе опыта и достижений технических и управленческих наук как организованный набор принципов, правил и процедур создания высокотехнологичных продуктов. Методология была формализована, реализована в стандартах (включая ряд российских ГОСТов) и инструкциях. В международном сообществе системных инженеров INCOSE вышло 5-е издание справочника по СИ [10]. Подробную информацию также можно найти в 3-ем издании курса системной инженерии NASA и двух томов разъяснений к нему [7, 8].

Отечественный опыт обучения системному подходу показал, что понимание методологии системно-инженерного управления приходит уже после выполнения двух… трех проектов.

Данный краткий курс предназначен для менеджеров различных отраслей, включая авиацию, космос, автомобилестроение, железнодорожный транспорт, «Ростех», «Росатом», «Газпром», «Роснефть», сферу информационных технологий, городские инфраструктуры и др. В материале книги широко использован накопленный многолетний практический опыт автора, руководителя пяти инженерных центров, который полезно учитывать при освоении и применении системной инженерии (см. биографию в конце книги).

Ранее автором издано учебное пособие «Базовый курс системной инженерии» [2] на основе опыта работы и курса лекций, прочитанных в 2013…2016 гг. на междисциплинарной кафедре Высшей школы системной инженерии МФТИ. Затем опубликована книга по практической реализации высокотехнологичных программ [4].

Книга построена в следующем порядке.

В первой главе дано краткое введение к предмету.

Вторая глава включает базовые сведения о методологии системной инженерии, необходимые для понимания последующего текста.

В третьей главе изложено основное ядро книги, системный подход к управлению высокотехнологичными проектами в разных отраслях бизнеса. Перечислены специфические параметры управления и даны пояснения по их применению.

В четвертой главе даны сведения по управлению жизненным циклом системы и компьютеризации этого важнейшего компонента управления.

Пятая глава содержит вопросы создания, обучения и мотивации команды проекта, развития карьеры сотрудников.

В шестой главе приведены базовые сведения для менеджера об использовании инструментов цифровизации работ в экономической модели управления высокотехнологичными проектами.

В седьмой, заключительной, главе обобщены выводы по теме и показаны направления деятельности для практического применения изложенного подхода.

1.2. Современная подготовка специалистов

Основной задачей обучающих и обучаемых в области высоких технологий сегодня является исполнение противоречивых требований к подготовке персонала.

• Необходимо заметно увеличить объем материала для усвоения (т.е. тенденция «вечного студента»).

• Одновременно необходимо сократить сроки обучения специалистов для улучшения экономической отдачи.

На этом фоне непрерывно появляются новые разделы знаний, продвижение «передовых теоретических» разработок имеющихся компетенций и колоссальный информационный шум вокруг «лучших новых знаний» в связи с развитием коммерциализации обучения.

На самом деле, если непредвзято аккумулировать накопленный позитивный опыт (российский и зарубежный), задача управления сложными проектами и программами решается с помощью системного подхода вполне реалистичными методами в разумные сроки. Современный набор инструментов инженера опирается на четыре базовые направления, а именно:

1) предметная инженерия (специализацию дает ВУЗ по электронике, робототехнике, автомобилям, вертолетам, нефтехимии и т.д.);

2) система менеджмента качества (как правило, изучается в организации, обеспечивает рыночный спрос и минимизацию затрат);

3) управление проектом (нерегулярный процесс получения общих сведений из многочисленных пособий типа PMBoK и курсов для управленцев);

4) системная инженерия (на сегодня минимально доступна в РФ, «клей» для объединения вышеперечисленного, универсальное дополнение к пропущенным важным элементам инженерной науки в части технической, управленческой и организационной, системный подход, предмет настоящей книги).

Кроме того, инженерные и управленческие службы уже десятки лет работают в едином информационном пространстве (цифровизация процессов, большие объемы данных). Использование данного инструмента в той или иной степени является для менеджеров обязательным наравне со знанием технического английского языка (чтобы с пользой применять возможности интернета). В настоящее время цифровизация бизнеса стала в РФ государственной программой.

Сегодня владение перечисленным набором базовых знаний является необходимым и достаточным для исполнения любых задач промышленности, в том числе авиационной, космической, атомной, нефтеперерабатывающей и др.

На основе многолетнего опыта РФ и зарубежных лидеров рынка высоких технологий автор настаивает, что в том или ином объеме упомянутый набор знаний должен быть на вооружении как инженеров, так и менеджеров. Чтобы профессионально заниматься высокими технологиями, нужно понимать предмет работ и с инженерной, и с экономико-управленческой стороны.

Системная инженерия является достаточно простым, понятным и высокоэффективным средством обучения проектных команд и отдельных специалистов, неотъемлемой частью стандартизации подходов к высокотехнологичным масштабным проектам.

Системный подход к управлению дополняет сведения стандартов проектного управления типа PMBoK в специфичной части применения научных, инженерных и управленческих усилий для:

a) выявления потребностей клиента вместе с возможностями маркетинга, бизнеса и технологий, которые ведут к созданию системы, удовлетворяющей эти потребности;

б) преобразования эксплуатационных потребностей в описание параметров производительности системы и конфигурации системы путем использования итеративного процесса определения, синтеза, анализа, проектирования, тестирования и оценки;

в) интеграции соответствующих технических параметров обеспечения совместимости всех физических, функциональных и программных интерфейсов, чтобы оптимизировать общий дизайн системы;

г) интеграции надежности, ремонтопригодности, безопасности, живучести, человеческих и других факторов в усилия на достижение затрат, сроков графика и технических целей разработки системы;

д) работы с заинтересованными лицами программы, чтобы убедиться, что созданная система сертифицирована для удовлетворения необходимых потребностей и решения проблем клиентов.

Некоторые итоги применения системного подхода в РФ.

• Обучение системно-инженерному подходу приносит заметный практический эффект для 80…90% инженеров и менеджеров (выпускников отечественных ВУЗов) различных категорий.

• Освоение происходит в оперативном режиме, через один… два года сотрудники выходят на удовлетворительные темпы и качество работ, скачкообразно растут понимание системного подхода к задачам и эффективность.

• Заметно снижаются потери рабочего времени в проекте.

• Возрастает качество работ и получаемых результатов.

• Рост производительности труда после периода обучения составляет от 20 до 100% и далее обеспечивается стабильный прирост не менее 15…25% в год (в среднем на команду).

Несколько слов об истории системной инженерии. В ВУЗах СССР широко преподавали данную дисциплину под названием «Системотехника». К сожалению, в РФ обучение системной инженерии резко сократилось. С 90-х годов прошлого века крупнейшие правительственные учреждения и ведущие мировые компании различных стран используют системно-инженерный подход для реализации своих высокотехнологических проектов. Применение стандартов системной инженерии обязательно для контрактов военных ведомств недружественных стран и государственных заказчиков сложных систем (строительство атомных станций, мостов, космических объектов, транспортной инфраструктуры), таких как Министерство обороны США (DoD), Национальная аэрокосмическая ассоциация (NASA), компаний Boeing, Airbus, гигантов в сфере телекоммуникаций и информационных технологий (Siemens, IBM) и др.

Суть системного подхода для достижения целей в рамках управления ЖЦ состоит в комплексном решении задач управления и вопросов проектирования. Данная методология дополняет («склеивает», как сказано выше) набор стандартных дисциплин высокотехнологичного проекта. Системная инженерия охватывает все стадии мультидисциплинарной разработки продукта от замысла до внедрения, руководствуясь интересами конечного пользователя. Процесс разработки изделий в СИ включает постановку проблемы, управление требованиями, нахождение технических решений, моделирование системы, оптимизацию, разработку архитектуры, управление интерфейсами, управление конфигурацией, интеграцию системы, верификацию и валидацию, эксплуатацию, утилизацию продуктов.

Системная инженерия обеспечивает практически значимые эффекты за счет использования общего междисциплинарного языка для участников проекта, целенаправленного снижения проектных рисков, исправления ошибок на ранних стадиях, когда сделать это еще относительно дешево, на основе эффективных процессов жизненного цикла, повышения производительности команды проекта.

В современных проектах на системно-инженерные процессы выделяется статья в бюджете (от 5 до 30%, цифра возрастает в зависимости от масштабов проекта), чтобы предотвратить возможные убытки, исключить последующую переделку готового изделия [7,10]. То есть результатом системной инженерии является не увеличение прибыли, а снижение вероятных убытков проекта за счет выполнения программы в заданные сроки, в рамках бюджета, с высоким качеством согласно требованиям контракта.

Определяющая роль СИ на стартовом этапе любого высокотехнологичного проекта крайне важна, так как после формирования облика продукта реализация проекта движется по заданному пути, затраты спланированы, изменения маловероятны.

Основы системной инженерии изложены в официальных международных стандартах, задающих правила работы, применимые в этой сфере. Они выделены в семейство стандартов системной и программной инженерии. В главе 2.3 этой книги приведен перечень ряда российских стандартов ГОСТ по системной инженерии, то есть отечественная нормативная база также в наличии.

Активный интерес в мире к применению системной инженерии подтверждается тем, что данный предмет входит в учебные планы всех ведущих зарубежных университетов и ведущих российских ВУЗов.

1.3. Пространство возможностей РФ

Для российских управленцев кратко представим сведения о текущем статусе экономической среды, как базы для деятельности. Экономика РФ по паритету покупательной способности (ППС) в 2023 г. вышла на четвертое место в мире (оценка World Economics). Валовой внутренний продукт России по ППС составил $6,4 трлн. Страна закрепилась в мировой пятерке лидеров второй год подряд. Выше в списке расположились Индия ($14 трлн.), США ($27 трлн.) и Китай ($33 трлн.). В 1992 г. страна находилась в этом списке только на 35-м месте. Для понимания экономических возможностей Российской Федерации далее указаны ее места в мировом рейтинге добычи природных ресурсов, производства товаров и услуг, в основном на 2017 г.

1-е место по запасам (19,8% мировых запасов) и экспорту природного газа, 2-е по добыче (2021);

1-е по запасам лесных ресурсов (23% мировых запасов);

1-е по запасам поваренной соли и 2-е по запасам калийной соли;

1-е по запасам питьевой воды;

1-е по экспорту пшеницы и 3-е по ее урожаю (2021);

1-е по запасам олова, цинка, титана, ниобия, магния;

1-е по запасам никеля (2021);

1-е по запасам железных руд (около 28% мировых запасов);

1-е по экспорту стали и 3-е по экспорту металлопроката;

1-е по экспорту азотных удобрений, 2-е и 3-е места по экспорту фосфорных и калийных удобрений;

1-е по запасам алмазов и 2-е по их добыче;

1-е по запасам серебра;

1-е по экспорту платины и 2-е по ее запасам;

1-е по протяженности электрифицированных железных дорог;

1-е по протяженности линий экологичного транспорта (троллейбусы, электробусы, трамваи и метро);

1-е по количеству проданных на экспорт самолетов-истребителей;

1-е по поставкам на экспорт средств ПВО средней и малой дальности;

1-е по экспортным контрактам на сооружение атомных электростанций;

2-е место по производству первичного алюминия (2020);

2-е по запасам редкоземельных металлов;

2-е по количеству парка вертолетов;

2-е по величине подводного флота;

3-е место по запасам каменного угля (23% мировых запасов) и 3-е по его экспорту;

3-е по числу ежегодных запусков космических аппаратов (2022);

3-е по добыче нефти (2021) и 2-е по ее экспорту;

3-е по производству никеля, вольфрама и авиационного титана (2022);

3-е по запасам золота, 2-е по его добыче (2021);

3-е по запасам меди и свинца, вольфрама и молибдена, лития и рения;

3-е по производству цемента (2021);

3-е по числу абонентов сотовой связи;

3-е по производству продуктов нефтехимии;

3-е по производству сахара-песка (2020);

3-е по поставкам вооружения всех видов;

4-е место по количеству ежегодно печатаемых книг и 4-е по числу переводов с них (доказательство заметного мирового интереса к культуре и жизни в РФ!);

4-е по производству электроэнергии (2021);

4-по запасам урана и 7-е по его добыче (2020);

5-е место по добыче угля, синтетического каучука, калийных удобрений, производству стали (2021);

5-е по производству рафинированной меди;

5-е по производству мяса свинины и мяса птицы (2021);

6-е место по производству натурального молока и растительных масел (2021);


9-е место по производству зерна, черных и цветных металлов, целлюлозы, пиломатериалов.

За 2022 и 2023 гг. в РФ введено в строй более 590 новых значимых производственных объектов (с инвестициями от 150 млн. руб.).

Располагаемые запасы природных ресурсов, уровень развития в промышленной, энергетической, добывающей и сельскохозяйственной сферах представляют уникальную базу для дальнейшего экономического развития нашего государства.


В 2024 г. Правительство РФ выделило 12 национальных проектов, реализация которых нацелена на оперативное достижение технологического суверенитета в критически важных отраслях:

1) станкостроение и робототехника,

2) новые материалы и химия,

3) обеспечение продовольственной безопасности

4) новые медицинские технологии.

5) развитие беспилотной авиации,

6) развитие космической отрасли,

7) атом и новые источники энергии,

8) производство судов и судового оборудования,

9) гражданская авиация,

10) микроэлектроника,

11) экономика данных,

12) наука и университеты.

Все они нацелены на организацию производства новой продукции на основе собственных линий разработки. Эти проекты также затрагивают кадровую политику, средства производства и интеллектуальные права.

В мире будет развиваться аддитивное фабричное производство, стимулируя расширение индивидуализации и производства по требованию. Это повлияет на развитие новых бизнес-моделей и отношений между клиентом и производителем. Расширяется использование алюминия, титана, редкоземельных металлов, полимерных, керамокомпозитных, высокотемпературных материалов и сплавов для снижения массы, повышения рабочих температур, удешевления узлов и продуктов в целом. Идет активное внедрение новых материалов в части направленного проектирования и изменения структуры и свойств материала продукта, включая обширный класс метаматериалов. Ведутся работы по новым источникам энергии, в том числе внедрение сверхпроводимых установок, водородных и топливных элементов, литий-ионных и других комбинаций аккумуляторов, развитие методов проектирования, направленных на сокращение энергозатрат. Применение роботов на всех этапах жизненного цикла продукции с расширяющимся спектром приложений будет влиять на повседневную жизнь, а также на производственную практику.

Обладание полным циклом создания и производства таких высоких технологий, как авиация, космос, атомная энергия, нефтехимия, электроника является прерогативой небольшой группы стран, технологических лидеров, куда входит и Российская Федерация. Российским управленцам необходимо постоянно учиться организационно и эффективно работать. РФ имеет огромный технологический задел, созданный в минувшие годы, обширную географию природных условий, уникальный опыт мирного сосуществования людей сотен национальностей. В настоящий момент ряд отечественных отраслей испытывает высокую потребность в конкурентоспособных продуктах, созданных в соответствии с международными стандартами. Санкции подталкивают предприятия трудиться еще интенсивнее. При этом слабо используется один важный ресурс развития страны.

Производительность труда в высокотехнологичных отраслях зависит от ряда факторов, в том числе от организации работ по созданию новых продуктов и систем, наращивания импортозамещения, исторического наследия в части послепродажного обслуживания поставленной техники, инфраструктуры и роботизации производства, уровня подготовки персонала. Этот показатель является ключевым резервом РФ в продвижении по пути развития новых технологий, так как ресурсы количественного роста персонала ограничены.

Сегодня мы заметно отстаем, например, от лидеров мировой авиационной промышленности в 5…8 раз по выработке на сотрудника. Статистика для авиационной промышленности мира по данным журнала «Эксперт» (2017 г.) показана на рис. 1. Аналогичная картина по производительности труда в ряде других высокотехнологичных отраслей.


Рис. 1. Производительность труда в мировом авиапроме


О том, как ликвидировать имеющиеся пробелы, чтобы результативно использовать на практике управленческие технологии системной инженерии для повышения эффективности проектов и программ, рассказано далее в этой книге.

Загрузка...