В настоящее время дистанционные наблюдения Земли в глобальном масштабе осуществляются с помощью приборов NASA Moderate Resolution Imaging Spectroradiometer (MODIS) [1,2] и Visible Infrared Imaging Spectroradiometer Suite (VIIRS) [3] с полярных орбитальных спутниковых платформ. Восходящие пути лучей от поверхности к спутникам подвержены влиянию атмосферных эффектов преломления. Чтобы выяснить, следует ли учитывать эффект преломления для точной геолокации данных изображений MODIS и VIIRS, Ноердлингер [4] разработал аналитический метод, определяющий угол атмосферной рефракции и кажущееся смещение точки пересечения Земли из-за атмосферной рефракции. В методе Ноердлингера предполагается однослойная и сферически симметричная модельная атмосфера. Преобразование угла изгиба в горизонтальное смещение пикселя производится приблизительно путем принятия высоты шкалы для тропосферы. Результаты моделирования Ноердлингера показывают, что при зенитном угле около 45 градусов и средней высоте тропосферного масштаба 10,5 км пиксель на спутниковом изображении на уровне моря будет смещен примерно на 5 м, что намного меньше размеров пикселей около одного км для некоторых полос MODIS и 750 м для некоторых полос VIIRS. В результате в настоящих геолокационных продуктах MODIS и VIIRS эффектами атмосферной рефракции пренебрегают.
В последние годы спутниковые снимки высокого пространственного разрешения с пространственным разрешением ~1 м и более становятся все более доступными для общественного пользования. Точная геолокация изображений с высоким пространственным разрешением требует четкого учета атмосферных эффектов. Обзор изгиба и задержки распространения атмосферных преломляющих электромагнитных волн был дан Мангумом и Уоллесом [5]. Они предположили, что для точного расчета преломляющего изгиба требуется двухслойная модель атмосферы (слой стратосферы поверх слоя тропосферы). Ян и др. [6] сообщили о методе коррекции ошибки геолокации, возникающей в результате атмосферной рефракции, для оптических спутниковых изображений высокого разрешения. Они использовали упрощенную двухслойную модель атмосферы, включающую тропосферу плюс стратосферу, для расчета преломляющих изгибающих эффектов. Их расчетное полное смещение пикселей поверхности является результатом сочетания тропосферного изгиба и стратосферного изгиба. Упомянутая выше работа по моделированию атмосферных эффектов преломления и изгиба исходит от исследовательских сообществ астрономии и спутниковой геодезии.
С начала 1970-х годов в сообществе атмосферных наук разрабатывается ряд алгоритмов трассировки лучей, предполагающих многослойную сферически симметричную модель атмосферы (~30 слоев) с преломлением [7,8,9]. Алгоритмы используются в основном для точного расчета длины пути солнечных лучей в каждом слое атмосферы для света, достигающего земли, высотных аэростатов [10,11] или спутниковых приборов [12] в условиях низкого угла наклона солнца. Рассчитанные длины траекторий в многослойной модельной атмосфере затем используются для преобразования полученных количеств следовых атмосферных газов в длинных наклонных траекториях из измеренных спектров инфракрасного пропускания в эквивалентные количества газов в вертикальных траекториях от земли до космоса [12].
Разработка «Компьютерной программы Airmass для расчета атмосферного пропускания/излучения: FSCATM» в 1983 году [9] ознаменовала зрелость разработки алгоритма трассировки лучей в сообществе атмосферных наук. Алгоритм трассировки лучей FSCATM с незначительными улучшениями был включен в ряд алгоритмов моделирования атмосферы, таких как LOWTRAN6 [13], LOWTRAN7 [14] и MODTRAN [15]. Он позволяет задать несколько вариантов геометрии наклонной траектории, включая траекторию между высотой спутника (H1) и высотой земной поверхности (H2). На основе нашего тщательного изучения общедоступного исходного кода компьютера LOWTRAN7 я обнаружил, что углы преломления для траекторий лучей между последовательными границами атмосферного слоя точно рассчитаны, но эти углы не записаны в промежуточных печатных файлах с достаточным количеством полезных цифр. Я по-новому использую код LOWTRAN7 для расчета углов преломления для изучения сдвига поверхностных пикселей в результате атмосферной рефракции для спутниковых наблюдений. В этом письме я сообщаю о результатах моделирования смещений поверхностных пикселей для различных высот спутника и зенитных углов обзора вниз, нескольких профилей атмосферной температуры и давления, нескольких высот поверхности и зависимостей длин волн от синего (450 нм) до ближнего ИК-диапазона (865 нм).