В той мере, в какой математические законы относятся к реальности, они не слишком точны, а там, где они точны, они не относятся к реальности.
Мне видится во Вселенной определенный порядок, и единственный способ сделать его зримым – это математика.
Когда именно человек начал считать – то есть измерять множество количественным способом – никто не знает. По сути дела, мы даже не знаем, что было раньше – количественные числительные (один, два, три) или порядковые (первый, второй, третий). Количественные числительные показывают просто множественность набора предметов – например, количество учеников в классе. А порядковые числительные, напротив, показывают порядок, последовательность конкретных элементов группы, например, дату – число в месяце – или номер места в определенном ряду в концертном зале. Изначально считалось, что счет возник именно для того, чтобы решать какие-то мелкие повседневные задачи, а из этого, конечно, следует, что первыми возникли количественные числительные. Однако некоторые антропологи полагают, что изначально числа возникли на исторической сцене в рамках каких-то ритуалов, во время которых те или иные действующие лица должны были появляться в определенном порядке, последовательно. Если это так, то, согласно этой концепции, понятие о порядковых числительных появилось раньше, чем о количественных.
Очевидно, чтобы перейти от простого пересчета предметов к подлинному осознанию чисел как абстрактных понятий, потребовался куда более значительный интеллектуальный скачок. Таким образом, поначалу число, вероятно, относилось в основном к контрасту, противопоставлению, причем в ситуациях, имеющих отношение, вероятно, к жизни и смерти (сколько там волков – один или целая стая?), а подлинное понимание того, что две руки и два дня – это выражения одного и того же числа «два», вероятно, пришло лишь спустя многие столетия. Для этого нужно было пройти этап распознавания не только контрастов, но и общих черт, соответствий. Во многих языках сохранились явные следы того, что первоначально простой акт подсчета количества не соотносился с абстрактными представлениями о числе. Например, на островах Фиджи десять кокосовых орехов называются «коро», а десять лодок – «боло». Подобным же образом у народности тауаде, живущей в Новой Гвинее, пары мужского пола, женского пола и смешанные обозначаются разными словами. Да и мы с вами зачастую обозначаем множества различных предметов разными словами: например, мы говорим «табун лошадей», но никогда не скажем «табун собак».
Конечно, абстрактному пониманию числа «два» во многом поспособствовал тот факт, что у людей столько же рук, сколько ног, глаз и грудей. Но и здесь, скорее всего, ушло довольно много времени, чтобы научиться ассоциировать это число с предметами неодинаковыми – например, с двумя основными светилами, солнцем и луной. Нет никаких сомнений, что первоначально люди научились различать один и два, а затем – два и «много». Этот вывод делается на основании результатов исследований, проведенных в XIX веке среди племен, относительно незнакомых с европейской цивилизацией, а также лингвистических различий в терминах, обозначающих различные числа и в древних, и в современных языках.
Первые свидетельства того, что числа больше двух когда-то объединялись в понятие «много», мы находим в истории пятитысячелетней давности. В шумерском языке, на котором говорили в Междуречье, числительное «три» – «эш» – служило также обозначением множественности как таковой (как суффикс -s в английском языке). Подобным же образом этнографические исследования населения островов Торресова пролива между Австралией и Папуа – Новой Гвинеей, проведенные в 1890 году, показали, что местные жители пользовались так называемой «системой счета через “два”». Слово «урапун» означало у них «один», «окоса» – «два», а дальше шли различные их сочетания: «окоса-урапун» – «три», «окоса-окоса» – четыре. Для чисел больше четырех островитяне применяли слово «рас» – «много». Почти такие же системы номенклатуры обнаружены и у других туземных племен от Бразилии (ботокудо) до Южной Африки (зулусы). Например, австралийское племя аранда словом «нинта» называло «один», «тара» – «два», а дальше шли «тара-ми-нинта» – «три», «тара-ма-тара» – «четыре», а все остальные числа назывались просто «много». Среди этих племен был также распространен обычай считать предметы не по отдельности, а парами.
Возникает интересный вопрос: почему языки, где приняты подобные системы счета, доходят именно до «четырех» и затем останавливаются (несмотря на то, что они уже выражают «три» и «четыре» через «один» и «два»)? Одно из объяснений состоит в том, что на руках у нас по четыре пальца, находящихся в похожем положении. Другое, более тонкое объяснение гласит, что ответ таится в физиологической ограниченности визуального восприятия человека. Согласно нескольким исследованиям, мы способны охватить одним взглядом – без подсчета – самое большее четыре-пять предметов. Может быть, вы помните, что в фильме «Человек дождя» Дастин Хоффман играет аутиста с необычайно развитой наблюдательностью и памятью на числа (на самом деле подобные способности в реальной жизни встречаются лишь в единичных случаях). В одном эпизоде по полу рассыпаются все зубочистки из коробочки, кроме четырех, и герой Хоффмана с первого взгляда подсчитывает, что на полу их 246. Конечно, рядовому человеку такой фокус не по силам. Это подтвердит всякий, кто когда-либо подсчитывал результаты голосования вручную. Обычный прием при этом – отмечать голоса пятерками, причем первые четыре обозначаются прямыми черточками, а пятый – черточкой поперек первых. Это придумали именно потому, что человеку трудно одним взглядом охватить больше четырех черточек. Подобную систему изобрели в английских пабах, где бармену приходилось подсчитывать количество кружек пива, и там она называется «ворота из пяти перекладин». Любопытно, что эксперимент, описанный историком математики Тобиасом Данцигом (1884–1956) в 1930 году в чудесной книге «Число, язык науки» (Tobias Dantzig, «Number, the Language of Science») показывает, что распознавать и различать до четырех предметов способны также некоторые птицы. Вот что рассказывает Данциг:
Один помещик решил пристрелить ворону, которая свила гнездо на смотровой башне его поместья. Он несколько раз пытался застать птицу врасплох, но безуспешно: при приближении человека ворона улетала из гнезда. А затем устраивалась на дереве вдали и выжидала, когда человек покинет башню, после чего возвращалась в гнездо. Однажды помещик придумал уловку: два человека вошли в башню, один остался внутри, а другой вышел наружу и удалился. Однако обмануть птицу не удалось: она держалась в отдалении, пока не вышел тот, кто оставался в башне. В последующие дни опыт повторили с участием двух, трех, а потом и четырех человек – но безуспешно. Наконец были отправлены пять человек; как и прежде, в башню вошли все, один остался внутри, а остальные вышли и удалились. Тут-то ворона и сбилась со счета. Она не смогла отличить пять от четырех и быстро вернулась в гнездо.
Есть много и других свидетельств в пользу гипотезы, что первоначальные системы счета создавались согласно концепции «один, два, много». Это следует из лингвистических различий в образовании множественного числа и дробей. Скажем, в иврите есть особая форма множественного числа для пар одинаковых предметов (например, рук и ног) и особые слова для предметов, у которых есть две одинаковые части (то есть для брюк, очков, ножниц), отличающиеся от обычного множественного числа. Обычно существительные во множественном числе оканчиваются на «им» в мужском роде и на «от» в женском, однако множественное число для глаз, грудей и т. п. и для предметов, у которых есть две одинаковые части, кончается на «аим». Подобные формы есть и в финском и когда-то, в Средние века, были в чешском. Но главное не это: переход к дробям, который, конечно, требует более основательного знакомства с числами, характеризуется явными лингвистическими отличиями в названиях всех дробей, кроме половины. В индоевропейских языках и даже в некоторых неиндоевропейских, например, в иврите и венгерском, названия трети, пятой части и т. д. в целом образуются от соответствующих числительных – три, пять и т. д. Например, «три» на иврите – «шалош», а «одна треть» – «шлиш». По-венгерски «три» – «харом», а «одна треть» – «хармад». А вот слово «половина» и в этих языках никак не связана с числительным «два». Скажем, по-румынски «два» – «дой», а «половина» – «юмате», на иврите «два» – «штаим», а «половина» – «хеци», по-венгерски «два» – «кеттё», а «половина» – «фел». Из этого можно сделать вывод, что хотя человечество довольно рано поняло, что такое 1/2 как число, однако представление о том, что другие дроби как-то связаны с целыми числами («одна какая-то»), вероятно, возникло лишь после того, как был перейден барьер «три – это уже много».
Еще до того как системы счета оказались в полной мере развиты, человеку надо было иметь возможность как-то записывать определенные количества предметов. Древнейшие археологические находки, которые, как полагают, так или иначе связаны со счетом, – это кости с нанесенными через равные интервалы насечками. Самая древняя находка, датируемая примерно 35 000 лет до н. э., – бедренная кость бабуина, обнаруженная в пещере в горах Лебомбо в Африке. На этой кости нанесено двадцать девять насечек. Другая подобная «бухгалтерская» находка – волчья кость с пятьюдесятью пятью насечками (объединенными в две группы – двадцать пять и тридцать, – причем первая разбита еще и на подгруппы по пять), – обнаружена археологом Карелом Абсолоном в 1937 году на стоянке в Долне Вестонице в Чехословакии; ее относят к ориньякской культуре (около 30 000 лет назад). Группировка насечек по пять в особенности говорит в пользу концепции основания системы счисления, о чем я еще упомяну. Точное предназначение этих насечек нам неизвестно, однако, возможно, это учет охотничьей добычи. Группировка, вероятно, помогала охотнику вести счет, не подсчитывая каждый раз все насечки. Подобные размеченные кости были найдены и во Франции, и в пещере Пекарна в Чехии – они относятся к мадленской культуре (около 15 000 лет назад).
Большой интерес ученых вызвала так называемая кость Ишанго, обнаруженная в 1950 году археологом Жаном де Хайнзелином де Брокуром на стоянке Ишанго близ границы между Угандой и Заиром (рис. 6). Это костяная рукоять какого-то орудия, датируемая примерно 9000 г. до н. э., с тремя рядами насечек, организованных в следующие группы: (i) 9, 19, 21, 11; (ii) 19, 17, 13, 11; (iii) 7, 5, 5, 10, 8, 4, 6, 3. Сумма чисел в первых двух рядах – по 60 в каждом, что натолкнуло некоторых ученых на мысль, что они, вероятно, отражают запись фаз Луны в двух лунных месяцах (если предположить, что некоторые насечки из третьего ряда, где сумма составляет всего 48, стерлись). Были предложены и другие, более хитроумные и куда менее правдоподобные толкования. Например, де Хайнзелин, исходя из того, что второй ряд состоит из простых чисел, следующих подряд (то есть чисел, которые делятся только на 1 и сами на себя), а первый ряд – из чисел, которые на единицу отличаются от 10 или 20, предположил, что у жителей Ишанго были какие-то рудиментарные познания в арифметике и что они даже знали о простых числах. Нет нужды говорить, что многим исследователям подобная интерпретация кажется несколько смелой.
Рис. 6
Другую интересную систему записи чисел подарил нам Ближний Восток; она восходит к периоду от девятого до второго тысячелетия до н. э. В самых разных местах, от Анатолии на севере до Судана на юге, археологи находили множество маленьких, похожих на игрушки глиняных предметов разной формы. Это были диски, цилиндры, конусы, пирамидки, зверюшки и т. п. Археолог Дениза Шмандт-Бессера из Техасского университета в Остине изучала эти предметы в конце 1970 годов и выдвинула интереснейшую теорию: она убеждена, что эти глиняные предметы служили при торговле жетонами-пиктограммами и символизировали разные типы подсчитываемых предметов. Скажем, глиняный шарик, вероятно, обозначал какое-то количество зерна, один цилиндр – одну голову скота и т. д. Таким образом, доисторические ближневосточные торговцы могли, согласно гипотезе Шмандт-Бессера, вести учет своего бизнеса, выкладывая в ряды жетоны, соответствующие разным типам товаров, участвующих в торговле.
Какими бы символами ни передавали различные числа – насечками на кости, глиняными фигурками, узелками на бечевке (этой системой пользовались инки, она называлась «кипу») или просто на пальцах, – в какой-то момент в истории человечеству пришлось решать задачу, как передавать большие числа и манипулировать ими. Символические системы, у которых для каждого числа было свое название или свой обозначающий предмет, были обречены на вымирание по сугубо практическим причинам. Нужно было разработать и принять минимальный набор символов, при помощи которых можно было охарактеризовать любое число – точно так же, как буквы в алфавите в некотором смысле можно назвать минимальным набором символов, при помощи которых можно выразить весь наш лексикон, все письменные знания. Эта необходимость подвела нас к концепции основания системы счисления – идее, что числа можно организовывать иерархически, в соответствии с определенными порядками. Наша система счисления основана на 10, и мы в повседневной жизни настолько к этому привыкли, что нам трудно представить себе, как можно выбрать другое основание.
Почему у нас именно десятичная система счисления, объясняется довольно просто – что вовсе не означает, что на ее развитие не понадобилось много времени. Мы группируем состав числа таким образом, что десять единиц на каждом иерархическом уровне составляют одну единицу уровнем выше. То есть 10 раз по единице – это 1 десяток, 10 десятков составляют 1 сотню, 10 сотен – 1 тысячу и т. д. Собственно имена числительные и расположение цифр также отражают иерархическую группировку. Когда мы записываем, например, число 555, то повторяем одну и ту же цифру три раза, однако каждый раз ее значение меняется. Первая цифра справа обозначает 5 единиц, вторая – 5 десятков или 5 раз по 10, третья – 5 сотен, то есть 5 раз по 10 десятков (или 5×102). Это важнейшее правило позиции, позиционную нумерацию, придумали вавилоняне (их система счисления имела основание 60, то есть была шестидесятеричной, о чем мы поговорим чуть дальше) примерно во втором тысячелетии до н. э., а затем в течение примерно 2500 лет ее независимо открыли китайцы, майя в Центральной Америке и индийцы.
Из всех индоевропейских языков самые ранние дошедшие до нас тексты написаны на санскрите – языке, зародившемся на севере Индии. В частности, четыре древних священных писания индуизма, в названии которых есть санскритское слово «веда» – «знание» – датируются V в. до н. э. Все числа от 1 до 10 на санскрите называются разными, неродственными словами: эка, два, три, чатвар, панча, шаш, сапта, ашта, нава, даша. Все числа от 11 до 19 представляют собой просто сочетание количества единиц и слова «десять». То есть 15 – это «панча-даша», 19 – «нава-даша» и т. д. Подобные числительные имеются, скажем, в английском, где все числа от 13 до 19 кончаются на -teen. Если вам вдруг станет интересно, откуда в английском языке взялись «eleven» и «twelve» («одиннадцать» и «двенадцать»), поясню: «eleven» произошло от «an» («один») и «lif» («осталось» или «остаток», то есть «один остался»), а «twelve» – от «two» («два») и «lif» (то есть «два осталось»). То есть эти числительные означают, что после десяти осталось еще один или два. Названия десятков в английском и санскрите также образуются одинаково – при помощи числа и слова «десять» во множественном числе («twenty», «thirty» и пр.): скажем, 60 на санскрите – «шашти»; более того, все индоевропейские языки образуют числительные очень похожими способами. Так что все, кто говорит на этих языках, очевидно, усвоили одну и ту же систему счисления – десятичную.
Почти не приходится сомневаться, что практически всемирная популярность десятичной системы счисления объясняется всего-навсего тем обстоятельством, что у нас десять пальцев – так уж захотела природа. Гипотезу эту впервые выдвинул греческий философ Аристотель (384–322 до н. э.), когда в своем сочинении «Проблемы» задался вопросом: «Почему все люди, и варвары, и греки, считают до десяти, а не до какого-нибудь другого числа?» На самом деле основание 10 ничем не лучше, скажем, основания 13. Можно даже теоретически поспорить, что раз 13 – простое число, то есть делится только само на себя и на единицу, в качестве основания системы счисления оно даже удачнее 10, поскольку в такой системе счисления большинство дробей окажутся несократимыми. Например, в десятичной системе счисления число 36/100 можно записать также как 18/50 или 9/25, в системе счисления вроде тринадцатеричной подобная неоднозначность записи исключена. Однако десятичная система одержала верх, потому что у каждого человека перед глазами было десять пальцев, и пользоваться ими было просто. В некоторых малайско-полинезийских языках слово «ладонь» – «лима» – означает и «пять». Означает ли это, что десятичную систему счисления приняли все известные цивилизации? Нет.
Среди прочих оснований систем счисления, которые применяли некоторые народы по всему миру, самым популярным оказалось 20 (двадцатеричная система счисления). В этой системе, которая когда-то была распространена на больших территориях Западной Европы, разряды формируются не на основе 10, а на основе 20. Очевидно, что для расширения базы к пальцам на руках присовокупили и пальцы на ногах. Например, у эскимосов «двадцать» обозначается выражением «теперь человек цельный». Во многих современных языках следы двадцатеричной системы счисления еще сохраняются. Например, по-французски «восемьдесят» будет «quatre-vingts» («четыре двадцатки») и когда-то существовала и архаическая форма «six-vingts» («шесть двадцаток»). А еще более яркий пример – название больницы в Париже, основанной в XIII веке: она до сих пор называется «L’Ôpital de Quinze-Vingts» – «Больница пятнадцати двадцаток» – поскольку первоначально была рассчитана на 300 коек для слепых ветеранов. Подобным же образом по-ирландски «сорок» – «daichead» от «da fiche» («дважды двадцать»), по-датски слова «шестьдесят» и «восемьдесят» («tresindstyve» и «firsindstyve» соответственно, сокращенно «tres» и «firs») буквально означают «три двадцатки» и «четыре двадцатки».
Однако самая удивительная система счисления в древности, а может быть, и за всю историю человечества – это шестидесятеричная система. Этой системой пользовались шумеры, жители Междуречья, и хотя корнями она восходит к четвертому тысячелетию до н. э., следы ее заметны и в наши дни: мы измеряем время в часах, минутах и секундах и делим окружность на 360 градусов (60 × 6), а каждый градус подразделяем на минуты и секунды. Шестьдесят как основание системы счисления требует отличной памяти, поскольку подобная система, в принципе, предполагает индивидуальные названия и символы для всех чисел от 1 до 60. Шумеры понимали, что это трудно, и прибегли к некоторой уловке, чтобы числа было легче запоминать: ввели 10 как промежуточную ступень. Введение 10 позволило им ограничиться отдельными словами только для чисел от 1 до 10, а десятки от 10 до 60 передавались словосочетаниями. Скажем, шумерское слово «сорок» – «нимин» – это сочетание слова «двадцать», «ниш», и слова «два», «мин». Число 555 в шестидесятеричной системе счисления, то есть 5 × (60)2 + 5 × (60) + 5, в нашей, десятеричной системе счисления будет означать 18 305.
По поводу того, какая логика обстоятельств вынудила шумерцев выбрать столь необычное основание для своей системы счисления, выстроено много гипотез. Некоторые из них опираются на особые математические свойства числа 60: это первое число, которое делится на 1, 2, 3, 4, 5 и 6. Другие гипотезы пытаются связать 60, например, с количеством месяцев и дней в году (округлив число дней до 360) в каком-то сочетании с числами 5 и 6. Совсем недавно учитель математики и писатель из Франции Жорж Ифра в своей замечательной книге «Всеобщая история чисел» (Georges Ifrah. A Universal History of Numbers) заметил, что выбор числа 60 мог быть следствием смешения двух народов-иммигрантов, один из которых пользовался пятеричной, а другой – двенадцатеричной системой счисления. Очевидно, что основание 5 происходит от количества пальцев на одной руке, и следы подобной системы еще видны в некоторых языках, например, у кхмеров, жителей Камбоджи, а еще заметнее – в мертвом языке саравека, на котором говорил южно-американский народ сараве. Основание 12, множество следов которого заметны даже в современных языках и культурах – возьмем хотя бы британскую систему мер и весов – вероятно, происходит от количества фаланг на четырех пальцах (без большого пальца, потому что именно им производился подсчет).
Иногда в самых разных местах попадаются и экзотические системы счисления. В «Алисе в Стране Чудес» Льюиса Кэрролла Алиса, чтобы удостовериться, что она понимает, в каких странных обстоятельствах очутилась, говорит: «А ну-ка, проверю, помню я то, что знала, или нет. Значит так: четырежды пять – двенадцать, четырежды шесть – тринадцать, четырежды семь… Так я до двадцати никогда не дойду!» (Пер. Н. Демуровой). Знаменитый писатель-популяризатор математики Мартин Гарднер в своих комментариях к книге Кэрролла приводит остроумное объяснение такой необычной таблицы умножения, к которой прибегла Алиса, почерпнутое из книги А. Л. Тейлора «Белый рыцарь» (A. L. Taylor. The White Knight. L., 1952): «Для системы счисления, использующей как основание 18 (“восемнадцатеричная”), 4 × 5 действительно равняется 12. В системе счисления с основанием 21 справедливо равенство 4 × 6 = 13. Если продолжить эту прогрессию, каждый раз увеличивая основание на 3, то произведения будут увеличиваться на единицу, пока мы не дойдем до 20. Здесь впервые наш метод откажет: 4 × 13 равняется не 20 (для системы чисел с основанием 42), а “1”, за которой будет следовать символ, играющий роль “10”» (Пер. Н. Демуровой). Эта гипотеза, несомненно, подкрепляется тем фактом, что Чарльз Доджсон, избравший себе псевдоним Льюис Кэрролл, был математиком и читал лекции в Оксфорде.
Какие бы системы счисления, с какими бы основаниями ни применяли древние цивилизации, прежде всего, они понимали и усваивали множество целых (натуральных) чисел. Это прекрасно нам знакомые 1, 2, 3, 4… Когда люди сумели осознать, что эти числа – абстрактные понятия, им было уже несложно начать приписывать числам особые качества. По всему миру, от Греции до Индии, числа наделялись тайной властью. В некоторых древнеиндийских текстах утверждается, что числа практически божественны, обладают «природой Брамы». В этих манускриптах содержатся выражения, очень похожие на обожествление чисел, например, «слава единице». Подобным же образом знаменитый афоризм греческого математика Пифагора, о жизни и деятельности которого мы еще поговорим в ближайшем же будущем, гласит: «Все есть число». С одной стороны, подобная восторженность привела к значительному прогрессу в теории чисел, однако с другой – породила нумерологию, набор догм, согласно которым жизнь Вселенной во всех своих аспектах связана с числами и их индивидуальными свойствами. Для нумеролога числа – основа бытия, а их символические значения связаны с отношениями между небесами и деятельностью человека. Более того, если в священных писаниях упоминается то или иное число, это не может быть просто так, в любом числе есть потаенный смысл. Иногда нумерологические поветрия затрагивали целые страны. Например, в 1240 году христиане и иудеи Западной Европы ожидали пришествия некоего царя-мессии с Востока, поскольку так случилось, что 1240 год по христианскому календарю совпал с 5000 годом календаря иудейского. Не спешите отмахиваться от подобных всплесков эмоций – мол, все это наивная романтика, и подобное могло случиться лишь много веков назад: давайте вспомним, какая невероятная, смехотворная шумиха сопровождала конец минувшего тысячелетия.
Среди разновидностей нумерологии особняком стоит иудейская гематрия (вероятно, слово это родственно словосочетанию «геометрическое число» на древнегреческом) и ее исламский и греческий аналоги – хисаб аль-джумал («вычисление целого») и изопсефия (от греческого σος «равный» и ψφος «галька, камешек») соответственно. В этих системах числа приписываются каждой букве алфавита (обычно древнееврейского, древнегреческого, арабского или латинского). Если сложить числовые значения букв, составляющих слово, получаются новые слова или даже фразы, которые можно интерпретировать. Особенно распространена была гематрия в рамках иудейского мистического течения, так называемой каббалы, расцвет которой пришелся на XIII–XVIII века. Иудейские ученые зачастую поражали слушателей тем, что могли в точности повторить последовательность якобы случайных чисел, на произнесение которой уходило добрых десять минут. На самом же деле они переводили отрывок из Торы на числовой язык гематрии.
Один из самых ярких примеров нумерологии – 666, «число Зверя». «Зверем» принято считать Антихриста. В «Откровении Иоанна» (13:18) мы читаем: «Здесь мудрость. Кто имеет ум, тот сочти число зверя, ибо это число человеческое; число его – шестьсот шестьдесят шесть». Слова «это число человеческое» подвигли многих христианских мистиков на то, чтобы искать и выявлять исторических лиц, имена которых, согласно гематрии или изопсефии, имели значение 666. Среди прочих это были и Нерон Цезарь, и Диоклетиан – оба они преследовали христиан. Если написать «Нерон Цезарь» буквами древнееврейского алфавита – רסק נורנ – и затем подсчитать их числовое значение согласно гематрии, получится (справа налево) 50, 200, 6, 50; 100, 60, 200 – то есть 666 в сумме. Подобным же образом, если сосчитать в имени императора Диоклетиана DIOCLES AVGVSTVS сумму значений тех букв, которые одновременно служат и римскими цифрами – D, I, C, L, V – получится опять же 666 (500 + 1 + 100 + 50 + 5 + 5 + 5). Очевидно, что все эти умозаключения не только надуманны, но и попросту ошибочны (например, чтобы вывести такое числовое значение слова «Цезарь», надо опустить из общепринятого написания одну букву с числовым значением 10).
Как ни поразительно, в 1994 году была «открыта» даже связь между числом зверя и золотым сечением (статья об этом опубликована в популярном журнале «Journal of Recreational Mathematics»). При помощи карманного калькулятора, где есть тригонометрические функции синус и косинус, можно вычислить значение выражения [sin 666° + cos (6 × 6 × 6)°]. Введите 666, нажмите клавишу [sin], сохраните это число, затем введите 216 (= 6 × 6 × 6), нажмите клавишу [cos] и сложите результат с тем числом, которое вы сохранили. Полученное число окажется довольно точным приближением к числу φ (с обратным знаком). Кстати, бывший президент США Рональд Рейган и его супруга Нэнси сменили номер своего дома в Калифорнии с 666 по Сент-Клод-роуд на 668, чтобы избежать ассоциаций с числом зверя; кроме того, кодом 666 открывался загадочный чемоданчик в фильме «Криминальное чтиво» Квентина Тарантино.
Очевидно, что мистическое отношение к целым числам зачастую связано с тем, что они проявляются в организме человека и животных и в космосе, каким его воспринимали древние культуры. Число 2, скажем, широко представлено не только в нашем теле – глаза, руки, ноги, ноздри, уши и пр.: у нас два пола, два основных светила – Солнце и Луна – и т. п. Далее, субъективное восприятие времени делится на прошлое, настоящее и будущее, а поскольку ось вращения Земли всегда направлена более или менее в одно место – примерно в сторону Полярной звезды (с небольшими отклонениями, о которых мы поговорим в главе 3) – у нас четыре времени года. Смена времен года отражает попросту то обстоятельство, что в течение года ориентация земной оси относительно солнца меняется. Чем ближе к перпендикуляру падают на Землю солнечные лучи, тем дольше день и выше температура. В целом числа во многих обстоятельствах служили своего рода посредниками между космическими явлениями и повседневной жизнью человека. Например, названия семи дней недели во многих языках, в том числе в английском, происходят от названий небесных тел, которые раньше совокупно считали планетами: Луны, Марса, Меркурия, Юпитера, Венеры, Сатурна и Солнца.
Целые числа подразделяются на четные и нечетные, и более всех подчеркивали их различия и приписывали им всевозможные диковинные качества не кто иные как пифагорейцы. В частности, как мы вскоре убедимся, интерес к золотому сечению пробудился именно благодаря тому, что пифагорейцы весьма почитали число 5 и восхищались пятиконечной звездой.
Пифагор родился около 570 года до н. э. на острове Самос в Эгейском море (у побережья Малой Азии), а где-то между 530 и 510 годом переселился в греческую колонию Кротон в южной Италии, которую тогда называли Великой Грецией. По всей видимости, покинуть Самос Пифагору пришлось из-за безжалостной тирании Поликрата (казнен ок. 522 г. до н. э.), который добился доминирования Самоса в Эгейском море. Вероятно, Пифагор последовал совету математика Фалеса Милетского, который, возможно, был его учителем; так или иначе, он некоторое время (чуть ли не 22 года, по некоторым источникам) прожил в Египте, где, видимо, изучал математику и философию и перенимал религиозные воззрения у египетских жрецов. Когда Египет захватили персидские войска, Пифагора, возможно, взяли в плен и вместе с египетскими священнослужителями доставили в Вавилон. Там он, вероятно, и познакомился с математическими достижениями Междуречья. Однако египетской и вавилонской математики пытливому уму Пифагора оказалось мало. Для обоих этих народов математика ограничивалась практическими «рецептами» для конкретных вычислений. А Пифагор был одним из первых, кто понял, что числа – это абстрактные понятия, существующие сами по себе.
В Италии Пифагор начал читать лекции по философии и математике, и вокруг него быстро сложился кружок последователей, в который, возможно, входила и юная прелестная Феано (дочь Милона, оказавшего ученому гостеприимство), на которой Пифагор впоследствии женился. Атмосфера Кротона оказалась крайне благоприятной для учения Пифагора, поскольку в тамошнем обществе была мода на самые разные полумистическипе культы. Для своих последователей Пифагор установил жесткие правила, обратив особое внимание на час пробуждения и час отхода ко сну. «Все дела сначала обдумай, чтоб не было худо», – повторял про себя каждый пифагореец поутру. А вечером напоминал себе:
В успокоительный сон не должно тебе погружаться,
Прежде чем снова не вспомнишь о каждом сегодняшнем деле:
В чем провинился? Что мог совершить? И чего не исполнил?
Подробности жизни Пифагора и подлинный его вклад в развитие математики скрыты завесой неопределенности. Одна легенда гласит, что на бедре у него было золотое родимое пятно (либо бедро было целиком золотое), по которому его последователи определили, что он сын бога Аполлона. До нас не дошло ни одной биографии Пифагора, написанной в античные времена, а более поздние жизнеописания, например, «О жизни, учениях и изречениях знаменитых философов» Диогена Лаэртского, относящееся к III в., зачастую полагаются на множество различных источников, не всегда надежных. Очевидно, сам Пифагор не оставил сочинений, и все же его влияние было так велико, что наиболее преданные его последователи образовали тайное общество – братство – и впоследствии стали называться пифагорейцами. Аристипп из Кирены рассказывал, что Пифагора так нарекли потому, что он излагал (άγορεύω) истину, подобно дельфийскому оракулу (Πύθιος).
Обстоятельства смерти Пифагора столь же туманны, сколь и факты его биографии. Согласно одной легенде, дом в Кротоне, где он жил, подожгла возмущенная толпа завистников – пифагорейцы считались элитой общества, – а сам Пифагор пытался бежать и был убит, поскольку очутился у поля, засеянного бобами, а топтать бобы он не мог: для пифагорейцев они были священны. Другую версию предложил греческий ученый и философ Дикеарх из Мессены (ок. 355–280 гг. до н. э.), который утверждал, что Пифагор укрылся в храме Муз в Метапонте, где и умер, по доброй воле прожив сорок дней без пищи и воды. Совершенно иную историю рассказывал Гермипп: якобы Пифагора убили сиракузяне во время войны против армии Акраганта, к которой примкнул Пифагор.
Хотя ни самому Пифагору, ни его последователям нельзя с уверенностью приписать никаких конкретных математических достижений, несомненно, именно им удалось слить воедино математику, жизненную философию и религию, и это единство не знает себе равных в истории. С этой точки зрения интересно, пожалуй, отметить одно хронологическое совпадение: Пифагор был современником Будды и Конфуция.
В сущности, считается, что именно Пифагору мы обязаны словами «философия» («любовь к мудрости») и «математика» («предмет изучения»). «Философ» для Пифагора – тот, кто «всецело отдается поиску смысла и цели самой жизни… раскрытию тайн природы». Учение Пифагор ставил выше всех других занятий, поскольку, по его словам, «большинству людей от рождения или по природе недостает средств для достижения благосостояния и обретения власти, однако способность приобретать новые знания есть у всех». Кроме того, он прославился и доктриной метемпсихоза, переселения душ: согласно Пифагору, душа бессмертна и возрождается в телах людей и животных. Из этой доктрины следовало и строгое вегетарианство, которого придерживались пифагорейцы, поскольку в убитых животных, возможно, переселились души их друзей. Для очищения души пифагорейцы соблюдали строгие правила: например, им было запрещено есть бобы и предписывалось всячески упражнять память. Великий греческий философ Аристотель, по свидетельству Диогена Лаэртского, приводит несколько причин, по которым пифагорейцы воздерживались от бобов: «…то ли потому, что они подобны срамным членам, то ли вратам Аида, то ли потому, что они – не коленчатые, то ли вредоносны, то ли подобны природе целокупности, то ли служат власти немногих (ибо ими бросают жребий)» (Пер. А. Ф. Лосева).
Более всего Пифагор и пифагорейцы прославились тем, что, скорее всего, сыграли важнейшую роль в развитии математики и в ее применении к концепции порядка – будь то порядок музыкальный, космический или даже этический. Каждый ребенок в школе изучает теорему Пифагора: в прямоугольном треугольнике сумма квадратов двух катетов равна квадрату гипотенузы. Геометрический смысл этой теоремы (рис. 7, справа) состоит в том, что площадь квадрата, построенного на самой длинной стороне (гипотенузе) прямоугольного треугольника, равна сумме площадей квадратов, построенных на двух коротких сторонах. Иначе говоря, если длина гипотенузы составляет с, то площадь квадрата, который на ней построен, составит с2, а площади квадратов, построенных на двух других сторонах (длиной а и b) равны а2 и b2 соответственно. Значит, теорема Пифагора может быть представлена в таком виде: в каждом прямоугольном треугольнике а2 + b2 = с2. Когда в 1971 году в республике Никарагуа отбирали десять математических формул, изменивших мир, чтобы выпустить серию почтовых марок, теорема Пифагора была напечатана на второй из них. Числа вроде 3, 4 и 5 или, скажем, 7, 24 и 25 составляют пифагоровы тройки: 32 + 42 = 52 (9 + 16 = 25), а 72 + 242 = 252 (49 + 576 = 625). Треугольники с такими длинами сторон будут прямоугольными.
рис. 7
Кроме того, на рис. 7 представлено, пожалуй, самое простое доказательство теоремы Пифагора: с одной стороны, если вычесть из квадрата со стороной а + b площади четырех равных треугольников, получится квадрат, построенный на гипотенузе (в середине). С другой стороны, если вычесть из того же квадрата те же четыре треугольника, расположив их несколько иначе (слева), получится два квадрата, построенных на коротких сторонах. То есть, очевидно, что площадь квадрата, построенного на гипотенузе, равна сумме площадей двух меньших квадратов. В своей книге «Пифагорейская гипотеза», вышедшей в 1940 году (Elisha Scott Loomis. «The Pythagorean Proposition»), математик Элиша Скотт Лумис представил 367 доказательств теоремы Пифагора – в том числе доказательства Леонардо да Винчи и Джеймса Гарфилда, двадцатого президента США.
На самом деле, пифагоровы тройки научились распознавать задолго до Пифагора, хотя теорема Пифагора как «истина», объединяющая все прямоугольные треугольники, еще не была сформулирована. Пятнадцать таких троек перечислены на вавилонской глиняной табличке, относящейся к старовавилонскому периоду (до 1600 г. до н. э.).
Вавилоняне открыли, что пифагоровы тройки можно составлять по простому правилу – «алгоритму». Возьмите любые два целые числа p и q, так чтобы p было больше q. Теперь можно составить пифагорову тройку из чисел p2 – q2; 2 pq; p2 + q2. Пусть, например, q = 1, p = 4. Тогда p2– q2 = 42–12 = 16–1 = 15; 2 pq = 2 × 4 × 1 = 8; p2 + q2 = 42 + 12= 16 + 1 = 17. Набор чисел 15, 8, 17 – это пифагорова тройка, потому что 152 + 82 = 172 (225 + 64 = 289). Вы и сами можете с легкостью показать, что это справедливо для любых целых чисел p и q. (Заинтересованный читатель найдет краткое доказательство в Приложении 1.) Следовательно, пифагоровых троек существует бесконечное множество – этот факт доказал Евклид Александрийский.
Однако в пифагорейском мире закономерности отнюдь не ограничивались одними треугольниками и вообще геометрией. Традиционно Пифагору приписывают открытие гармонических последовательностей музыкальных нот: он обнаружил, что музыкальные интервалы и высота нот соотносятся с относительной длиной вибрирующей струны. Пифагор отметил, что если разделить струну на целое количество равных промежутков, это (до некоторого предела) приводит к гармоническим и красивым (созвучным) музыкальным интервалам. Когда две произвольно выбранные музыкальные ноты звучат одновременно, обычно их сочетание кажется на наш слух грубым (несозвучным). Приятные звуки получаются лишь в отдельных сочетаниях. Пифагор обнаружил, что эти редкие созвучия возникают тогда, когда ноты производят похожие струны, чьи длины соотносятся как первые несколько целых чисел. Унисон достигается, если струны одинаковой длины (соотношение 1:1), октава – когда струны соотносятся как 1:2, квинта – 2:3, кварта – 3:4. Иначе говоря, можно ущипнуть струну и извлечь ноту. Если ущипнуть струну, которая натянута так же, как первая, но длиной вдвое меньше, услышишь ноту, которая выше первой ровно на одну гармоническую октаву. Подобным же образом 6/5 струны до дают ноту ля, 4/3 от нее дают ноту соль, 3/2 – ноту фа и т. д. Эти замечательные открытия, сделанные еще в древности, заложили основу для более глубокого понимания музыкальных интервалов, которое возникло в XVI веке (вышло так, что в разработке музыкальной теории в то время участвовал и Винченцо Галилей, отец Галилео Галилея). В 1492 году на фронтисписе книги «Theorica Musice» Франкино Гафури поместил чудесный рисунок, изображающий Пифагора, экспериментирующего со звукоизвлечением из различных предметов и устройств – тут и молотки, и струны, и бубенцы, и свирели (рис. 8; справа вверху – библейский Иувал, «отец всех играющих на гуслях и свирели» (Быт. 4:21)).
Рис. 8
Но тут пифагорейцы задумались: если даже музыкальную гармонию можно выразить в числах, вдруг получится математически описать все мироздание? Поэтому они сделали вывод, что все предметы во Вселенной обязаны своими свойствами природе числа. Скажем, астрономические наблюдения показывали, что движение небесных светил также подчинено вполне определенному порядку. Это привело к концепции прекрасной «гармонии сфер» – идее о том, что небесные тела в своем размеренном движении также создают некую гармоническую музыку. Философ Порфирий (ок. 232–304 гг. н. э.), создавший свыше семидесяти трудов по истории, метафизике и литературе, написал также (в рамках четырехтомной «Истории философии») краткое жизнеописание Пифагора – оно так и называется «Жизнь Пифагора». Вот что рассказывает Порфирий: «сам же [Пифагор] умел слышать даже вселенскую гармонию, улавливая созвучия всех сфер и движущихся по ним светил, чего нам не дано слышать по слабости нашей природы» (здесь и далее пер. М. Гаспарова). Перечислив еще несколько выдающихся качеств Пифагора, Порфирий продолжает: «Звуки семи планет, неподвижных звезд и того светила, что напротив нас и называется Противоземлей, он отождествлял с девятью Музами» (Противоземля, согласно пифагорейской теории Вселенной, вращалась напротив Земли по ту сторону огня, образующего центр мироздания). Прошло более двух тысяч лет, и знаменитый астроном Иоганн Кеплер (1571–1630) возродил и переосмыслил концепцию «гармонии сфер». Кеплеру довелось узнать много горя и столкнуться с ужасами войны, и он пришел к выводу, что на самом деле Земля порождает две ноты – ми, что значит «miseria» (лат. «несчастье») и фа, что значит «fames» (лат. «голод»). Вот как писал об этом сам Кеплер: «Земля поет “ми-фа-ми”, так что даже по первому слогу можно догадаться, что в нашем доме верховодят Несчастье и Голод».
Великий Аристотель даже посмеивался над пифагорейской одержимостью математикой. В своем труде «Метафизика» (IV век до н. э.) он писал: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (пер. А. Кубицкого). Хотя в наши дни некоторые причудливые идеи пифагорейцев и вправду могут показаться забавными, однако нужно понимать, что фундаментальные истины, которые за ними стоят, на самом деле не слишком отличаются от того, что говорил Альберт Эйнштейн (в письмах к Морису Соловину): «Математика – лишь средство выразить законы, управляющие природными явлениями». И в самом деле, законы физики, которые зачастую именуют законами природы, представляют собой всего-навсего математические формулы, описывающие те естественные процессы и явления, которые мы наблюдаем. К примеру, основная мысль общей теории относительности Эйнштейна состоит в том, что гравитация – не загадочная сила притяжения, действующая на расстоянии, а скорее выражение геометрии неразделимо связанных пространства и времени. Позвольте на простом примере пояснить, как геометрическое свойство пространства можно принять за силу притяжения вроде гравитации. Представьте себе, что два человека отправляются из двух разных точек, лежащих на экваторе Земли, точно на север. Это означает, что поначалу они будут двигаться параллельно, а параллельные линии, как нас учат в школе, на плоскости никогда не пересекаются. Однако на северном полюсе путешественники неминуемо встретятся. Если эти люди не знают, что на самом деле путешествуют по изогнутой поверхности сферы, они могут сделать вывод, будто их притянула некая сила: ведь они начали двигаться по параллельным линиям, а потом пришли в одну точку. Получается, что геометрическое искривление пространства может проявляться как сила притяжения. Вероятно, пифагорейцы первыми осознали абстрактную концепцию, состоящую в том, что основные силы во Вселенной можно выразить языком математики.
Особенно пифагорейцев интересовали различия между четными и нечетными числами; возможно, это было связано с простыми гармоническими соотношениями в музыке – 1:2, 2:3, 3:4. Пифагорейцы приписывали нечетным числам мужские качества, а также, не без предвзятости, свет и добро, а четным – женские качества, и связывали их с темнотой и злом. Некоторые предрассудки, связанные с четными и нечетными числами, сохранялись веками. Например, римский ученый Плиний Старший (23–79 н. э.) в своей «Historia Naturalis» (энциклопедии по естественной истории в тридцати семи томах) писал: «Почему мы придерживаемся мнения, будто для всякой цели лучше всего подходят именно нечетные числа?» Сравним эпизод из «Виндзорских насмешниц» Шекспира (акт V, сцена I), где сэр Джон Фальстаф говорит: «Я верю в нечет и всегда ставлю на нечетные числа – говорят, счастье их любит» (пер. С. Маршака, М. Морозова). Подобной точки зрения придерживаются и ближневосточные религии. Согласно исламской традиции, пророк Мухаммед, закончив пост, съел нечетное число фиников, а иудейские молитвы зачастую требуют нечетного числа (трех или семи) повторений.
Помимо ролей, которые пифагорейцы отвели четным и нечетным числам в целом, они еще и приписали особые качества некоторым отдельным числам. Например, число 1 считалось прародителем всех остальных чисел, а поэтому само оно словно бы не считалось числом. Кроме того, считалось, что оно характеризует здравый смысл. Геометрически число 1 соответствовало точке, которая сама по себе считалась прародительницей всех измерений. Число 2 было первым женским числом, а также числом разногласий и разделения. Это немного похоже на инь и ян китайской религиозной космологии, которым приписывались те же качества: инь – женское, отрицательное начало, пассивность и темнота, а ян – яркое, мужское начало. Даже в наши дни во многих языках число 2 так или иначе ассоциируется с лицемерием и ненадежностью – вспомним персидское слово «двуличный» или слово «двурушник» (или слова со значением «обладатель двойного языка», которые есть и в немецком, и в арабском). То, что число 2 изначально связали с женским началом, а 3 – с мужским, вероятно, было вызвано очертаниями женской груди и мужских гениталий. Этот вывод, пусть и с осторожностью, можно подтвердить тем обстоятельством, что такие же ассоциации возникли у восточно-африканской народности консо. В повседневной жизни мы прибегаем к разделению на две категории сплошь и рядом: хорошее и плохое, верх и низ, право и лево. С геометрической точки зрения, числу 2 соответствовала прямая (ее однозначно определяют две точки), у которой одно измерение. Три было первым настоящим мужским числом, а также числом гармонии, поскольку в нем сочетаются единство (число 1) и разделение (число 2). Для пифагорейцев число 3 вообще было в некотором смысле первым числом, поскольку у него есть и «начало», и «середина», и «конец», в отличие от числа 2, у которого «середины» нет. Геометрическое выражение числа 3 – треугольник, поскольку три точки, не лежащие на одной прямой, однозначно определяют треугольник, а сам он – двумерная геометрическая фигура.
Интересно, что военные подразделения в библейские времена также строились на основе тройки. Например, во Второй книге Царств (23) упоминаются «трое сих храбрых» воина под началом у царя Давида. В той же главе говорится и о «тридцати вождях», которые «пошли и вошли во время жатвы к Давиду в пещеру Одоллам», однако к концу главы редактор, перечислив храбрецов, вставляет ремарку: «Всех тридцать семь».
Очевидно, что «тридцать» здесь просто название подразделения, а на самом деле в нем могло быть и другое количество воинов. В Книге Судей, в главе 7, когда Гедеону предстоит воевать с мидьянитянами, он отбирает триста – три сотни – человек, всех тех, «кто будет лакать воду языком своим, как лакает пес». Если перейти к более крупным подразделениям, мы обнаружим, что в Первой Книге Царств, в главе 13, «выбрал Саул себе три тысячи из Израильтян», чтобы воевать с филистимлянами, поскольку «собрались Филистимляне на войну против Израиля: тридцать тысяч колесниц». Наконец, во Второй Книге Царств, «собрал снова Давид всех отборных людей из Израиля, тридцать тысяч», чтобы разгромить филистимлян.
Число 4 было для пифагорейцев числом порядка и справедливости. Четыре ветра – четыре направления – обеспечивали людям необходимые ориентиры, помогали понять, где они находятся в пространстве. Геометрически, четыре точки, не лежащие в одной плоскости, образуют тетраэдр (пирамиду с четырьмя треугольными гранями), обладающую объемом, то есть тремя измерениями. Однако особый вес числу 4 в глазах пифагорейцев придавало и еще одно обстоятельство: пифагорейцы почитали число 10, которое образовывало священную тетрактиду – сумму первых четырех чисел. Число 10 пифагорейцы ставили выше всех, поскольку оно символизировало мироздание в целом. А поскольку 1 + 2 + 3 + 4 = 10, между 4 и 10 они видели тесную связь. Одновременно это соотношение свидетельствовало, что 10 не просто объединяет числа, отражающие все измерения, но и обладает всеми свойствами единства (которое символизирует число 1), полярности (символом которой служит 2), гармонии (3) и пространства и материи (4). Следовательно, 10 было числом всего сущего, и его свойства лучше всего выразил пифагореец Филолай около 400 г. до н. э.: «Высшее, могущественное, творец всего сущего, начало и руководитель божественного и всего живого на Земле».
Число 6 было первым совершенным числом, числом творения. Прилагательным «совершенный» описывали числа, которые равны сумме всех своих делителей, – например, 6 = 1 + 2 + 3. Кстати, следующее такое число – 28 (1 + 2 + 4 + 7 + 14), а после него – 496 (1 + 2 + 4 + 16 + 31 + 62 + 124 ++ 248); когда же мы доберемся до девятого совершенного числа, в нем окажется 37 цифр. Кроме того, 6 – порождение первого женского числа 2 и первого мужского числа 3. Иудей Филон Александрийский, эллинистический философ (ок. 20 гг. до н. э. – ок. 40 н. э.), в чьих трудах совмещалась греческая философия и иудейские священные писания, предположил, что Господь создал мир за шесть дней, поскольку шесть – совершенное число. Ту же идею разработал и дополнил Блаженный Августин (354–430) в своей книге «О граде Божием»: «Все это… ради совершенства числа шесть через шестикратное повторение того же дня совершается в шесть дней. Это не потому, что для Бога необходима была продолжительность времени, – как бы Он не мог сотворить разом все, что после соответствующими движениями производило бы времена, – но потому, что числом шесть обозначено совершенство творения».[1] Некоторые толкователи Библии считали, что опорным числом Верховного Зодчего было и число 28, указывая на 28 дней лунного цикла. Увлеченность совершенными числами проникла даже в иудаизм; в двенадцатом веке рабби Иосиф бен-Иегуда ибн-Акнин пишет о них в своем трактате «Исцеление душ».
Приводя примеры особого отношения пифагорейцев к числам, я умышленно оставил число 5 напоследок, поскольку это число, кроме всего прочего, подводит нас к истокам золотого сечения. Пять – это союз между первым женским числом 2 и первым мужским числом 3, поэтому это число любви и брака. Очевидно, пифагорейцы считали пентаграмму – пятиконечную звезду (рис. 3) – символом принадлежности к своему братству и называли ее «гигия» – «здоровье». Греческий писатель и ритор II века Лукиан писал в своем «Оправдании ошибки, допущенной в приветствии»: «… Все ученики его [Пифагора] при переписке друг с другом, всякий раз как писали о чем-нибудь значительном, в самом начале письма ставили пожелание здоровья, как наиболее отвечающее ладу и души, и тела и обнимающее собою всю совокупность человеческих благ. Трижды повторенный треугольник пифагорейцев, образующий взаимосечениями пентаграмму, которой они пользовались, как условным знаком, при встрече с единомышленниками, называлась у них тем же словом, что и здоровье» (пер. Н. Баранова).
Изобретательное (хотя, пожалуй, не совсем логичное) объяснение, почему пентаграмма связывалась со здоровьем, предложил А. де ла Фей в своей книге «Пифагорейская пентаграмма, ее распространенность и применение в клинописи» (A. de la Fuÿe. Le Pentagramme Pythagoricien, Sa Diffusion, Son Emploi dans le Syllabaire Cuneiform, 1934). Де ла Фей предполагает, что пентаграмма символизирует греческую богиню здоровья Гигию, а пять лучей звезды – это схематическое изображение богини (рис. 9).
Рис. 9
Рис. 10
Кроме того, пентаграмма тесно связана с правильным пятиугольником – геометрической фигурой с пятью равными сторонами и равными углами (рис. 10). Если соединить все вершины правильного пятиугольника диагоналями, получится пентаграмма. Кроме того, диагонали образуют еще и маленький пятиугольник в центре, а диагонали этого пятиугольника образуют пентаграмму и пятиугольник еще меньше (рис. 10). Продолжать это можно до бесконечности, создавая пятиугольники и пентаграммы все меньше и меньше. Поразительное свойство всех этих фигур состоит в том, что если посмотреть на получившиеся отрезки в порядке убывания длины (на рисунке они помечены a, b, c, d, e, f), можно с легкостью, при помощи элементарной геометрии, доказать, что каждый отрезок меньше предыдущего на множитель, в точности равный золотому сечению – числу φ. То есть отношение длин а и b – это число φ, отношение длин b и c – тоже число φ и т. д. А главное, можно опереться на тот факт, что процесс создания череды вписанных друг в друга пентаграмм и пятиугольников можно продолжать бесконечно, строить фигуры все меньших и меньших размеров – чтобы упорно доказывать, что диагональ и сторона пятиугольника несоизмеримы, то есть отношение их длин (равное φ) невозможно выразить отношением двух целых чисел. А это значит, что им нельзя подобрать никакую общую единицу измерения – такую, чтобы диагональ пятиугольника содержала целое число этих единиц измерения и чтобы сторона пятиугольника тоже содержала целое число таких же единиц измерения (для читателей, более склонных к точным наукам, в Приложении 2 приведено доказательство). Вспомним, что числа, которые нельзя представить в виде отношения двух целых чисел (то есть в виде дробей, или рациональных чисел) называются иррациональными числами. Следовательно, перед нами доказательство того факта, что число φ – это иррациональное число.
Несколько ученых (в том числе Курт фон Фриц в статье под названием «Гиппас из Метапонта как первооткрыватель несоизмеримости» (Kurt von Fritz. The Discovery of Incommensurability by Hippasus of Metapontum, 1945) предположили, что открыли золотое сечение и несоизмеримость именно пифагорейцы. Эти историки математики отстаивали ту точку зрения, что одержимость пентаграммой и правильным пятиугольником, свойственная пифагорейцам, в сочетании с набором геометрических познаний, накопившихся к середине V века до н. э., весьма способствовали тому, чтобы пифагорейцы, а в частности, вероятно, Гиппас из Метапонта, открыли золотое сечение, а как следствие из него – и несоизмеримость. Доводы этих историков, по крайней мере, отчасти, подтверждаются трудами основателя сирийской неоплатонической школы Ямвлиха (ок. 245–325 гг. до н. э.). Согласно одному из рассказов Ямвлиха, пифагорейцы поставили Гиппасу надгробный камень, будто мертвому, за открытие несоизмеримости, которое подрывало самые основы их учения. Однако в другом месте Ямвлих сообщает, что «…о Гиппасе говорят, что он был из числа пифагорейцев; за то, что разгласил и достроил впервые сферу из двенадцати пятиугольников, он погиб в море как нечестивец, зато снискал славу первооткрывателя, хотя все [открытия должны принадлежать] «оному мужу» – так [пифагорейцы] величают Пифагора, не называя его по имени» (пер. А. В. Лебедева). Говоря «достроил сферу из двенадцати пятиугольников», Ямвлих имеет в виду (несколько неточно, поскольку получившаяся фигура на самом деле не сфера) додекаэдр, геометрическое тело с двенадцатью гранями, каждая из которых представляет собой правильный пятиугольник, – одно из пяти геометрических тел, известных как платоновы тела. Платоновы тела теснейшим образом связаны с золотым сечением, и мы еще вернемся к ним в главе 4. Несмотря на то что все эти рассказы подозрительно напоминают легенды, историк математики Уолтер Баркерт в своей книге «Древний пифагореизм. Наука и легенды» (Walter Burkert. Lore and Science in Ancient Pythagoreanism, 1972) приходит к заключению, что «хотя сведения о Гиппасе и овеяны легендами, в них есть здравое зерно». Доказательство справедливости этого заявления мы видим на рис. 10 (и в Приложении 2). Вывод о том, что диагональ и сторона правильного пятиугольника несоизмеримы, основан на очень простом наблюдении, что строить все меньшие и меньшие пятиугольники можно до бесконечности. То есть совершенно очевидно, что это доказательство было вполне доступно и математикам, жившим в V веке до нашей эры.
Хотя, разумеется, возможно, и даже, пожалуй, вероятно, что несоизмеримость и иррациональные числа были открыты в связи с золотым сечением, более традиционная точка зрения гласит, что на эти концепции мыслителей натолкнуло соотношение стороны и диагонали квадрата. Аристотель в своей «Первой аналитике» пишет, что диагональ квадрата несоизмерима со стороной, «потому что, если допустить их соизмеримость, то нечетное было бы равно четному» (пер. Б. Фохта). Здесь Аристотель вскользь намекает на доказательство несоизмеримости, которое я приведу полностью, поскольку это прелестный пример доказательства логическим методом, известным как reductio ad absurdum («доведение до абсурда», или метод «от противного»). Более того, когда в 1988 году журнал «The Mathematical Intelligencer» предложил читателям проранжировать двадцать четыре теоремы в соответствии с их «красотой», доказательство, которое я сейчас представлю, заняло седьмое место.
Изящный метод «от противного» основывается на том, что верность утверждения доказывается тем, что противоположное ему утверждение ложно. Самый авторитетный иудейский ученый Средневековья Маймонид (Моше бен Маймон, 1135–1204) даже пытался применить этот логический прием, дабы доказать существование Творца. В своем фундаментальном труде «Мишне Тора» (Законы основ Торы), где делается попытка охватить все стороны религии, Маймонид пишет: «Основа основ и столп мудрости – знать, что есть Первичная Сущность, которая является причиной существования всего сущего. И все, что есть на небесах и на земле, и все, что между ними, существует благодаря Истинной Сущности. И если представить, что Его нет – ничто не могло бы существовать» (пер. И. Верника). В математике же метод «от противного» применяется следующим образом. Сначала вы предполагаете, что теорема, истинность которой вы стремитесь доказать, на самом деле ложна. Далее вы совершаете последовательность логических шагов и выводите нечто, представляющее собой явное логическое противоречие – например, 1 = 0. Из этого вы делаете вывод, что первоначальная теорема не могла быть ложной, а следовательно, она должна быть истинной. Обратите внимание, что если вы хотите, чтобы метод оказался действенным, вам следует предположить, что теорема или утверждения могут быть либо истинными, либо ложными: вы либо читаете эти строки, либо нет.
d = √2
Прежде всего, посмотрите на квадрат на рис. 11, сторону которого мы примем за единицу. Если мы хотим найти длину диагонали, можно при помощи теоремы Пифагора вычислить гипотенузу любого из двух прямоугольных треугольников, на которые разделен квадрат. Вспомним, что теорема гласит, что квадрат гипотенузы равен сумме квадратов двух катетов. Пусть длина гипотенузы – d, тогда d2 = 12 + 12, а следовательно, d2 = 2. Если мы знаем квадрат числа, то само число можем найти, если извлечем квадратный корень. Например, если мы знаем, что квадрат числа X равен 25, то X = 5. Следовательно, из d2 = 2 мы выводим, что d = √2. Итак, отношение диагонали к стороне квадрата равно квадратному корню из 2. (Карманный калькулятор подскажет, что √2 = 1,41421356…) А теперь нам хочется показать, что √2 невозможно выразить соотношением двух целых чисел (а следовательно, это иррациональное число). Задумайтесь на минуту: сейчас мы докажем, что хотя в нашем распоряжении бесконечное множество целых чисел, но как бы мы ни искали, нам никогда не найти двух таких, чтобы их отношение точно равнялось √2! Это же просто поразительно!
Рис. 11
Вот как выглядит доказательство «от противного» в данном случае. Начнем мы с того, что предположим, что верно противоположное тому, что мы стремимся доказать, а именно предположим, что на самом деле √2 равен какому-то отношению двух целых чисел a и b, то есть √2 = a/b. Если у a и b есть общие делители, как, например, у 9 и 6 есть общий делитель 3, можно упростить эту дробь, разделив числитель и знаменатель на эти делители, пока мы не получим два числа p и q, у которых общих делителей уже нет. (В примере с 9 и 6 это превратит 9/6 в 3/2). Очевидно, что не может быть такого, чтобы и p, и q были четными (иначе у них был бы общий делитель 2). Следовательно, наше предположение состоит в том, что p/q = √2, причем p и q – числа, у которых нет общих делителей. Теперь возводим обе части равенства в квадрат и получаем p2/q2= 2. Далее умножаем обе части равенства на q2 и получаем p2 = 2 q2. Обратите внимание, что правая часть равенства, что совершенно очевидно, четное число, поскольку представляет собой какое-то число q2, умноженное на 2, а это всегда дает четное число. Поскольку p2 равно четному числу, p2 тоже четное число. Однако если квадрат числа – четное число, значит, и само это число тоже четное (напомню, что квадрат – это число, умноженное само на себя, а при умножении нечетного числа на себя результат будет нечетным). Таким образом, мы доказали, что число p – четное. Вспомним, что это значит, что q должно быть нечетным: ведь у p и q нет общих делителей. Однако если p четное число, значит, его можно записать в виде p = 2r, ведь у четного числа должен быть делитель 2. А следовательно, вышеуказанное уравнение p2 = 2 q2 можно записать в виде (2r) 2 (мы просто заменили p на 2r), то есть поскольку (2r)2= (2r) × (2r)] 4r2 = 2 q2. Теперь разделим обе части равенства на 2 и получим 2r2 = q2. Однако из этого следует – по тем же логическим выкладкам, которые мы только что применяли, – что q2 – четное число (поскольку равно дважды повторенному другому числу), а следовательно, и q – тоже четное число. Однако отметим, что выше мы доказали, что q должно быть нечетным! Итак, мы пришли к очевидному логическому противоречию – доказали, что число должно быть и четным, и нечетным одновременно. Этот факт показывает, что наше первоначальное предположение – что существуют два целых числа p и q, отношение которых равно √2 – ложно, что и требовалось доказать. Числа вроде √2 – это новый вид чисел, иррациональные числа.
Похожим способом можно доказать, что квадратный корень любого натурального числа, не являющегося полным квадратом (вроде 9 или 16), – иррациональное число. Числа вроде √3 и √5 – иррациональные.
Невозможно переоценить значимость открытия несоизмеримости и иррациональных чисел. До этого открытия математики предполагали, что если у вас есть любые два отрезка, один из которых длиннее другого, всегда можно найти какую-то меньшую единицу, чтобы измерить длины обоих отрезков и получить целое число этих единиц. Если, скажем, один отрезок длиной 21,37 дюймов, а второй – 11,475 дюймов, можно измерить оба в единицах в одну тысячную дюйма, и тогда в первом будет 21 370, а во втором – 11 475 таких единиц. Поэтому древние ученые были убеждены, что подобную общую единицу измерения можно найти всегда, надо только набраться терпения. Открытие несоизмеримости означает, что два отрезка прямой, находящиеся между собой в отношении золотого сечения (АС и СВ на рис. 2), диагональ и сторона квадрата или диагональ и сторона правильного пятиугольника не обладают такой общей единицей измерения, и найти ее невозможно. В 1988 году в журнале «Mathematics Magazine» был опубликован стишок Стивена Кашинга, отражающий нашу естественную реакцию на иррациональные числа:
Пифагор
С давних пор
Дразнит нас скандальным
Иррациональным.
Нам станет легче осознать, какой огромный интеллектуальный скачок был проделан, чтобы открыть иррациональные числа, если мы поймем, каким судьбоносным открытием (или изобретением) для человечества стали даже дроби – рациональные числа вроде 1/2, 3/5 или 11/13. Живший в XIX веке математик Леопольд Кронекер (1823–1891) выразил свое мнение по этому вопросу следующим образом: «Господь сотворил натуральные числа, а все остальное – измышления человека».
О том, насколько древние египтяне были знакомы с дробями, мы знаем в основном по папирусу Ринда (Ахмеса). Это огромный папирус (18 футов длиной и 12 дюймов шириной), скопированный около 1650 года до н. э. писцом по имени Ахмес с более ранних документов. Найден папирус в Фивах, в 1858 году его приобрел шотландский антиквар Генри Ринд, а сейчас папирус хранится в Британском музее (за исключением нескольких фрагментов, которые неожиданно оказались собранием медицинских документов и сейчас находятся в Бруклинском музее). Папирус Ринда, в сущности, представляет собой справочник счетовода, и простыми словами в нем называются лишь дроби с числителем 1 – 1/2, 1/3, 1/4 и т. д., – а также 2/3. В некоторых других папирусах есть еще особое название для 3/4. Все прочие дроби древние египтяне выражали в виде суммы дробей с числителем 1. Например, чтобы выразить 4/5, они писали 1/2 + 1/5 + 1/10, а 2/29 выражали как 1/24 + 1/58 + 1/174 + 1/232. Чтобы выразить доли меры объема зерна под названием «гекат», древние египтяне применяли так называемые дроби «глаз Гора». Легенда гласит, что в битве между богом Гором, сыном Осириса и Изиды, и убийцей Осириса Сетом Гор потерял глаз, а Сет то ли раздавил его пальцем, то ли наступил на него. Затем бог письма и вычислений Тот нашел части глаза и хотел собрать его. Однако он обнаружил лишь части, которые соответствовали дробям 1/2, 1/4, 1/8, 1/16, 1/32 и 1/64. Тот подсчитал сумму и выяснил, что собрал лишь 63/64 глаза, и тогда он наколдовал оставшуюся 1/64, что и позволило ему восстановить глаз.
Как ни странно, египетская система дробей с числителем 1 еще много столетий применялась и в Европе. В эпоху Возрождения составители учебников по математике приводили для тех, кому было трудно запомнить, как складывать и вычитать дроби, стихотворные правила. Забавный пример приводит Томас Хиллес в книге «Искусство популярной арифметики в целых числах и в дробях» (Thomas Hylles. The Art of Vulgar Arithmetic, both in Integers and Fractions), вышедшей в 1600 году.
Сумму, разность для дробей находить не так уж сложно.
Сократить или домножить надо каждую из них,
Чтобы был для всех един и красив, насколько можно,
Под чертою знаменатель. А теперь последний штрих:
Вычтем, сложим весь числитель, и получим результат.
А единый знаменатель спрятан под чертой и рад.
Несмотря на завесу тайны, которая окутывала Пифагора и содружество пифагорейцев, а может быть (в некоторой степени), и благодаря ей, пифагорейцам стремились приписать некоторые значительные математические открытия, в число которых входят и золотое сечение, и несоизмеримость. Однако если учесть колоссальный авторитет и успехи математиков Древнего Египта и Вавилона, а также то обстоятельство, что и сам Пифагор, вероятно, учился математике в Египте и Вавилоне, можно задаться вопросом: быть может, эти (или еще какие-нибудь) цивилизации открыли золотое сечение еще до пифагорейцев? Особенно интересным этот вопрос покажется, когда мы обнаружим, как много книг и статей написано о том, что золотое сечение обнаруживается в параметрах Великой пирамиды Хеопса в Гизе. Чтобы найти ответ, нам придется предпринять исследовательскую экспедицию в область археологической математики.