Глава 4. Стабильность материи

Известно, что время жизни протона по крайней мере в 1020 раз больше, чем возраст Вселенной, но теория говорит, что он может жить вечно. Если протон не бессмертен, то и вся обычная материя когда-то должна распасться.

С. Вайнберг.

Распад протона

Одна из нерешенных задач науки – исследование степени стабильности окружающего нас мира. Долгое время считалось, что атомы вещества вечны и неизменны, затем то же говорилось об атомных ядрах обычных элементов, таких как водород, гелий или углерод, которые казались абсолютно стабильными. Сегодня мы знаем, что теоретическая ядерная физика предсказывает распад абсолютно всех атомных ядер, так что всю материю в какой-то степени можно считать радиоактивной. Последний «бастион стабильности» материи составляют некоторые элементарные частицы, такие как электрон и протон. Нуклоны – протоны и нейтроны – при взаимодействии с другими частицами, превращаются в иные микрочастицы, совершенно отличные от самих нуклонов. Даже в самом элементарном и легчайшем ядре атома водорода, состоящем из одного нейтрона и одного протона, также возможны процессы распада. Поэтому, чтобы понять суть стабильности или нестабильности мироздания, необходимо знать, почему, к примеру, абсолютно стабилен электрон и какие физические принципы предохраняют его от самопроизвольного распада в иные микрочастицы.

Если вспомнить о позитроне как о несущем положительный заряд антипартнере электрона, то можно предположить, что в результате распада протона может появиться именно эта микрочастица. А поскольку протон почти в две тысячи раз больше позитрона по массе, то следует ожидать и дополнительного потока энергии, в который превратится разница масс. Таким образом, позитрон представляет собой состояние с более низкой энергией. Один из фундаментальных физических принципов гласит, что все системы эволюционируют в направлении состояний с более низкой энергией. Вода стекает с холма. Возбужденные атомы испускают свет. Легкие ядра типа водорода в ходе синтеза превращаются в более тяжелые, от гелия и до железа, потому что более крупные ядра имеют более низкую энергию (на частицу). Большие ядра вроде урана являются радиоактивными и распадаются на более мелкие ядра с более низкой энергией. Так почему протоны не могут распасться на позитроны или другие маленькие частицы?


Стивен Вайнберг, один из главных теоретиков фундаментальной стабильности атомной материи


Вообще говоря, закон сохранения энергии-массы требует, чтоб энергия и масса распадающихся микрочастиц была несколько больше суммарной массы продуктов распада, поскольку часть вещества неминуемо превратится в кинетическую энергию. Поэтому при анализе степени стабильности той или иной элементарной частицы надо прежде всего учитывать, на какие микрочастичные компоненты она могла бы разделиться в процессе самопроизвольного распада.

С момента открытия радиоактивности физиков занимает интересный вопрос: а почему мы не наблюдаем вокруг повсеместных актов распада материальных тел?

Эта задача подробно дискутировалась в тридцатых годах прошлого столетия, еще до открытия таких важных компонентов микрочастичных превращений, как позитроны, мезоны и мюоны. Однако уже тогда стабильность материи представлялась как одна из самых непонятных загадок природы, ведь по идее такой нуклон, как протон, всегда может поглотить один из орбитальных электронов, превратив атом водорода в поток квантов электромагнитного излучения. Это дает весьма устрашающую картину, ведь водород – основа вещественной части Вселенной!

Надо сказать, что экспериментальные данные, полученные физиками-элементарщиками, показывают, что любой микрочастичный распад в природе может происходить самопроизвольно, если только этому не препятствует тот или иной принцип сохранения. Тут надо заметить, что в самом общем виде любой закон сохранения устанавливает неизменность суммарного количества некоторых величин, таких как электрический заряд, момент импульса или энергия. Для распада элементарных частиц это означает, что в любом случае он будет иметь вид череды излучений и поглощений частиц в полном соответствии с законами сохранения. Именно поэтому сам по себе вопрос стабильности микрочастиц сводится к проблеме соответствия некоторым фундаментальным принципам сохранения.

Один из сюрпризов, преподнесенных нам физикой частиц во второй половине двадцатого века, состоит в том, что протон, оказывается, не вечен. Протоны, считавшиеся стабильными и бесконечно долго живущими частицами, как оказалось, по истечении достаточно долгого времени могут распасться на более мелкие частицы. В сущности, протонам свойственна экзотическая разновидность радиоактивности. Они излучают более мелкие частицы и превращаются в нечто новое. Этот процесс распада займет время, значительно превышающее современный возраст Вселенной, время жизни звезд и даже намного больше жизни галактик. Получается, что по сравнению с вечностью протоны исчезнут довольно скоро.

Распад протонов может пойти по множеству разных путей, вследствие чего получится много разных продуктов этого распада, таких как позитроны и нейтральные пионы, соответственно, распадающиеся на кванты электромагнитного излучения. Возможно и множество иных вариантов распада, но чаще всего физики обсуждают именно такие пути распада протонов, когда возникают крайне нестабильные электронейтральные пионы, тут же превращающиеся в фотоны. Теоретически вместе с протоном должны распасться и вторые нуклоны – нейтроны, которые в связанном ядерном состоянии должны существовать очень долго. Между тем в свободном состоянии нейтроны живут всего около десяти минут, распадаясь на протон, электрон и антипартнер нейтрино – антинейтрино.

Сегодня физики-теоретики расходятся в оценке сроков жизни связанных нуклонов. Одно время можно было встретить предсказание о том, что большинство протонов распадется примерно через тридцать так называемых космологических декад – 1030 лет. Число очень большое, ведь даже переведенное в миллиардолетия, оно содержит более двадцати нулей. Однако в последний период превалирует точка зрения, возникшая из ряда экспериментов с элементарными частицами, разгоняемыми до гигантских энергий на ускорителях: время жизни протона может даже превысить тридцать две космологические декады.

Если принять во внимание возраст нашего мира в 13,7 миллиардолетия, то сама мысль об экспериментальной проверке времени жизни микрочастиц, оцениваемой в десятки космологических декад может показаться очень странной. Однако тут определенные надежды дает теория радиоактивного распада, согласно которой все элементарные частицы, включая и протоны, не живут в течение какого-то строго определенного времени, по прошествии которого все они одновременно распадаются.

На самом фундаментальном уровне многие физические теории имеют неотъемлемый закон, запрещающий распад протонов, даже несмотря на то что в результате этого распада они могли бы перейти в состояние с более низкой энергией. Кратко этот закон можно сформулировать так: барионное число всегда сохраняется. Протоны и нейтроны состоят из обычного вещества, которое мы зовем барионным. Каждый протон или нейтрон содержит одну единицу барионного числа. Частицы типа электронов и позитронов имеют нулевое барионное число, равно как и фотоны, частицы света. Таким образом, если протон распадается на позитроны, в этом процессе происходит потеря барионного числа.

Долгое время предполагалось, что всеобщая стабильность атомарных образований объясняется существованием электрической биполярности, когда аннигиляция зарядов протона и электрона нарушила бы общий зарядовый баланс. Впоследствии данные идеи были развиты в концепцию «барионного числа», которое так же, как и энергия с электрическим зарядом, должно сохраняться в любых превращениях микрочастиц. Уточним, что барионами считают обширное семейство микрочастиц, включающее вместе с протоном такие «тяжелые» частицы (по-гречески тяжесть – «барис»), как нейтрон и нестабильные микрочастицы гипероны. Условно считается, что все барионы обладают барионным числом «+1». В любой атомарной структуре барионное число составляет общую сумму всех барионных чисел «комплектующих» микрочастиц. Следовательно, распад протона был бы переходом от единичного барионного числа к нулевому ансамбля каких-нибудь легких частиц, что категорически запрещено барионным принципом сохранения.

Загрузка...