Глава 3. ИЗМЕРЕНИЕ ДОХОДНОСТИ

В этой главе читателю будут представлены сведения:

• о способах подсчета доходности любой инвестиции;

• о подсчете текущей доходности, доходности к погашению, доходности к пут-опциону, доходности к колл-опциону, а также доходности денежного потока;

• о вычислении доходности портфеля в целом;

• о вычислении дисконтного спреда для ценной бумаги с плавающей ставкой;

• о трех возможных источниках прибыли от облигации;

• о сущности риска реинвестиций;

• о недостатках традиционных способов измерения доходности;

• о вычислении общей прибыли от облигации;

• о преимуществах использования меры общей прибыли вместо традиционных мер доходности;

• об анализе временных горизонтов как способе установления потенциальной прибыли от облигации.

• о способах измерения изменений доходности.


В главе 2 мы выяснили принципы ценообразования облигаций и описали взаимоотношения между ценой и доходностью. В настоящей главе речь пойдет о различных мерах доходности и об их значимости в процессе выбора наиболее выгодной с инвестиционной точки зрения облигации, а также о способах измерения изменений доходности. Обсуждение этой темы мы начнем с описания способов подсчета доходности любой данной инвестиции.

ВЫЧИСЛЕНИЕ ДОХОДНОСТИ, ИЛИ ВНУТРЕННЕЙ СТАВКИ ДОХОДНОСТИ, ЛЮБОЙ ИНВЕСТИЦИИ

Доходность (yield) любой инвестиции – это процентная ставка, которая позволит уравнять приведенную стоимость денежных потоков данной инвестиции с ценой (стоимостью) инвестиции. Таким образом, доходность инвестиции – это процентная ставка у, удовлетворяющая следующему уравнению:

В кратком виде эта формула может быть записана как:

где:

CFt – денежный поток в год t;

P – цена инвестиции;

N – количество лет.


Доходность, полученная из данного равенства, называется также внутренней ставкой доходности (internal rate of return).

Определение доходности y в данном случае проходит методом проб и ошибок, иными словами, путем подбора. Цель процесса – нахождение значения процентной ставки, при котором приведенная стоимость денежных потоков будет равна цене. Приведем пример такой процедуры.

Предположим, что финансовый инструмент, продающийся по $903,10, обещает в будущем следующие годовые выплаты:

Вычисление доходности сводится к поиску такой процентной ставки, при которой приведенная стоимость денежных потоков окажется равной $903,10 (т. е. цене данного финансового инструмента). Подстановка процентной ставки 10 % дает следующий результат:

Приведенная стоимость, вычисленная исходя из процентной ставки, равной 10 %, превышает цену ($903,10). Таким образом, для уменьшения приведенной стоимости процентная ставка должна быть увеличена. Предположим, что она составляет 12 %. В этом случае, как видно из таблицы, приведенная стоимость окажется равной $875,71:

Мы видим, что при процентной ставке в 12 % приведенная стоимость денежного потока меньше цены финансового инструмента. Для увеличения значения приведенной стоимости следует выбрать более низкую процентную ставку. Возьмем процентную ставку, равную 11 %, и получим:

При процентной ставке 11 % приведенная стоимость денежного потока оказывается равной цене финансового инструмента. Таким образом, доходность в данном случае составляет 11 %.

Представленная выше формула вычисления доходности основана на величине денежных потоков, поступающих раз в год, однако она может быть уточнена в соответствии с количеством совершаемых ежегодно периодических выплат. Обобщенная формула выглядит следующим образом:

где:

CFt – денежный поток в период t;

n – число периодов.


Напомним, что доходность, вычисляемая с помощью этой формулы, – это доходность в расчете на период. При поступлении денежных потоков раз в полгода мы получим полугодовую доходность. При поступлении денежных потоков раз в месяц речь пойдет о месячной доходности. Для вычисления обычной годовой процентной ставки доходность для периода умножается на число периодов в году.

Особый случай: инвестиция с единственным денежным потоком

Долгой и трудоемкой процедуры подбора при определении доходности удается избежать в единственном случае, а именно: если от инвестиции в будущем предполагается всего один денежный поток. Если инвестиция характеризуется одним денежным потоком в период n (CFn), формула (3.2) сводится к следующему равенству:

Доходность у, таким образом, оказывается равной:

Продемонстрируем действие формулы на конкретном примере. Допустим, что финансовый инструмент, цена которого в настоящий момент составляет $62 321,30, должен через шесть лет принести $100 000. Доходность данной инвестиции, согласно формуле (3.3), будет равна 8,20 %, поскольку:

Обратите внимание на то, что отношение денежного потока в период n к цене финансового инструмента (т. е. CFn/P) представляет собой будущую стоимость инвестиции в $1.

Вычисление годовых доходностей

В главе 2 мы получали значение годовых процентных ставок, умножая доходность для периода на число периодов в году. Напомним, что данный результат носит название обычной годовой процентной ставки. Так, например, полугодовая доходность переводится в годовую умножением на 2. И наоборот: из годовой процентной ставки, поделив ее на 2, можно получить ставку для шести месяцев.

Такая упрощенная процедура вычисления годовой процентной ставки на основании данных о процентной ставке для периода (недели, месяца, квартала, полугода и т. д.) дает достаточно приблизительный результат. Для получения точного значения годовой доходности из имеющейся доходности для периода должна быть использована следующая формула:

точная годовая доходность = (1 + процентная ставка для периода)m – 1,

где m – количество выплат в год. Предположим, например, что процентная ставка для периода составляет 4 %, а выплаты совершаются дважды в год. Тогда:

точная годовая доходность = 1,042 – 1 = 1,0816 – 1 = 0,0816, или 8,16 %.

Если процент выплачивается раз в квартал, а процентная ставка для периода равна 2 % (8 %/4), точная годовая доходность составит 8,24 %, поскольку:

точная годовая доходность = 1,024 – 1 = 1,0824 – 1 = 0,0824, или 8,24 %.

Процентная ставка для периода, соответствующая данной годовой ставке, может быть получена из преобразования приведенной выше формулы. Преобразуем формулу вычисления точной годовой доходности и получим:

процентная ставка для периода = (1 + точная годовая доходность)1/m – 1.

Так, при точной годовой доходности, равной 12 %, квартальная процентная ставка определяется следующим образом:

процентная ставка для периода = 1,121/4 – 1 = 1,0287 – 1 = 0,0287, или 2,87 %.

ТРАДИЦИОННЫЕ МЕРЫ ДОХОДНОСТИ

Существует несколько мер доходности, традиционно используемых дилерами и портфельными менеджерами. В этом разделе мы опишем суть каждой из величин и продемонстрируем способ вычисления ее значения. Следующий раздел посвящен критическому анализу разных мер доходности и значимости их применения в процессе выбора наиболее выгодной для инвестирования облигации.

Текущая доходность

Текущая доходность – это отношение годовой купонной ставки к рыночной цене. Формула вычисления текущей доходности записывается следующим образом:

Так, текущая доходность 15-летней облигации с 7 %-ным купоном, номиналом $1000 и ценой $769,40 равна 9,10 %, поскольку:

При вычислении текущей доходности в расчет принимаются только купонные выплаты. Никакие другие источники прибыли, поступающей от облигации, не рассматриваются. Не учитывается, например, прирост капитала, осуществляемый инвестором, приобретающим облигацию с дисконтом и держащим ее до погашения; в то же время не описывается и убыток, который терпит инвестор в случае, если он додержал до погашения облигацию, купленную с премией. Временная стоимость денег также не принимается в расчет.

Доходность к погашению

В начале этой главы мы показали, как вычисляется доходность или внутренняя ставка доходности любой инвестиции. Доходность определяется как процентная ставка, при которой приведенная стоимость денежных потоков равна цене (начальной инвестированной сумме). Доходность к погашению вычисляется так же, как и рассмотренная выше доходность (внутренняя ставка доходности); учитываются те денежные потоки, которые получает инвестор, держащий облигацию до погашения. Для того чтобы вычислить доходность к погашению облигации с купоном, выплачиваемым раз в полгода, прежде всего определяется у – значение процентной ставки для периода, удовлетворяющей следующему требованию:

где:

P – цена облигации;

C – полугодовая купонная ставка (в долларах);

M – номинальная стоимость (в долларах);

n – число периодов (число лет × 2).


Для облигации с купоном, выплачиваемым раз в полгода, доходность к погашению должна быть получена удвоением процентной ставки для периода или дисконтной ставки (у). Напомним, однако, тезис, обсуждавшийся нами в разделе, посвященном вычислению годовых доходностей: умножение процентной ставки для периода на число периодов не дает точного представления о годовой доходности. Впрочем, на рынке принято считать доходностью к погашению именно такую, умноженную на два, процентную ставку у, удовлетворяющую равенству (3.4). Доходность к погашению, полученную с учетом этого рыночного соглашения, называют доходностью, эквивалентной облигационной (bond-equivalent yield).

Вычисление доходности к погашению проводится методом подбора. Продемонстрируем процедуру поиска значения на примере облигации, для которой выше была подсчитана текущая доходность. Денежный поток данной облигации представляет собой: 1) 30 купонных выплат по $35, производимых каждые шесть месяцев, и 2) $1000 – сумма, которая будет выплачена через 30 полугодовых периодов.

Для получения необходимого результата в формулу (3.4) подставляются разные значения у до тех пор, пока не будет найдено число, при котором приведенная стоимость денежных потоков окажется равной рыночной цене облигации, т. е. $769,42. Приведенные стоимости денежных потоков облигации при разных процентных ставках для периодов показаны в таблице:

При полугодовой процентной ставке, равной 5 %, приведенная стоимость денежных потоков составляет $769,42. Таким образом, у равно 5 % и доходность к погашению (доходность, эквивалентная облигационной) – 10 %.

Доходность к погашению для облигации с нулевым купоном подсчитать проще, поскольку в вычислениях может быть использована формула (3.3). Денежный поток за период n равен номинальной стоимости М, а значит, формула (3.3) будет выглядеть следующим образом[12]:

Так, для 10-летней облигации с нулевым купоном и номинальной стоимостью $1000, торгующейся по цене $439,18, у равно 4,2 %, поскольку:

Обратите внимание на то, что число периодов равно 20. Речь идет о полугодовых периодах, количество которых получается умножением числа лет на 2. Полугодовые периоды были выбраны для того, чтобы полученная доходность могла сравниваться с доходностью купонных облигаций. Получить годовую доходность, эквивалентную облигационной, можно, если удвоить у. В нашем случае результат составит 8,4 %.

Доходность к погашению – это мера, которая позволяет оценить не только текущий купонный доход, но и размер прибыли или убытка, ожидающих капитал инвестора, остающегося владельцем облигации до погашения. Кроме того, доходность к погашению принимает в расчет временные параметры денежных потоков. Отношения между купонной ставкой, текущей доходностью и доходностью к погашению приведены в таблице:

Доходность к колл-опциону

В главе 1 мы писали о том, что эмитент может иметь возможность отозвать (выкупить) облигацию, не дожидаясь установленной даты погашения. Сроки отзыва и его цена устанавливаются в момент выпуска облигации. Цена исполнения колл-опциона носит название цены отзыва или колл-цены (call price). Для одних облигационных выпусков цена отзыва остается постоянной вне зависимости от даты, в которую отзыв будет совершен. Для других облигаций со встроенным колл-опционом цена отзыва меняется в соответствии с моментом отзыва, т. е. существует регламент отзыва, устанавливающий цену отзыва для каждой конкретной даты.

Для облигаций со встроенным колл-опционом наряду с доходностью к погашению традиционно вычисляется значение доходности к колл-опциону. Вычисления строятся на основании предположения о том, что эмитент в одну из установленных дат выкупит облигацию по установленной регламентом цене. Как правило, инвесторы подсчитывают значения доходности к первому отзыву или доходности к следующему отзыву, доходности к первому отзыву по номиналу и доходности к рефинансированию. Доходность к первому отзыву – мера, актуальная для облигационного выпуска, который не может быть выкуплен в настоящий момент, тогда как доходность к следующему отзыву вычисляется для облигации, колл-опцион на которую в настоящий момент может быть приведен в действие. Доходность к рефинансированию подсчитывается исходя из предположения о том, что, как только облигация станет рефинансируемой, она немедленно будет отозвана. (В главе 7 мы покажем, что облигационный выпуск может содержать встроенный колл-опцион, однако в определенный период времени его нельзя отозвать за счет привлечения более дешевого финансирования, чем процентная ставка самой облигации. В этот период времени выпуск называется нерефинансируемым.)

Процедура вычисления доходности к любой из дат отзыва проходит так же, как подсчет любой другой доходности, а именно: определяется процентная ставка, при которой приведенная стоимость предполагаемых денежных потоков будет равна цене облигации. В случае доходности к первому отзыву предполагаемые денежные потоки представляют собой купонные выплаты, произведенные до первой даты отзыва, а также установленную в регламенте цену отзыва. При вычислении доходности к первому отзыву по номиналу денежными потоками считаются купонные выплаты, совершенные до первой даты, в которую эмитент может выкупить облигацию по номиналу, а также последний денежный поток в размере номинальной стоимости.

Формула вычисления доходности к колл-опциону выглядит следующим образом:

где:

M* – цена отзыва (в долларах);

n* – число периодов до предполагаемой даты отзыва (число лет × 2).


Для облигации с купоном, выплачиваемым раз в полгода, удвоение процентной ставки для периода (у) дает доходность к колл-опциону, эквивалентную облигационной.

Рассмотрим 18-летнюю облигацию с купоном, равным 11 %, номинальной стоимостью $1000 и ценой $1169. Предположим, что первый отзыв может быть произведен через 8 лет с настоящего момента, причем цена отзыва – $1055. Денежные потоки от такой облигации, отозванной через 13 лет, представляют собой: 1) 26 купонных выплат по $55 и 2) $1055 через 16 шестимесячных периодов с настоящего времени.

При подстановке искомого значения у в формулу (3.6) должно выполняться равенство правой и левой частей, т. е. приведенная стоимость денежных потоков до первой даты отзыва должна быть равна цене облигации ($1169). Процедура определения значения доходности к первому отзыву аналогична вычислению доходности к погашению. Приведенные стоимости при разных процентных ставках для периодов даются в таблице:

Процентная ставка для периода, составляющая 4,2675 %, соответствует приведенной стоимости денежных потоков, равной цене облигации, а это значит, что у, или доходность к первому отзыву, – это 4,2675 %. Таким образом, доходность к первому отзыву, эквивалентная облигационной, равна 8,535 %.

Предположим, что первая дата отзыва по номиналу для этой облигации – это момент, наступающий через 13 лет с настоящего времени. Тогда доходность к первому отзыву по номиналу – это процентная ставка, при которой приведенная стоимость $55, выплачиваемых каждые полгода в течение следующих 26 периодов, плюс номинальная стоимость $1000, которая будет получена через 26 полугодовых периодов, окажется равной цене, а именно $1169. Предлагаем читателю самостоятельно провести продемонстрированную нами на примерах процедуру подбора и надеемся, что полученный результат совпадет с нашим: полугодовая процентная ставка, при которой приведенная стоимость денежных потоков равна цене, составляет 4,3965 %, а доходность к первому отзыву по номиналу равна, соответственно, 8,793 %.

Доходность к пут-опциону

В главе 1 мы обсуждали облигации со встроенным пут-опционом, суть которого состоит в следующем: держатель облигации имеет право заставить эмитента приобрести выпуск по установленной цене. Для облигации со встроенным пут-опционом, так же как и для облигации с колл-опционом, может существовать регламент продаж. В регламенте обозначается дата вынужденной покупки облигации эмитентом и цена покупки – так называемая пут-цена (put price).

Для облигаций со встроенным пут-опционом рассчитывается доходность к пут-опциону. Доходность к пут-опциону – это процентная ставка, при которой приведенная стоимость денежных потоков, поступающих до предполагаемой даты вынужденной покупки выпуска эмитентом, а также пут-цена на эту дату, обозначенная в регламенте, в сумме равны цене облигации. Формула вычисления этой величины аналогична формуле (3.6): за М* в данном случае принимается пут-цена, а за n* – число периодов до предполагаемой даты продажи выпуска эмитенту. Вычисления проводятся по той же схеме, что и при определении значений доходности к погашению и доходности к колл-опциону.

Рассмотрим, например, ту же 18-летнюю облигацию с 11 %-ным купоном, торгующуюся по $1169. Предположим, что ее можно продать эмитенту по номиналу ($1000) через пять лет. Доходность к пут-опциону – это процентная ставка, при которой $55, регулярно выплачиваемых в течение 10 полугодовых периодов, а также приведенная стоимость пут-цены, составляющей $1000, равны в сумме $1169. Предоставляем читателю самостоятельно убедиться в том, что искомый результат равен 3,471 %. Удвоив это значение, получаем 6,942 % – доходность к пут-опциону.

Доходность к наихудшему

На рынке облигаций принято вычислять доходность к погашению, доходность ко всем возможным датам отзыва (к колл-опционам) и ко всем возможным датам продажи выпуска эмитенту (к пут-опционам). Наименьшее из полученных значений доходностей носит название доходности к наихудшему.

Доходность денежного потока

В следующих главах мы будем обсуждать ценные бумаги с фиксированным доходом, денежные потоки которых включают частичные выплаты номинальной стоимости, осуществляемые до даты погашения. В каждый период денежный поток таких бумаг состоит как из процентных платежей, так и из части номинала. Ценные бумаги такого типа получили название амортизируемых. Примером ценных бумаг этого рода могут служить ценные бумаги, обеспеченные ипотеками, или ценные бумаги, обеспеченные активами. Кроме того, часть номинала, которую заемщик выплачивает в установленную дату, может превышать сумму, определенную регламентом. Разница между выплаченной частью номинала и размером выплаты, установленной регламентом, называется предоплатой. Таким образом, для амортизируемой ценной бумаги денежный поток в каждый период включает: 1) купонные платежи, 2) выплату части номинала, предусмотренную регламентом, и 3) предоплату.

Оценивая доходность амортизируемой ценной бумаги, инвесторы подсчитывают доходность ее денежного потока. Эта величина представляет собой процентную ставку, при которой приведенная стоимость предполагаемых денежных потоков будет равна рыночной цене. Трудность в данном случае состоит прежде всего в выяснении возможного размера предоплаты для каждого периода. Подробное обсуждение этой темы читатель найдет в главе 11.

Доходность (внутренняя ставка доходности) портфеля в целом

Доходность портфеля облигаций – это не просто среднее или взвешенное среднее доходностей к погашению отдельных облигационных выпусков, входящих в портфель. Для ее вычисления следует определить размер поступающих от портфеля денежных потоков, а затем подобрать процентные ставки, при которых приведенная стоимость этих денежных потоков будет равна рыночной цене портфеля[13].

Рассмотрим портфель, в который входят три следующие облигации:

Для упрощения вычислений предположим, что купонные выплаты по всем облигациям совершаются в один и тот же день. Общая рыночная стоимость портфеля составляет $57 259 000. Денежные потоки для каждой из облигаций в портфеле, а также для портфеля в целом суммированы в таблице:

Доходность (внутренняя ставка доходности) такого состоящего из трех облигаций портфеля определяется через нахождение процентной ставки, при которой приведенная стоимость денежных потоков из последней колонки таблицы будет равна $57 259 000 (общая рыночная цена портфеля). Приведенная стоимость денежных потоков будет равна $57 259 000 при процентной ставке 4,77 %. Умножаем 4,77 % на два и получаем 9,54 %, т. е. эквивалентную облигационной доходность портфеля в целом.

Спред доходности для ценных бумаг с плавающей купонной ставкой

Купонная ставка ценной бумаги с плавающей купонной ставкой периодически пересчитывается по формуле перерасчета купона, основанной на значениях референсной ставки и котируемого спреда. Будущее значение референсной ставки заранее неизвестно, а это значит, что величина денежных потоков также не может быть определена. Таким образом, инвестор оказывается не в состоянии подсчитать доходность к погашению облигаций этого типа. Для ценных бумаг с плавающей ставкой участниками рынка традиционно используются меры спреда доходности, а именно: спред на время жизни, или простой спред (spread for life, или simple margin), уточненный простой спред (adjusted simple margin), уточненный общий спред (adjusted total margin) и дисконтный спред (discount margin)[14].

Наиболее популярной величиной является дисконтный спред – именно его достоинства и недостатки мы собираемся обсудить. Данная величина – средний спред относительно референсной ставки, который инвестор может рассчитывать получить в течение жизни ценной бумаги. Дисконтный спред вычисляется следующим образом:

Этап 1. Определяется размер денежных потоков в случае, если референсные ставки останутся постоянными на все время жизни ценной бумаги.

Этап 2. Выбирается спред.

Этап 3. Денежные потоки, размер которых определен на этапе 1, дисконтируются на величину, равную сумме текущего значения референсной ставки и выбранного на этапе 2 спреда.

Этап 4. Приведенная стоимость денежных потоков, полученная на этапе 3, сравнивается с ценой. Если приведенная стоимость равна цене, то дисконтный спред равен спреду, найденному на этапе 2. Если приведенная стоимость отличается от цены, следует вернуться на этап 2 и выбрать другое значение спреда.


Для ценной бумаги, торгующейся по номиналу, дисконтный спред определяется просто – это используемый при пересчете купона котируемый спред.

В качестве примера рассмотрим шестилетнюю ценную бумагу с плавающей купонной ставкой, торгующуюся по 99,3098; купон расчитывается исходя из значения референсной ставки плюс 80 базисных пунктов. Пересчет купона совершается каждые полгода. Предположим, что текущее значение референсной ставки – 10 %. В табл. 3.1 приведены данные, позволяющие вычислить для этой ценной бумаги дисконтный спред. В первой колонке мы видим текущее значение референсной ставки. Вторая колонка представляет денежные потоки, получаемые от ценной бумаги. Денежный поток в первые 11 периодов равен умноженной на 100 сумме половины текущего значения референсной ставки (5 %) и полугодового спреда в 40 базисных пунктов. В двенадцатый полугодовой период денежный поток составляет 5,4 плюс номинальная стоимость 100. Верхний ряд последней (пятой) колонки демонстрирует выбранное значение спреда. В строках под выбранным спредом приводятся значения приведенных стоимостей для каждого денежного потока. Последний ряд – это суммарная приведенная стоимость денежных потоков.

Таблица 3.1. Вычисление дисконтного спреда ценной бумаги с плавающей ставкой

Ценная бумага с плавающей ставкой:

длительность – шесть лет;

купон = референсная ставка + 80 базисных пунктов;

перерасчет каждые полгода.

Анализируя все пять выбранных спредов доходностей, обнаруживаем, что приведенная стоимость равна цене облигации с плавающей ставкой (99,3098) при спреде в 96 базисных пунктов. Таким образом, дисконтный спред для полугодового периода составляет 48 базисных пунктов, для года – 96 базисных пунктов. (Заметим, что в случае, когда облигация торгуется по номиналу, дисконтный спред равен котируемому спреду – 80 базисным пунктам.)

Недостаток дисконтного спреда как меры потенциальной прибыли от инвестиций в ценную бумагу с плавающей ставкой связан с лежащим в основе вычислений предположением о том, что референсная ставка не изменится за время жизни ценной бумаги. Кроме того – и это второй существенный недостаток описываемой величины, – не принимается в расчет существование верхних или нижних границ величины купона, характерных для ряда облигаций с плавающим купоном.

ПОТЕНЦИАЛЬНЫЕ ИСТОЧНИКИ ПРИБЫЛИ ОТ ОБЛИГАЦИИ

Инвестор, приобретающий облигацию, может рассчитывать получить прибыль из одного или нескольких перечисленных ниже источников:

1. Периодические купонные выплаты, осуществляемые эмитентом.

2. Прирост капитала (или убыток – отрицательная прибыль) в момент, когда облигация погашается, выкупается эмитентом или продается.

3. Процентный доход, получаемый от реинвестиций периодически поступающих денежных потоков.


Последний компонент потенциальной прибыли носит название дохода от реинвестиций. Для стандартной облигации, по которой во время, предшествующее дате погашения, осуществляются только купонные выплаты и не предполагается выплат номинала, промежуточные денежные потоки состоят исключительно из купонных выплат. Для таких облигаций доход от реинвестиций – это процент, получаемый от реинвестирования процентных выплат. Описывая третий источник денежной прибыли от этих облигаций, принято говорить о «проценте на процент» (сложные проценты). Для амортизируемых ценных бумаг доход от реинвестиций – это процентная прибыль от реинвестирования как купонных выплат, так и производимых до даты погашения выплат части номинала. В дальнейшем обзоре мы обратимся к описанию источников прибыли для неамортизируемых ценных бумаг (т. е. облигаций, по которым до даты погашения не предусмотрены периодические выплаты частей номинала).

Очевидно, что мера потенциальной доходности облигации должна принимать в расчет все три источника возможной прибыли. Напомним, однако, что текущая доходность учитывает только периодические выплаты купона, при этом не учитывается ни прирост капитала (или убыток), ни процент на процент. Доходность к погашению подсчитывается исходя из размера купонных выплат, а также возможного прироста (потерь) капитала. В расчет принимается также процент на процент. Между тем, как мы покажем в дальнейшем, в основе вычислений доходности к погашению лежит предположение о том, что купонные выплаты могут быть реинвестированы под ту же самую доходность. Доходность к погашению является, таким образом, обещанной доходностью: она станет реальностью, только если: 1) инвестор додержит облигацию до погашения и 2) купонные выплаты будут реинвестированы под данную доходность к погашению. Если либо первое, либо второе условие не соблюдается, доходность облигации в действительности оказывается больше или меньше доходности к погашению.

Доходность к колл-опциону также учитывает все три возможных источника прибыли от облигации со встроенным колл-опционом. В этом случае предполагается, что купонные выплаты могут быть реинвестированы под доходность к колл-опциону. Таким образом, доходность к колл-опциону – мера, страдающая тем же недостатком, что и доходность к погашению. Кроме того, доходность к колл-опциону оказывается реальной величиной только в ситуации, когда эмитент действительно выкупает облигационный выпуск в установленную дату.

При вычислении доходности денежного потока (об этой величине мы подробно поговорим в главе 11), так же как и при подсчете доходности к погашению, учитываются все три источника прибыли. В этом случае процедура поиска значений строится на двух следующих предположениях: во-первых, периодические выплаты номинала должны быть реинвестированы под данную доходность денежного потока; во-вторых, предполагаемые предоплаты на самом деле обязаны осуществиться.

Определение размера прибыли за счет сложных процентов

Рассмотрим неамортизируемые ценные бумаги. Процент на процент может являться заметной частью прибыли, ожидаемой от облигации. В абсолютном выражении потенциальная прибыль от всех купонных выплат и процента на процент подсчитывается по формуле вычисления будущей стоимости аннуитета, приведенной в главе 2. Допустим, что r – полугодовая ставка реинвестиций, тогда сумма процента на процент и всех купонных выплат равна:

Величина (денежная) всех купонных выплат находится умножением полугодовой купонной выплаты на число периодов:

величина всех купонных выплат = nC.

Процент на процент представляет собой разницу между суммой купонных выплат и процента на процент и величиной всех купонных выплат. Результат выглядит следующим образом:

Напомним, что вычисление доходности к погашению строится на предположении о возможности реинвестировать купоны под данную доходность к погашению.

Рассмотрим теперь 15-летнюю облигацию с купоном 7 % (мы анализировали ее, говоря о текущей доходности и доходности к погашению). Если цена облигации при номинале $1000 составляет $769,40, то ее доходность к погашению равна 10 %. Примем за годовую ставку реинвестиций 10 %. Соответственно, полугодовая ставка составит 5 %. Тогда сумма процента на процент и купонных выплат, согласно формуле (3.7), равна:

А процент на процент по формуле (3.8) составит:

процент на процент = $2 325,36–30 × $35 = $1 275,36.

Доходность к погашению и риск реинвестиций

Представим теперь, что инвестор додержал такую облигацию до погашения. Как было указано выше, общая прибыль от данной инвестиции поступает из трех источников:

1. Все купонные выплаты в размере $1050 (купонная выплата по $35 каждые полгода в течение 15 лет).

2. Сложные проценты в размере $1275,36, полученные от осуществляемого каждые шесть месяцев реинвестирования полугодовых купонных выплат под 5 %.

3. Прирост капитала, равный $230,60 ($1000 минус $769,40).


Таким образом, при условии реинвестирования купона под доходность к погашению 10 % потенциальная общая денежная прибыль составит $2555,96.

Заметим, что инвестор, помести он деньги, потраченные на приобретение облигации ($769,40), на сберегательный счет, дающий по 5 % каждые полгода в течение 15 лет, имел бы сбережения будущей стоимостью

$769,40 × 1,0530 = $3325,30.

При начальной стоимости инвестиций $769,40 общая прибыль составит $2555,90.

Итак, человек, инвестирующий $769,40 на 15 лет под 10 % годовых (5 % в полгода), рассчитывает по окончании 15 лет получить вложенный капитал в размере $769,40 плюс $2555,90. Именно эту цифру (без учета ошибок округления) мы получили, анализируя денежную прибыль от облигации, предположив, что ставка реинвестиций будет равна доходности к погашению 10 %. Очевидно, что доходность облигации составит 10 %, только если $1275,36 будут получены от реинвестирования купонных выплат. Это значит, что доходность к погашению 10 % возможна лишь в ситуации, когда почти половина ($1275,36 / $2555,96) общей прибыли от облигации поступает от реинвестирования купонных выплат.

Доходность к погашению, предполагаемая в момент покупки ценной бумаги, сможет стать реальностью, если инвестор додержит облигацию до погашения и если купонные выплаты будут реинвестированы под данную доходность к погашению. Существует риск, связанный с тем, что будущие ставки реинвестирования могут оказаться ниже, чем доходность к погашению в момент покупки облигации. Риск этого рода принято называть риском реинвестиций.

Значимость процента на процент как компонента прибыли и, соответственно, степень риска реинвестиций определяются двумя характеристиками облигации: ее длительностью и купоном. При одинаковых доходностях к погашению и одинаковых купонах общая денежная прибыль облигации, длительность которой выше, в большей степени зависит от величины процента на процент. Иными словами, чем больше длительность, тем выше риск реинвестиций. Очевидно, таким образом, что доходность к погашению – величина, малозначимая для участника рынка, инвестирующего в долгосрочные купонные облигации, поскольку плохо описывает потенциальную прибыль, которую реализует инвестор, додержавший ценную бумагу до погашения. Для долгосрочных облигаций третья составляющая прибыли – процент на процент – может доходить до 80 % от общего размера прибыли.

При одинаковых длительностях и одинаковых доходностях к погашению облигации с более высокой купонной ставкой демонстрируют бо́льшую зависимость общей прибыли от результатов реинвестиций купонных выплат. Таким образом, при равных длительностях и доходностях к погашению облигации, торгующиеся с премией, в большей степени, чем облигации, продаваемые по номиналу, зависят от величины процента на процент. Облигация, торгующаяся с дисконтом, зависит от величины процента на процент меньше, чем облигация, которую приобрели по номиналу. Общая прибыль от облигаций с нулевым купоном никак не связана с величиной процента на процент – это значит, что додержанные до погашения облигации с нулевым купоном характеризуются нулевым риском реинвестиций. Таким образом, доходность облигации с нулевым купоном на момент погашения соответствует обещанной доходности к погашению.

Доходность денежного потока и риск реинвестиций

Для амортизируемых ценных бумаг риск реинвестиций характерен в большей степени, чем для ценных бумаг, не подверженных амортизации. Объяснение простое: владельцу амортизируемой облигации приходится реинвестировать не только периодические купонные платежи, но и периодически выплачиваемые части номинала. Кроме того, подробнее этот феномен мы опишем в главах, посвященных двум основным типам амортизируемых ценных бумаг – ценным бумагам, обеспеченным ипотеками, и ценным бумагам, обеспеченным активами. Денежные потоки от таких облигаций поступают раз в месяц, а не раз в шесть месяцев, как это принято в других случаях. Инвестору, во-первых, приходится в придачу к купонным выплатам реинвестировать периодически выплачиваемые части номинала; во-вторых, процедура реинвестирования повторяется чаще. Очевидно, что в такой ситуации риск реинвестиций растет.

Существует еще одно свойство амортизируемых ценных бумаг, благодаря которому может увеличиваться риск реинвестиций. Как правило, заемщик имеет право ускорить периодические выплаты номинала, т. е. совершать предоплату. Заемщик, скорее всего, совершит предоплату, если процентные ставки упадут. Инвестор, таким образом, рискует оказаться перед необходимостью реинвестировать предоплату на рынке, где процентные ставки низки.

ОБЩАЯ ПРИБЫЛЬ

В предыдущем разделе мы уже отмечали, что доходность к погашению является обещанной доходностью. В момент покупки облигация обещает инвестору некую доходность, возможную в будущем при соблюдении двух условий:

1. Облигация держится до погашения.

2. Все купонные выплаты реинвестируются под данную доходность к погашению.


Мы подробно обсудили второе условие и показали, что размер процента на процент может существенно влиять на общую прибыль от облигации. Таким образом, реинвестирование купонных выплат под ставку более низкую, чем доходность к погашению, сделает реальную доходность облигации ниже, чем доходность к погашению.

По-видимому, инвестору не следует рассчитывать на то, что купонные выплаты будут реинвестированы под доходность к погашению. Ему стоило бы на основании собственных рассуждений сделать заключение о будущих ставках реинвестирования. Общая прибыль (total return) – это мера доходности, строящаяся на основе эксплицитных предположений инвестора о будущих ставках реинвестирования.

Рассмотрим теперь первое условие: необходимость держать облигацию до момента погашения. Предположим, что инвестор, решивший вложить капитал на пять лет, выбирает одну из четырех облигаций:



Какая из облигаций – при условии, что их кредитное качество не различается – является наиболее выгодной для инвестора? Инвестор, выбравший облигацию С из-за ее наиболее высокой доходности к погашению, закрывает глаза на тот факт, что через пять лет облигация должна быть продана по цене, зависящей от доходности, которую в тот момент рынок потребует от 10-летней облигации с 11 %-ным купоном. Очевидно, что в этой ситуации возможен либо прирост капитала, либо убыток, благодаря которым прибыль окажется выше или ниже обещанной в настоящий момент доходности к погашению. Кроме того, более высокий, по сравнению с прочими облигациями, купон облигации С, означает, что бо́льшая часть прибыли будет зависеть от реинвестиций получаемых купонных выплат.

Облигация А предлагает вторую по величине доходность к погашению. На первый взгляд, именно эта ценная бумага кажется наиболее привлекательной, поскольку ее владелец не рискует реализовать убыток в момент продажи облигации до даты погашения. Более того, в этом случае, как кажется, невысок риск реинвестиций: купонная ставка этой облигации ниже купонной ставки трех остальных. Между тем риск реинвестиций для владельца такой облигации существует: через три года сумма, полученная при погашении, должна быть реинвестирована еще на два года. Доходность, которую получит инвестор, зависит от процентных ставок, которые установятся через три года на двухлетние облигации.

Похоже, что доходность к погашению не лучший критерий для выбора ценной бумаги. Как же совершить выбор? Ответ зависит от ожиданий инвестора и, в первую очередь, от его инвестиционного горизонта. Кроме того, в случае облигаций, длительность которых превышает инвестиционный горизонт, он зависит от того, какие предположения строит инвестор относительно требуемой рыночной доходности в момент окончания инвестиционного горизонта. Таким образом, любая из четырех облигаций может стать наилучшей: инвестору важно лишь определить свою точку зрения на ставки реинвестиций и будущую требуемую доходность. Величина общей прибыли определяется исходя из сделанных предположений и позволяет, в соответствии с персональными ожиданиями инвестора, выявить лучший объект для вложения капитала.

Мера доходности к колл-опциону страдает теми же недостатками, что и мера доходности к погашению. Во-первых, ее значение отражает действительное положение вещей только в случае, если инвестор додерживает облигацию до первой даты отзыва. Во-вторых, предполагается, что купонные выплаты могут быть реинвестированы под доходность к колл-опциону. Если инвестиционный горизонт участника рынка является более коротким, чем временной отрезок до первой даты отзыва, облигацию, возможно, придется продать по цене меньшей, чем цена покупки. Если же, напротив, инвестиционный горизонт длиннее отрезка времени до даты отзыва, участник рынка может оказаться перед необходимостью реинвестировать полученную в результате отзыва сумму на период, оставшийся до окончания временного горизонта. Таким образом, величина доходности к первой дате отзыва мало помогает инвестору, анализирующему облигацию. Мера общей прибыли, в свою очередь, является чрезвычайно полезным аналитическим инструментом, в том числе при работе с облигациями, имеющими встроенный колл-опцион.

Вычисление общей прибыли от облигации

Гипотеза, положенная в основу меры общей прибыли, проста. Цель вычислений – узнать, прежде всего, денежную сумму, которую в будущем принесут инвестиции в данную облигацию, при условии существования на рынке определенных ставок реинвестирования. Далее общая прибыль выражается в виде годового процента, т. е. ставки, позволяющей начальному капиталовложению возрасти до требуемой денежной суммы.

Процедура подсчета общей прибыли от облигации на некоем временном горизонте может быть вкратце описана следующим образом. Инвестор делает предположение относительно будущей ставки реинвестирования, а затем на основании ее значения подсчитывает денежную прибыль, которую в момент окончания временного горизонта принесут как купонные выплаты, так и сложные проценты. Кроме того, по окончании запланированного временного горизонта инвестор должен получить либо номинальную, либо другую стоимость облигации (стоимость облигации в случае продажи вычисляется исходя из предположений о будущей требуемой рыночной доходности). Общая прибыль – это процентная ставка, при которой сумма, инвестированная в облигацию (т. е. ее текущая рыночная стоимость плюс накопленный купонный доход), возрастет до денежной величины, ожидаемой в конце временного горизонта.

Ниже приводим краткий план действий, которым следует руководствоваться при вычислении общей прибыли от облигации на запланированном временном горизонте:

Этап 1. На основании сделанного предположения о размере будущей ставки реинвестиций подсчитайте величину общих купонных выплат плюс процент на процент. Сумма купонных выплат и процента на процент может быть вычислена с помощью формулы (3.7). В этом случае в качестве ставки реинвестиций следует принять половину годовой ставки, под которую инвестор рассчитывает вложить купонные выплаты.

Этап 2. Определите цену продажи на момент окончания временного горизонта. Предполагаемая цена продажи будет зависеть от предполагаемой требуемой доходности в конце планируемого отрезка времени. Предполагаемая цена будет равна приведенной стоимости оставшихся денежных потоков облигации, дисконтированных по предполагаемой требуемой доходности.

Этап 3. Сложите величины, полученные на этапах 1 и 2. Результатом явится общее будущее количество денег, которое может быть получено от инвестиций при условии наличия в момент окончания запланированного временного горизонта определенной доходности, а также существования определенных ставок реинвестиций[15].

Этап 4. Для получения полугодовой общей прибыли воспользуйтесь формулой:

(3.9)

где h – количество полугодовых периодов в инвестиционном горизонте. Заметьте, что данная формула – вариант уравнения (3.3), т. е. доходность инвестиции с единственным денежным потоком.

Этап 5. Поскольку обычно предполагается, что процент выплачивается раз в полгода, результат, найденный на этапе 4, следует удвоить. Полученная процентная ставка – это искомая общая прибыль от облигации, выраженная в процентах годовых.

В качестве примера рассмотрим инвестиционный горизонт, равный трем годам. Инвестор рассматривает целесообразность покупки 20-летней облигации с 8 %-ным купоном за $828,40. Доходность к погашению такой облигации составляет 10 %. Инвестор надеется, что сумеет реинвестировать купонные выплаты под годовую ставку 6 % и что в конце запланированного отрезка времени 17-летние облигации будут торговаться с доходностью к погашению 7 %. Общая прибыль от облигации подсчитывается так:

Этап 1. Приняв за данность ставку реинвестиций 6 % (или 3 % на полгода), вычисляем сумму всех купонных выплат и процента на процент. Купонные выплаты равны $40 каждые шесть месяцев в течение трех лет (напомним, что речь идет о запланированном временном горизонте). Применяем формулу (3.7) и подсчитываем сумму всех купонных выплат и процента на процент:

Этап 2. Определяем предполагаемую цену продажи через три года; напомним, что, по нашему допущению, требуемая доходность к погашению 17-летних облигаций в тот момент составит 7 %. Вычисляем дисконтированные по 3,5 % приведенную стоимость 34 купонных выплат по $40 и приведенную стоимость номинала $1000; результаты суммируем. Предполагаемая цена продажи составит $1098,51[16].

Этап 3. Сложение результатов, полученных на этапах 1 и 2, дает общее будущее количество долларов – $1375,25.

Этап 4. Для получения полугодовой общей прибыли воспользуемся формулой:

Этап 5. Умножим 8,58 % на два: общая прибыль равна 17,16 %.


При подсчетах подобного рода нет необходимости принимать за данность неизменность ставки реинвестиций в течение всего инвестиционного горизонта. Приведем пример, доказывающий, что мера общей прибыли отлично функционирует и в ситуации предположительного изменения ставок.

Допустим, что инвестор избрал шестилетний инвестиционный горизонт. Рассматривается 13-летняя облигация с купоном 9 %, торгующаяся по номиналу. Инвестор делает следующие предположения:

1. Первые четыре полугодовые купонные выплаты можно будет в момент их получения реинвестировать под простую годовую ставку 8 % на срок до окончания инвестиционного горизонта.

2. Остальные восемь полугодовых купонных выплат могут быть реинвестированы под простую годовую ставку 10 % на срок с момента их получения до окончания инвестиционного горизонта.

3. Требуемая доходность к погашению для семилетних облигаций в момент окончания инвестиционного горизонта составит 10,6 %.


Общая прибыль вычисляется на основании этих трех предположений следующим образом:

Этап 1. В течение шести лет (продолжительность инвестиционного горизонта) инвестор каждые шесть месяцев будет получать купонные выплаты в размере $45 каждая. Купонные выплаты плюс процент на процент для первых четырех выплат при условии полугодовой ставки реинвестиций 4 % дают:

Результат представляет собой сумму купонных выплат и процента на процент на момент окончания второго года (через четыре периода). Реинвестируем эту сумму под 4 % на период до окончания инвестиционного горизонта, т. е. на четыре года (восемь периодов); $191,09 возрастут до:

$191,09 × 1,048 = $261,52.

Для последних восьми купонных выплат сумма купонных выплат и процента на процент, при условии полугодовой ставки реинвестиций 5 %, составит:

Купонные выплаты плюс процент на процент для всех 12 периодов составят $691,23 (т. е. $261,52 + $429,71).

Этап 2. Предполагаемая цена продажи облигации при условии требуемой доходности 10,6 % равна $922,31[17].

Этап 3. Общее будущее количество денег равно $1613,54 ($691,23 + $922,31).

Этап 4. Проведем следующие вычисления:

Этап 5. Удвоим 4,07 % и получим общую прибыль в процентах годовых, равную 8,14 %.

Анализ облигации с помощью меры общей прибыли (анализ временных горизонтов)

Мера общей прибыли позволяет, исходя из собственных предположений о будущих ставках реинвестиций и будущей требуемой доходности, оценить эффективность вложения в облигацию на данном временном горизонте. Таким образом, управляющий портфелем получает возможность выбрать из нескольких возможных кандидатов облигацию, которая на запланированном временном горизонте покажет наилучший результат. Еще раз обратим ваше внимание на то, что доходность к погашению не может выполнять аналогичные функции, т. е. не является мерой относительной ценности облигации.

Использование величины общей прибыли при анализе эффективности вложений в облигацию на данном отрезке времени – процедура, лежащая в основе так называемого анализа временных горизонтов. Общая прибыль, вычисленная для данного временного горизонта, получила название прибыли на временно́м горизонте (horizon return). В нашей книге термины «прибыль на временном горизонте» и «общая прибыль» взаимозаменяемы.

Анализ временных горизонтов используется и при изучении инвестиционных характеристик облигационных свопов. Облигационный своп предполагает обмен имеющейся в портфеле облигации на другую облигацию. В ситуации, когда цель облигационного свопа – увеличить прибыль от портфеля на запланированном временном горизонте, управляющий может подсчитать общую прибыль облигации, которую собирается приобрести, и сравнить результат с общей прибылью облигации, имеющейся в портфеле; таким образом производится оценка целесообразности замены. Конкретные стратегии облигационных свопов будут обсуждаться в главе 25.

Противники меры общей прибыли недовольны тем, что, применяя ее, портфельный менеджер вынужден строить предположения относительно ставок реинвестиций и будущих доходностей, а также мыслить в категориях инвестиционного горизонта. К сожалению, часть управляющих портфелями предпочитают работать с доходностью к погашению и доходностью к колл-опциону только потому, что вычисление этих величин не требует от них формулировки собственных прогнозов рынка. Между тем анализ временных горизонтов позволяет оценить облигацию в контексте разных рыночных сценариев, разных ставок реинвестиций и требуемых доходностей. Только изучив несколько сценариев, менеджер может понять, насколько чувствительна облигация к разным типам происходящих на рынке изменений. В главе 20 мы поговорим о том, каким образом включается в анализ информация о предполагаемых изменениях процентных ставок.

Измерение изменений доходности

Когда процентные ставки или доходности меняются между двумя временными периодами, на практике существует два способа представления изменений: в абсолютном выражении и в процентном выражении.

Абсолютное изменение доходности (которое также называют абсолютным изменением ставки) измеряется в базисных пунктах и является абсолютным значением разницы между двумя доходностями. То есть

абсолютное изменение доходности (в базисных пунктах) =[первоначальная доходность – новая доходность] × 100

Например, рассмотрим три следующие доходности за три месяца:

Месяц 1 4,45 %
Месяц 2 5,11 %
Месяц 3 4,82%

Тогда абсолютное изменение доходности рассчитывается, как показано ниже:

абсолютное изменение доходности с месяца 1 по месяц 2 = [4,45 % – 5,11 %] × 100 = 66 базисных пунктов
абсолютное изменение доходности с месяца 2 по месяц 3 = [5,11 % – 4,82 %] × 100 = 29 базисных пунктов

Процентное изменение доходности рассчитывается как натуральный логарифм изменения доходности, как показано ниже:

процентное изменение доходности = 100 × ln (новая доходность/первоначальная доходность)

где ln – натуральный логарифм.

Для указанных ранее доходностей за три месяца процентные изменения доходности составят:

абсолютное изменение доходности с месяца 1 по месяц 2 = ln(5,11 % / 4,45 %) – 13,83 % абсолютное изменение доходности с месяца 2 по месяц 3 = ln(4,82 % / 5,11 %) = –5,84%

Резюме

В этой главе мы описали традиционные меры доходности, широко используемые участниками рынка облигаций: текущую доходность, доходность к погашению, доходность к колл-опциону, доходность к пут-опциону, доходность к наихудшему и доходность денежного потока. Затем мы обратились к трем потенциальным источникам денежной прибыли от инвестирования в облигацию (купонные выплаты, доход от реинвестиций, прирост/потери капитала) и показали, что ни одна из традиционно принятых мер доходности не учитывает корректным образом все три компонента. Текущая доходность не принимает в расчет ни доход от реинвестиций, ни прирост/потери капитала. Доходность к погашению учитывает все три источника дохода, однако строится на безосновательном предположении о том, что купонные выплаты могут быть реинвестированы под данную доходность к погашению. Риск, связанный с реинвестированием купонных выплат под ставки более низкие, чем доходность к погашению, называется риском реинвестиций. Доходность к колл-опциону имеет аналогичные недостатки: предполагается, что купонные выплаты могут быть реинвестированы под доходность к колл-опциону. Величина доходности денежных потоков вычисляется на основании тех же предположений, что и доходность к погашению; кроме того, считается, что, во-первых, периодические выплаты номинала могут быть реинвестированы под доходность денежного потока и, во-вторых, предполагаемые предоплаты действительно будут иметь место. Наконец, нами была представлена еще одна мера доходности – общая прибыль, которая на основании предположений инвестора или портфельного менеджера о будущем состоянии рынка дает более полную информацию об относительной ценности облигации на запланированном временном горизонте.

Изменение доходности между двумя периодами времени можно рассчитать как абсолютное изменение доходности или как процентное изменение доходности.


Вопросы

1. Долговое обязательство обещает следующие выплаты:

Предположим, что цена данного долгового обязательства составляет $7704. Какова доходность или внутренняя ставка доходности, обещанная данным долговым обязательством?

2. Какова точная годовая ставка, если полугодовая процентная ставка равна 4,3 %?

3. Что такое доходность к погашению облигации?

4. Что такое доходность к погашению, эквивалентная облигационной?

5. а. Определите размер денежных потоков четырех облигаций, если известно, что каждая из них имеет номинальную стоимость $1000 и купон по ним выплачивается раз в полгода.

b. Вычислите доходность к погашению четырех облигаций.

6. Управляющий портфелем хочет купить одну из двух облигаций. Облигация А будет погашена через три года, купон равен 10 % и выплачивается раз в полгода. Облигация В имеет то же кредитное качество; ее срок до погашения – 10 лет, купон (выплачивается раз в полгода) – 12 %. Обе облигации торгуются по номиналу.

а. Предположим, что управляющий портфелем планирует держать облигацию три года. Какую из двух ценных бумаг ему лучше купить?

b. Предположим, что менеджер будет держать облигацию не три года, а шесть лет. Какую облигацию ему лучше приобрести в этом случае?

с. Допустим, что менеджер управляет активами страховой компании, которая выпустила пятилетний гарантированный инвестиционный контракт (GIC). Страховая компания обещала своим инвесторам выплачивать по 9 % каждые полгода. Какую из двух облигаций менеджер должен купить, чтобы страховая компания осуществила выплаты по GIC и в то же время получила прибыль?

7. Рассмотрим облигацию со следующими параметрами:

Купонная ставка = 11%

Длительность = 18 лет

Номинальная стоимость = $1000

Первый отзыв по номиналу (колл-опцион) – через 13 лет

Единственная дата продажи эмитенту (пут-опцион) – через пять лет; пут-опцион может быть исполнен по номиналу.

Предположим, что рыночная цена этой облигации равна $1169.

а. Докажите, что доходность к погашению этой облигации равна 9,077 %.

b. Докажите, что доходность к первому отзыву по номиналу равна 8,793 %.

с. Докажите, что доходность к пут-опциону равна 6,942 %.

d. Предположим, что регламент отзыва этой облигации таков:

Она может быть выкуплена через восемь лет по $1055.

Она может быть выкуплена через 13 лет по $1000.

Предположим также, что облигация может быть продана эмитенту в единственную дату через пять лет с настоящего времени, а ее доходность к первому отзыву по номиналу составляет 8,535 %. Какова доходность к наихудшему этой облигации?

8. а. Что такое амортизируемая ценная бумага? b. Назовите три компонента денежного потока амортизируемой ценной бумаги. с. Что такое доходность денежного потока?

9. Как вычисляется внутренняя ставка доходности портфеля?

10. Каковы недостатки внутренней ставки как меры доходности портфеля?

11. Предположим, что купонная ставка ценной бумаги с плавающей ставкой пересчитывается каждые полгода со спредом над референсной ставкой, равным 70 базисным пунктам. Допустим, что облигация торгуется по цене меньшей, чем номинал. Больше или меньше 70 базисных пунктов будет в этом случае дисконтный спред?

12. Инвестор собирается приобрести 20-летнюю облигацию с купоном 7 %, торгующуюся по $816 при номинале $1000. Доходность к погашению облигации равна 9 %.

а. Каково общее количество денег, полученное от вложения $816 на 20 лет под 9 % годовых, с учетом реинвестиций, производимых каждые полгода?

b. Какова сумма всех купонных выплат за время жизни облигации?

c. Каково общее количество денег, которое инвестор получит к моменту окончания 20-летнего срока от купонных выплат и выплаты номинала?

d. Допустим, что инвестор хочет получить общее количество денег, обозначенное в пункте а. Каков в этом случае должен быть размер процента на процент?

e. Вычислите величину процента на процент при условии, что полугодовые купонные выплаты могут быть каждые шесть месяцев реинвестированы под 4,5 %; заметим, что результат должен быть тот же, что и в пункте d.

13. Какова общая прибыль 20-летней облигации с нулевым купоном и доходностью к погашению 8 % при условии, что облигация додержана до погашения?

14. Объясните, почему величина общей прибыли облигации, додержанной до погашения, – число, располагающееся между значениями доходности к погашению и ставкой реинвестирования.

15. Как вы думаете, к какому из двух значений – доходность к погашению или ставка реинвестирования – окажется ближе общая прибыль долгосрочной высокодоходной купонной облигации, додержанной до погашения?

16. Предположим, что инвестор, запланировавший пятилетний инвестиционный горизонт, собирается купить по номиналу семилетнюю облигацию с 9 %-ным купоном. Инвестор считает, что сможет реинвестировать купонные выплаты под годовую ставку 9,4 %; кроме того, он полагает, что в момент окончания инвестиционного горизонта двухлетние облигации будут торговаться с доходностью к погашению 12 %. Какова общая прибыль облигации?

17. Два портфельных менеджера обсуждают инвестиционные характеристики амортизируемых ценных бумаг. Управляющий А полагает, что такие ценные бумаги выгоднее прочих, поскольку периодические выплаты наряду с купонными включают частичные выплаты номинала. Таким образом, вкладывая капитал в эти облигации, можно получить больший доход от реинвестиций. Кроме того, выплаты, как правило, производятся ежемесячно – доход от реинвестиций, соответственно, возрастает. Управляющий В думает, что необходимость каждый месяц совершать реинвестиции, превышающие купонные выплаты, – недостаток амортизируемых ценных бумаг. С кем вы согласны и почему?

18. Возьмем следующие доходности:

Неделя 1: 3,84%

Неделя 2: 3,51%

Неделя 3: 3,95%

а. Рассчитайте абсолютное изменение доходности и процентное изменение доходности с недели 1 по неделю 2.

б. Рассчитайте абсолютное изменение доходности и процентное изменение доходности с недели 2 по неделю 3.

Загрузка...