1 Новые нервные клетки!

Когда нужно произвести впечатление на особь женского пола, самцы многих видов буквально из кожи вон лезут. Они прямо-таки творят чудеса – вплоть до образования новых нервных клеток.

Во времена Гёте костюм канареечного цвета был писком моды, но сегодня, пожалуй, мало кто станет щеголять в нем, если, конечно, он не канарейка. Самец канарейки распускает перья и поет вовсю, чтобы справиться с бурей и натиском весеннего обострения и завоевать себе пару на ближайший год. А пока он разучивает и распевает песни, и благодаря этому, в его маленьком мозге растут новые нейроны. Осенью, когда он забудет свои трели (ведь канарейки каждый год учат их с нуля), эти клетки тоже исчезнут [1]. Что же, новые нейроны для новых песен?

Могла бы людям тоже пригодиться эта способность, которая есть у канареек, – певцам и не только? Новые нейроны для новых мыслей. Новые нейроны для старого мозга. Новые нейроны взамен гибнущих в старости и от болезней.

Это выглядит так же нереально, как те многочисленные источники вечной молодости, что нам обещают набранные мелким шрифтом объявления в газетах с программой передач. Напоминает это и разнообразные научные утопии, которые никогда не оправдывают ожиданий, но налогоплательщики всякий раз вкладываются в то, чтобы ученые могли некоторое время преследовать какую-нибудь подобную идею. Новые нейроны для старого мозга – это слишком хорошо, чтобы быть правдой.


И все же это так. Наш мозг тоже на протяжении всей жизни производит новые нервные клетки, пусть и в виде исключения, всего в двух своих отделах. Это явление в целом называется «нейрогенез взрослых», и это словосочетание означает не что иное, как образование нейронов во взрослом организме. Одна из двух «нейрогенных зон», а именно гиппокамп, имеет большое значение для процессов обучения и памяти. То, что нейрогенез взрослых протекает именно в гиппокампе, по-видимому, не случайно: в последнее время становится ясно, что мы, люди, никак не могли бы быть тем, что мы есть, если бы не новые нервные клетки. В этой книге речь пойдет о следующей гипотезе: благодаря образованию новых нейронов у каждого из нас формируется буквально собственный, уникальный мозг, где заключены наши личные воспоминания, автобиография, как мы ее помним, то, как мы судим и прогнозируем, наш характер и эмоциональные качества, – коротко говоря, личность[1].

В 1983 году нью-йоркский исследователь мозга Фернандо Ноттебом и его коллега Стивен Голдмен сообщили, что у взрослых канареек можно наблюдать сезонное образование новых нервных клеток, которое по времени соответствует периоду разучивания песен. Это сообщение породило большие ожидания (хотя, вероятно, ввиду отсутствия интернета, тема не вызвала «вирусного» эффекта, и по сравнению с шумихой, которую порой можно наблюдать сегодня, ажиотаж вокруг нее все же оставался весьма ограниченным). Дело в том, что из всех живых существ только людям, певчим птицам и дельфинам приходится учиться звукообразованию (вокализации). В отличие от них собака умеет лаять сразу. У этой истории были все задатки большой новости, и она ею стала. Ноттебом и его коллеги дали ответы на многие из последовавших за этим вопросов: откуда новые нервные клетки берутся и как регулируется их образование и исчезновение. Однако эти ученые сосредоточились на певчих птицах и предоставили другим исследователям разбираться, как же обстоят дела с «нейрогенезом взрослых» (так правильно называется этот процесс) у остальных животных и у человека. Тем временем, уже в 60-х и 70-х годах XX века появилось несколько сообщений о нейрогенезе взрослых у крыс. У крыс! Они ведь не поют, не стремятся завоевать никаких особых симпатий друг у друга. Это более раннее, первое описание нейрогенеза взрослых так и не получило известности за пределами узких научных кругов, и даже здесь воспринималось скорее как некий курьез. Тогда время для подобных открытий еще не пришло.


Илл. 1. Фернандо Ноттебом из Рокфеллеровского университета в Нью-Йорке в 80-е годы XX века открыл образование новых нейронов в мозге канареек


Но вот теперь, когда на птицах были получены столь убедительные результаты, фантазия ученых стала разгораться. Они размышляли так: человек и канарейка похожим образом учат некий «язык», а значит, не исключено, что сходство есть в чем-то еще, и здесь могут крыться неожиданные возможности. Что, если связь между нейрогенезом и обучением в конечном счете гораздо более глубока, чем предполагалось до сих пор? И, если нейрогенез взрослых все же существует, может быть, это наша надежда на простое средство против гибели нервных клеток, которая происходит в старости и в результате заболеваний?

Вскоре стало очевидно, что все не так просто, но мысль была, да и остается хорошей. Природа на примере канареек показывает нам, как даже во взрослом мозге, до самого позднего возраста, из стволовых клеток регулярно образуются нейроны. При этом происходит именно то, чему пытаются научиться исследователи стволовых клеток и работники регенеративной медицины: нейроны формируются в условиях взрослого мозга. Нейрогенез взрослых – это единственное, но очень важное исключение из правила, которое в остальном действует неуклонно: в норме мозг как раз не способен производить новые нервные клетки.

Итак, встает вопрос: почему же существует это единственное исключение? Может быть, это, согласно царившей долгое время гипотезе, не более чем реликт из глубин эволюции, как аппендикс, который никому не вредит, но и ни для чего на самом деле не нужен?[2] Что-то, о чем эволюция попросту забыла? Или же исключение из правила означает как раз обратное и говорит о функции настолько важной, что для нее приходится задействовать чрезвычайно сложный принцип, давно не действующий в других отделах человеческого мозга, который тем не менее именно здесь дает какие-то существенные преимущества? В самом деле, нейрогенез взрослых требует больших затрат, и есть чрезвычайно веские основания, чтобы постоянное формирование новых нервных клеток не поддерживать. Образование нейрона – в высшей степени сложный процесс, и за то, чтобы обеспечивать эту возможность на протяжении всей жизни, приходится платить достаточно высокую цену. Состояние «forever young» («вечная молодость») с точки зрения мозга имеет очень условную ценность и представляется роскошью, которую не так просто себе позволить.

Индивидуальный мозг

Через мозг мы воспринимаем мир, благодаря мозгу мы можем действовать. Согласно прекрасному, крайне упрощенному определению, наш мозг – это хранилище воспоминаний и одновременно нечто, способное делать предсказания. Именно это называется «обучением». Я могу использовать опыт прошлого, чтобы принимать решения о действиях в будущем.

Тут мы вступаем на опасную территорию в плане определений. Можно ли сказать, что мозг думает? Что думают нейроны? Что такое воспоминания? Можно ли разложить их до уровня клеточных процессов? Или же они никак не проявляются, по крайней мере существенным образом? А теперь еще сложнее: что такое действия? Может ли мозг действовать? И если да, как это соотносится с нашим убеждением о том, что действия совершает индивид? С точки зрения нейробиологии, выше мы дали редукционистское, то есть упрощенное определение. Ряд моментов оно отражает, другие не учитывает. Смысл в том, что некоторые аспекты действительно носят нейробиологический характер и могут быть описаны в нейробиологических терминах, и, таким образом, поддаются естественно-научному анализу. В то же время здесь может возникнуть недопонимание, поскольку мышление – это, конечно, не чисто нейробиологическое явление. Однако оно нейробиологическое в том числе.

Красивое выражение «mind is what the brain does» («мышление – это то, что делает мозг») истинно и ложно одновременно, но нет смысла углубляться в споры об этом противоречии. И все же можно точно сказать, что ни один философ не был бы самим собой без своего мозга. Любой, кто хоть раз выпил слишком много вина или получил крепкий удар по голове, знает, насколько сильно мы зависим от самочувствия этого органа. Мозг – это не чисто биологическое явление, но биологическое в том числе. Описать и суметь объяснить эту его составляющую – уже достаточно сложная задача. Биологизация наших представлений о человеке заслуживает всяческой критики, как и тенденция рассматривать философию, психологию и педагогику как науки о церебральных функциях. Приставку «нейро-» нередко используют, чтобы придать веса слабым, умозрительным построениям. Но часто дело обстоит как раз наоборот. Порой мы не учитываем, что у человека с его чудесным, мощным мозгом много общего с гораздо более примитивными животными, а надменный антропоцентризм весьма безоснователен. Априори приписывать мыслительным способностям человека особый статус, который выделял бы нас из мира природы, не только высокомерно и неправильно. В результате этого мы также упускаем массу возможностей, начиная с того, чтобы более глубоко разобраться в своей сущности, и кончая конкретными медицинскими разработками.

Даже у представителей разных видов животных в мозге может быть много общего, и все же этот орган у них отличается. И внутри одного вида он иногда выглядит по-разному. У каждого человека свой собственный мозг. Это звучит банально, но очень много значит. Содержимое наших черепов не изготовлено по единому шаблону. Как именно оно выглядит, зависит от того, какие качества мы унаследовали от родителей и какой опыт нам был доступен. Это и есть то самое знаменитое взаимодействие генотипа и среды, и мы – его результат. Генотип и среда действуют неразрывно, но по-прежнему остается загадкой, в каком соотношении. Мы, люди, отличаемся друг от друга, и поэтому отличается мозг каждого из нас. И наоборот: у каждого из нас свой мозг, поэтому мы такие разные. К концу жизни мозг несет в себе все воспоминания и весь опыт, который мы приобрели, но это не значит, что он содержит их, как кувшин содержит воду, – мозг сам состоит из всех воспоминаний и опыта, потому что они изменили его, встроившись в его структуру. Мозг каждого из нас, и чем мы старше, тем в большей степени, по структуре и по микроструктуре соответствует нашей биографии и всему тому, что мы когда-либо постигли. Научные фантасты пестуют идеи о том, чтобы читать эти структуры, будто информацию с жесткого диска, но в нашей книге речь пойдет о другом. Нас интересует вопрос об индивидуальном мозге и идея о том, что он может развиваться на протяжении всей жизни и что этот процесс неразрывно связан с опытом. Все, что мы пережили и узнали, нас меняет, причем на физическом, нейробиологическом уровне. Жизнь оставляет следы. Всегда. Все, чему я учусь, изменяет мой мозг. Эта мысль успокаивает и тревожит одновременно. С одной стороны, отсюда следует наша уникальность и индивидуальность, но с другой – встают вопросы, например о том, насколько мы способны формировать и сохранять свой уникальный мозг и какую ответственность мы за это несем. Сам по себе этот вопрос не нов, просто раньше его не задавали в контексте нейробиологии, но здесь мы смотрим на него под другим углом, и он получает новый приоритет. В процессе обучения, например, когда канарейка осваивает навык пения, образуются новые нервные клетки, которые, таким образом, вносят в структуру мозга постоянные и измеримые изменения, соответствующие опыту. Это знание заставляет нас по-новому взглянуть на связь между мозгом и мышлением и наглядно демонстрирует, что именно она лежит в основе развития личности.

Регенерация в человеческом теле

В отличие от мозга другие органы обладают большой способностью к регенерации. Есть три «первично регенерирующие» системы: это кровь, кожа и кишечник. Они непрерывно обновляются на протяжении всей жизни. Благодаря регенеративной функции костного мозга мы можем безболезненно сдавать донорскую кровь и даже переносить весьма значительные кровопотери. Слизистая оболочка кишечника обновляется с такой интенсивностью, что специалисты шутя, вернее полушутя, говорят, что через один кишечник не проходит два горячих блюда. Как ни удивительно, вместе с человеческим стулом, за исключением воды (которая составляет в нем 75 %), выделяются в основном вовсе не остатки пищи, как думает большинство, а огромное количество бактерий, а также, в первую очередь, клетки нашего собственного кишечника. Из 25 % массы, которая получится, если убрать воду, на остатки пищи, бактерии и клетки кишечника придется примерно по одной трети. Чтобы пищеварение и экскреция не израсходовали все клетки этого типа полностью, стволовые клетки регулярно пополняют их запас.

Благодаря регенеративной способности кожи бесследно заживают мелкие порезы и царапины, и лишь более серьезные повреждения ведут к образованию шрамов или вообще не поддаются регенерации, как, например, в случае обширных ожогов. Это касается и «производных кожи», то есть волос и ногтей, которые нам всю жизнь приходится подстригать, потому что они постоянно отрастают заново. Едва ли найдется профессия, представители которой так же сильно зависят от деятельности стволовых клеток (в данном случае содержащихся в волосяном мешочке), как парикмахеры.

Функция таких «первично регенерирующих» органов прочно связана с непрерывной регенерацией клеток. Если кровь перестанет постоянно обновляться, она не сможет выполнять свою задачу. Мы уже не нуждаемся в постоянном росте волос, но от него зависела жизнь наших первобытных предков, гораздо менее защищенных от воздействия погодных условий, чем животные, покрытые мехом.

Вторая группа органов обладает большими способностями к регенерации, хотя та и используется только в случае повреждений. В эту группу входят, например, кости и печень. Последняя вообще представляет собой совершенно особенный случай: если удалить до одной трети ее тканей, она восстановится в полном объеме. Известный символ регенеративной медицины – Прометей, которого в наказание приковали к скале, и орлы каждый день выклевывали печень из его туловища, только затем, чтобы за ночь она отросла вновь. Впрочем, этот мифологический сюжет можно воспринимать и как метафору тщетности врачебных усилий. По костям особенно хорошо видно, как с возрастом ослабевает способность к регенерации.


Илл. 2. Миф о Прометее можно также считать метафорой регенеративной медицины: каждую ночь у прикованного к скале падшего героя заново отрастает печень, которую днем ему выклевывают орлы. Нельзя точно сказать, что это: символ особой способности к регенерации или той тщетности, с которой мы неизбежно сталкиваемся в конце концов


Как правило, перелом кости у ребенка не представляет собой повода для беспокойства, тогда как у пожилого человека, особенно если речь идет о шейке бедра, он может без труда привести к опасной для жизни ситуации и многочисленным осложнениям. Органам этой второй группы необходимо уметь регенерировать, но это не входит в их основную функцию, регенерация возникает лишь как реакция на повреждение.

Третья группа включает в себя те органы, которые почти или совсем не регенерируют и к которым до сих пор относили сердце, почки и, в первую очередь, мозг. Предполагалось, что слабая способность мозга к регенерации – это цена за ту функциональную мощь, которой он достиг в ходе эволюции. Считалось, что для столь высокой производительности требуется большая стабильность, которую новые нервные клетки нарушали бы, поскольку новые нервные узлы лишь запутывали бы нейронную сеть. Попробовали бы вы поменять процессор у включенного компьютера! Однако позже мы увидим, что такое представление о мозге как о компьютере в корне неверно.

Зоны нейрогенеза

Согласно расхожему определению, нейрогенез взрослых – это образование новых нейронов в мозге взрослой особи. Мозгу взрослого, по крайней мере у млекопитающих, включая человека, нейрогенез обычно не свойственен, иными словами, его условия не позволяют формировать нервные клетки. Он не регенерирует, по этой причине многие из заболеваний мозга необратимы и носят хронический характер. До рождения и некоторое время сразу после него мы видим совершенно иную картину: мозг – само развитие, здесь все находится в движении. Производится колоссальное количество нейронов. Через некоторое время после оплодотворения эмбрион становится размером с фасолину, размеры мозга у него соответствующие. К моменту рождения этот орган у человека весит уже около 350 граммов, и это всего лишь около четверти массы мозга взрослого. Формирование его продолжается и после появления на свет. И хотя при этом образуются миллиарды клеток, нейроны формируются с большим запасом. В течение детства образование нервных клеток идет на убыль. Согласно оценкам, к школьному возрасту оно в массе своей завершается, и лишь в отдельных областях, например в мозжечке, заканчивается только в 10–12 лет. У млекопитающих нейрогенез сохраняется лишь в двух или, возможно, трех областях мозга (см. рис. 1 на вклейке). Некоторые детали здесь остаются спорными, вероятно, есть важные различия между отдельными видами животных. Но в целом уже твердо установлено: во взрослом мозге формируются новые нервные клетки.

У человека нейрогенез ярко выражен в гиппокампе, в той самой небольшой зоне мозга, которая имеет решающее значение для обучения и памяти. Гиппокамп также называют «вратами памяти», поскольку вся информация, которую мы хотим сохранить в долгосрочной памяти[3], должна пройти обработку в этой области. Мы еще поговорим о значении последней в главе «Новые нейроны для новых мыслей», когда будем рассматривать, какое участие принимают в ее деятельности новые нейроны и какие это влечет последствия. Конечно, если нейрогенез взрослых протекает именно в «центре обучения», естественно предположить, что новые нервные клетки играют в этом процессе какую-то особую роль. С другой стороны, не всякий, кого застали на месте преступления, обязательно преступник. Как мы увидим, доказать, что новые нейроны участвуют в деятельности гиппокампа и как именно они это делают, было совсем не просто.

Вторая (точнее, если учесть ее удивительное постоянство в мире животных, первая) зона нейрогенеза, которую можно найти у большинства млекопитающих, находится в обонятельном мозге[4]. Обоняние – это способность обнаруживать в окружающей среде химические соединения. Это своего рода «прачувство», в зачаточном виде присутствующее уже у очень примитивных животных. У млекопитающих нейрогенез встречается главным образом в этих двух зонах, но, за исключением самых основных черт, между этими процессами в той и другой зоне мало общего. Вероятно, у всех известных нам позвоночных есть некое подобие гиппокампа, но лишь у млекопитающих та его часть, в которой мы наблюдаем нейрогенез взрослых, присутствует в такой форме и обладает такими функциями [2]. Это захватывающий поворот дела, ведь данный факт заставляет предположить (хотя, конечно, еще не доказывает), что с возникновением особой структуры «зубчатой извилины», как именуется та область гиппокампа, где у млекопитающих происходит нейрогенез, у них развилась также исключительная способность приспосабливаться и принимать различные формы, и эти два явления тесно связаны между собой.

Мифы о мозге

До того как обнаружили нейрогенез взрослых, существовали определенные представления о развитии и деятельности мозга, которым данное открытие противоречило. Такие представления часто принимают характер мифов. Бывает, что мифами долгое время успешно объясняют некоторые явления, но затем подобные убеждения, которые ранее не подвергались сомнению, приходится соотносить с новыми достижениями науки.

Есть мифы расхожие, знакомые каждому, например, о том, что в шпинате много железа или что после еды вредно плавать. В медицине особенно распространена «народная мудрость», в том числе представления о мозге, под которыми нет никаких оснований.

Пожалуй, самое распространенное убеждение такого рода состоит в том, что человек использует мозг лишь на 10 %. В 2004 году вышел научно-фантастический триллер со Скарлетт Йоханссон в главной роли, сюжет которого построен на этой идее: героиня принимает вещество, призванное разбудить потенциал дремлющих 90 % ее мозга.


Илл. 3. Завязкой триллера «Люси» со Скарлетт Йоханссон в главной роли послужил распространенный, но безосновательный миф о том, что мы используем лишь 10 % мозга. Что же будет, если разбудить спящие 90 %?


Как будто без всякого противоречия рядом с этим мифом о 10 % сосуществует представление о том, что после двадцати пяти лет (некоторые даже утверждают, что после полового созревания, а отдельные пессимисты – что сразу по окончании детского возраста) наша мыслительная деятельность начинает угасать, потому что, рано достигнув расцвета, при котором количество нервных клеток у нас максимально, затем мы лишь теряем их на протяжении всей оставшейся жизни. Уже в начальной школе нас пугали, что, если часто забивать голы головой, мозги отобьешь. Это скрытое следствие данного мифа. Позже мы мучились совестью за каждую лишнюю кружку пива, ведь оно якобы усугубляет эту постоянную деградацию. Наконец, хотя об этом, в отличие от детских игр в футбол, чаще всего не говорят вслух, предполагается, что есть некая критическая черта, за которой человек неизбежно впадает в маразм. Коротко говоря, мозг нужно беречь, иначе он износится раньше времени. Согласно этим представлениям, пожилой возраст, а тем более деменция – это состояния нехватки нервных клеток. Все это, очевидно, плохо сочетается с идеей о том, что мозг, как ни крути, используется всего на 10 %. Если у нас в запасе 90 % мозга, можно было бы позволить себе потерять часть клеток без всяких последствий. Где же тогда истина? Ни там, ни там, но оба мифа несут в себе отголоски правды.

Откуда взялся миф про 10 % – а он очень устойчив, – неизвестно. Его часто приписывают отцу сайентологии Рону Хаббарду, но возможно, и это тоже миф. Правда то, что практически никто не использует весь своей потенциал целиком (это то зерно истины, которое кроется здесь).

Тем не менее нет угрозы, что мозг переполнится. Подобные опасения обыгрывает в своей знаменитой карикатуре Гари Ларсон. Если говорить о емкости, наше запоминающее устройство никогда не бывает заполнено целиком. Но при этом и нельзя сказать, что есть какие-то пустые участки, которые бы простаивали. Мозг всегда активен весь полностью. У него большие резервы, в этом плане миф даже говорит правду, но ни в коем случае не в чисто структурном смысле, а в функциональном и, как мы увидим позже, в смысле «пластичности». А число «10 %» и вовсе взято с потолка.

Представление о своем потенциале, по иронии судьбы, люди получили благодаря редкой прихоти природы. Это так называемые саванты – те, у кого на фоне ограниченных умственных способностей есть удивительные «острова гениальности» – отдельные навыки, в которых они способны достичь незаурядных успехов. При этом очередной миф состоит в том, что к савантам относятся многие или даже все люди с аутизмом.

Одним из самых известных савантов был прототип «человека дождя» из одноименного фильма с Дастином Хоффманом, Ким Пик [3]. Он мог, один раз проглядев текст (это даже нельзя назвать чтением), «пересказывать» наизусть целые книги. К концу жизни его память хранила содержание приблизительно двенадцати тысяч книг, которые он смог запомнить слово в слово. Это показывает, какие объемы информации способен вместить человеческий мозг. Некоторые предпринимают попытки добраться до этих сокровищ, или, по крайней мере, их подобие. «In search of the rain man within us all» («поиски человека дождя в каждом из нас») – так это называет Дарольд Трефферт, специалист по савантам. Проблема, однако, в том, что Ким Пик мог использовать свои огромные знания только в совершенно статичном виде. Он не обладал способностью отбирать информацию; его память была похожа на склад. Ассоциативное мышление у него развилось лишь на очень поверхностном уровне. Связь между двумя полушариями его мозга оставалась рудиментарной. По-настоящему обрабатывать свои колоссальные знания савантам чаще всего не удается. Они замечательно производят вычисления, но не становятся от этого математиками.

По-видимому, реализовать весь потенциал какой-либо функции, которая обычно используется частично, можно только очень высокой ценой. То же самое происходит с рекордсменами в других сферах, например в большом спорте. Здесь тоже, как сказали бы экономисты, возникают «издержки упущенных возможностей». В такой ситуации все ресурсы, будь то время, энергия или инфраструктура, направляются исключительно в одно русло. Олимпийские чемпионы по синхронным прыжкам не бывают одновременно блестящими пианистами. Зато благодаря савантам мы знаем, что у нас не хватает ресурсов на обработку информации, а не на ее хранение.

О «резервах» мы подробно поговорим позже. Сейчас важно отметить, что в мозге не существует каких-то земель, которые можно было бы осваивать. Нет нервных клеток, которые валялись бы без дела и только ждали своего часа.

Откуда взялся противоречащий «правилу 10 %» миф о том, что мы всю жизнь теряем нервные клетки мозга, тоже вполне очевидно. У нас действительно никогда не будет столько нервных клеток, сколько было в детстве. Ведь они формируются в избытке, и подобно тому, как скульптор высекает из куска мрамора Венеру, рожденную из морской пены, так и структура мозга освобождается от всего лишнего в зависимости от опыта (или его отсутствия). Все, что не используется, исчезает. Это также оправданно с энергетической точки зрения, поскольку нервные клетки расходуют чрезвычайно много энергии. А ее всем животным всегда не хватает. Мозг – вещь полезная, но затратная, поскольку очень энергоемкая.

Оказалось, что иметь максимально компактный мозг выгодно. Но его «оптимизация» не продолжается бесконечно по окончании детского и юношеского возраста. После полового созревания состояние стабилизируется. С годами нервные клетки действительно гибнут, но в очень разных количествах, и нет простой связи между числом нервных клеток и их деятельностью или производительностью. Во многих зонах мозга число нейронов колеблется от человека к человеку сильнее, чем у одного человека в течение среднего срока жизни. Однако действует все тот же принцип: то, что не используется, не хранится. Как несложно догадаться, это все же совершенно иная ситуация, чем когда гибнут клетки, исполняющие важную функцию. По-видимому, нервных клеток в мозге ровно столько, сколько требуется для ее исполнения. То, что не находит постоянного применения, ликвидируют. То, что было (как и то, чего не было), формирует будущее. Утраченные возможности вернуть невозможно.

При деменции, напротив, гибель нервных клеток приобретает по-настоящему широкий размах. Но это патологическое состояние, а не просто усугубление или ускорение физиологического процесса. И даже в этом случае оценить масштабы происходящего непросто, ситуация очень запутанная и может быть разной. Датский нейроанатом Марк Вест с помощью очень сложного и точного метода определял количество нейронов в мозге. На рис. 2 (см. вклейку) показаны количества клеток в гиппокампе – этот отдел очень важен для обучения и памяти, поэтому деменция поражает его уже на ранних стадиях и с большой силой. Как видно, изменения количества клеток с возрастом незначительны по сравнению с различиями между отдельными людьми. Выделяются на общем фоне только те, кто страдает болезнью Альцгеймера. В остальном по количеству нейронов в отсутствие деменции невозможно узнать возраст человека, чей мозг мы исследуем [4].

Нейродегенеративные заболевания в некоторой степени действительно обусловлены гибелью нервных клеток. Данные, представленные Марком Вестом, в том числе говорят об этом. То же относится и к болезни Паркинсона. При этом заболевании в первую очередь начинают гибнуть нейроны в особом, небольшом и четко ограниченном отделе мозга, который называется Substantia nigra, или «черная субстанция», и гибель этих клеток несет за собой сложные последствия для мозговых функций. Угасают управляющие сигналы, необходимые для моторной и умственной деятельности. Однако нужно учитывать, что при болезни Паркинсона должно погибнуть около 80 % нервных клеток, прежде чем появятся первые симптомы заболевания. Очевидно, здесь также присутствуют мощные компенсаторные возможности или даже «резервы». Но это, кстати, не значит, что из нервных клеток черной субстанции мы используем всего 20 %!

Идея о том, что в условиях мозга взрослых тоже образуются новые нейроны, во многом так привлекательна, поскольку она противостоит пессимистичному и широко распространенному взгляду на мозг как на песочные часы. Пусть наши нервные клетки и правда постоянно гибнут. Но вдруг можно надеяться, что нейрогенез взрослых восполняет эти потери? К сожалению, у этой очень приятной мысли тоже есть все шансы превратиться в миф. Нейрогенез взрослых ограничен отдельными зонами мозга, а количество новых нервных клеток очень, очень мало. Да и на самом деле нет никаких признаков того, что у человека (в отличие от некоторых животных) это явление призвано обеспечить регенерацию изнутри. Нейрогенез взрослых не дает мозгу возможности регенерировать. Клетки кишечника замещаются в колоссальных количествах, но с нервными клетками все обстоит совершенно иначе. Оттого что открыли нейрогенез взрослых, множество неврологических и психиатрических заболеваний не перестают быть хроническими.

Но зачем же тогда нужны эти новые клетки? Может быть, раз их так мало, они вообще не играют существенной роли в функциональном, а значит, и медицинском плане? Или они все-таки дают основания для оптимизма, пусть и не в той области, на размышления о которой нас наводит миф? Ажиотаж вокруг открытия нейрогенеза взрослых частично связан с идей каким-то образом преобразовать потенциал новых нейронов и направить его на то, чтобы все же усилить способность мозга к регенерации. В свете современных знаний очевидно, что это невозможно, но и не совсем утопично, как может показаться (и мы об этом еще поговорим подробнее). Вот только с нейрогенезом, каким мы наблюдаем его в обычном мозге, эта утопия из мира биотехнологий связана очень слабо.

Однако вся эта история, как выясняется, достаточно фантастическая и без вторичных выгод такого рода. Все больше данных указывает на важнейшую роль нейрогенеза взрослых в нормальной деятельности нашего мозга. Это вовсе не средство регенерации, а скорее, и об этом говорят в том числе и птицы Ноттебома, часть фундаментального механизма, который лежит в основе наших способностей к обучению и запоминанию.

Джозеф Альтман открывает нейрогенез взрослых

Нейрогенез взрослых открыл не Фернандо Ноттебом, как можно было бы подумать из-за канареек, а Джозеф Альтман, психолог-исследователь из Массачусетского технологического института (MIT) в Бостоне. В 1965 году он совместно со своим студентом Гопалом Дасом опубликовал сенсационную статью, в которой ученые сообщали, что в мозге взрослых крыс образуются новые нервные клетки (см. рис. 3 на вклейке)[5]. Это положило начало нашим знаниям о нейрогенезе взрослых в мозге млекопитающих. Данной статье предшествовало еще несколько работ Альтмана, в том числе работа 1962 года, опубликованная, ни много ни мало, в знаменитом научном журнале Science, где в конечном счете был просто задан прямой вопрос: существует ли нейрогенез взрослых? Тогда исследователь не смог ответить ничего более определенного, чем «возможно», хотя и это уже было немало [6]. Вопрос прозвучал с олимпа науки, а ответ был дан в издании, хотя и пользующемся признанием, но все же очень скромном – Journal of Comparative Neurology. В 1963 году Альтман опубликовал еще одну статью, в которой он уже продемонстрировал новую нервную клетку, но особого внимания на это никто не обратил [7]. Такая публикация «в рассрочку» была по-своему любопытным явлением, а в сегодняшней науке, проникнутой духом оптимизации, и вовсе едва представима.


Илл. 4. Джозеф Альтман родился в Венгрии, через Германию и Австралию уехал в США. Он открыл нейрогенез взрослых за двадцать лет до Фернандо Ноттебома


Изначально Альтман не интересовался образованием новых нейронов. Он искал метод, который позволил бы сделать видимыми проявления мозговой деятельности. Это примерно то же, что сегодня пытаются делать с помощью функциональной магнитно-резонансной томографии (фМРТ) – «наблюдать работу мысли», как выразился Михаэль Хагнер [8].

Для этого Альтман использовал аминокислоту лейцин, меченную радиоактивным изотопом. Нейрон в процессе активного метаболизма[5] встраивает это вещество в различные белки. Таким образом, возбужденная нервная клетка, если перед этим она получила меченый лейцин, впоследствии будет излучать измеримый радиоактивный сигнал. Если нанести на препарат с такими клетками слой фотоэмульсии, она почернеет под воздействием излучения. Этот прием называется авторадиографией. Альтман с помощью шприца вводил крысам меченый лейцин и оставлял их побегать. Позже, исследуя ткань их мозга, он обнаружил потемневшую фотоэмульсию в той части новой коры, которая отвечает за произвольные движения. Он нашел видимое проявление деятельности головного мозга! К сожалению, опыты выглядели не слишком достоверно и давали неустойчивые результаты, поэтому Альтман стал искать что-то еще, чтобы измерить это в мозге с помощью авторадиографии и получить менее расплывчатый и, как он надеялся, более устойчивый сигнал, который позволил бы ему откалибровать свой метод. Он натолкнулся на статьи, за несколько лет до этого опубликованные канадскими исследователями, где речь шла о делении клеток мозга. Здесь тоже использовалась авторадиография, и в последующих опытах Альтман хотел просто посмотреть, дает ли деление клеток в мозге стабильный сигнал.

Метод, который Альтман использовал, когда обнаружил нейрогенез взрослых (и который мы подробно опишем в следующей главе), широко применялся уже несколько лет, к тому времени с ним были проведены весьма результативные исследования, а кроме того, он позволял ответить на вопрос, где именно в процессе развития мозга происходит клеточное деление. Скорее всего, Альтман был первым, кто использовал этот метод на взрослом мозге. Собственно говоря, для этого не было никаких оснований, разве что можно было использовать его как отрицательный контроль[6] для каких-то совершенно иных процессов. Проведенные на тот момент исследования давно уже показали, что деление клеток по окончании развития организма, «несомненно», прекращается. По крайней мере, почти, но на нюансы никто не обращал внимания.

Но это было еще не все. Альтман намного опередил свое время. Его работа 1965 года и по сегодняшним меркам выглядит исчерпывающей и многогранной. Он уже тогда подумал обо всех назревавших вопросах и задал стандарт, на который впоследствии пришлось ориентироваться всем. Однако история не пошла по простому пути. Когда ученый совершает открытие, к которому научное сообщество еще не готово, сам исследователь нередко остается у разбитого корыта.

В 1969 году Альтман нашел нейрогенез взрослых еще в одной зоне, в обонятельной луковице [9]. Он опубликовал массу работ по нейрогенезу у различных животных и описал это явление со всей точностью, какая тогда была возможна. И все же с двумя проблемами, с двумя открытыми вопросами ему справиться не удалось. Первый вопрос: как однозначно определить, что перед нами действительно новые, только что появившиеся нервные клетки, а не просто клетки, которые выглядят как нейроны, но не функционируют соответствующим образом? И второй: откуда они вообще берутся? На эти вопросы он не мог ответить в силу того, что для этого требовались методы, разработанные лишь десятки лет спустя, и поэтому допустил ряд промахов, которые многие позже несправедливо ставили ему в упрек. Например, он описал нейрогенез взрослых еще и в зрительной коре головного мозга, как мы сегодня знаем, ошибочно. Но это не умаляет его роли как основоположника в данной исследовательской области. Эйнштейн тоже ошибался (например, когда отвергал квантовую теорию), а научный прогресс невозможен без заблуждений. Только ошибки и заблуждения двигают нас вперед. Легко быть умным задним числом. Должно быть, в то время точно определить разницу было чрезвычайно трудно. Ведь новые клетки коры головного мозга – это не новые нейроны, но они действительно очень и очень похожи.

Что делать с явлением нейрогенеза взрослых, было не вполне понятно, и в нем видели скорее любопытный факт, чем важный нейробиологический процесс. Кроме того, очевидно, на тот момент еще не удалось разрешить ряд методологических противоречий. В результате звезда Альтмана в его научной области закатилась, и он нажил очень серьезные проблемы, настолько, что едва мог продолжать свою карьеру. Он ощущал это как несправедливость, и отчасти был прав. И все же первое время его работа выглядела скорее как курьез, чем как по-настоящему большое событие.

Очарованные пластичностью

Тема нейрогенеза взрослых очень притягательна, что ощутил на себе и Альтман. Это можно объяснить нарушением табу и отходом от догм и предрассудков, но лишь отчасти. Ведь роль аутсайдера быстро теряет свою прелесть. В 90-е годы ХХ века, когда нейрогенез взрослых открыли заново, он стремительно вошел в моду. Авторитетная научная редакция New York Times включила нейрогенез взрослых у человека в первую десятку открытий «Десятилетия мозга» – так называлась программа, проведенная правительством США в конце прошлого столетия. Не исключено, что известная газета при этом не только устанавливала мерила и критерии качества в науке, но и рассчитывала вызвать широкий отклик.

Мы начали с канареек Фернандо Ноттебома, потому что очарованию этой темы широкая публика впервые подверглась благодаря им. То, что нейроны – это мельчайшие функциональные единицы мозга, а мозг – это вместилище нашего мышления и нашего «я», сегодня известно всем. Но мы не всегда связываем между собой эти две мысли. Ведь если в них углубиться, можно прийти к гораздо более тяжелым размышлениям. Что, собственно, должно произойти на уровне нервных клеток, чтобы получилось некое «я» и «я думаю»? И как в целом взаимосвязаны структура мозга и его деятельность?

Эту фундаментальную взаимосвязь описывают с помощью не совсем простого для понимания термина «пластичность». Пластичность – это «взаимозависимость структуры и функции». Проще говоря, это то, как структура мозга влияет на его деятельность и как эта деятельность, в свою очередь, воздействует на его структуру. Мы увидим, каким образом пластичность связана с развитием и как она помогает мозгу функционировать. Однако на данном этапе самое главное, что пластичность очень важна для его деятельности. Мозг без пластичности мертв.

Мозг готов изменяться всегда. Его структура не статична, но долгое время считалось, что динамизм свойственен лишь сети нейронных связей. Согласно этим представлениям, количество нервных клеток, узлов в сети, в крайнем случае (причем печальном, например в случае болезни) могло уменьшиться, но никак не могло увеличиться. Нейрогенез взрослых же свидетельствует о том, что в некоторых исключительных областях бывает иначе. В этих привилегированных зонах мозг растет буквально от задачи к задаче.

Это было отчетливо видно на канарейках, и сегодня у нас есть масса данных, указывающих, что таким же образом дело обстоит в гиппокампе млекопитающих. Это позволяет предположить, что здесь имеет место какой-то, возможно, фундаментальный механизм. В отношении различных отделов мозга нейрогенез взрослых все же считается исключением. В гиппокампе действует принцип пластичности, который млекопитающие не используют в других областях мозга. Но гиппокамп вообще представляет собой совершенно особенную зону благодаря своей решающей роли в механизмах обучения и памяти. Это звучит так, будто мы отлично понимаем, что означают с нейробиологической точки зрения «обучение» и «память», как протекают эти процессы. И все же, хотя мозг и его работа по-прежнему хранят в себе множество тайн, уже нельзя сказать, что нам совсем ничего не известно. Генри Молисон (Henry Molaison; известный как Пациент H.M.), страдавший фармакорезистентной эпилепсией, был, пожалуй, самым хорошо изученным пациентом за всю историю медицины. В 1953 году, когда ему было 27 лет, врачи, буквально не зная, что еще предпринять, с обеих сторон удалили ему гиппокамп – структуру, в которой находился очаг его заболевания. Благодаря этому случаю нам известно, что без гиппокампа человек живет всецело «здесь и сейчас» и полностью теряет способность хранить что-либо в долгосрочной памяти. H.M. вполне освоил заново некоторые моторные навыки, а также, по-видимому, определенные семантические связи, но все это произошло неосознанно. Путь от фактов и взаимосвязей к сознательной памяти ему, потерявшему оба гиппокампа, отныне был закрыт.

Кристофер Нолан увековечил подобную весьма устрашающую ситуацию в психологическом триллере «Помни». В интернете можно найти обстоятельные дискуссии о научной достоверности сценария, но по придирчивости этих обсуждений как раз видно, насколько точно Нолан придерживается истины. Во всяком случае, картина впечатляет и позволяет получить представление о такой ситуации. Позже мы еще раз подробнее поговорим о пациенте H.M. и об этом фильме.

Бывают похожие случаи, когда пациент становится необучаемым в результате редкого воспалительного заболевания под названием «лимбический энцефалит». Оно затрагивает преимущественно те области мозга, где расположен гиппокамп, и при этом больной больше не может научиться ничему новому. Правда, при энцефалите это состояние носит временный характер, и впоследствии способность к обучению восстанавливается.

Загрузка...