Отыщи всему начало, и ты многое поймешь.
Без митохондрий нет жизни животных, растений и грибов, но и ненасильственная смерть многоклеточных организмов неотрывно связана с этими удивительными структурами. Они – своеобразная альфа и омега для всех эукариот. Если каждая ныне живущая бактерия – это по сути клон древнейшей бактерии, жившей 3,5 миллиарда лет назад, просто с накопленной за это время гигантской суммой ошибок репликации при простом делении пополам и огромной сумятицей, вносимой горизонтальным переносом генов пару раз на тысячи поколений, то практически каждый эукариотический организм, даже одноклеточный, всегда приблизительно наполовину новый организм по отношению к своему предку, хоть и не всегда непосредственному (почкование или простое деление пополам, например, может служить таким пропуском предка). И именно митохондрия сделала из своего симбиоза с древней археей ту эукариотическую клетку, ту выдающуюся эволюционирующую машину, которая привела к возникновению животных, растений и всех пяти распознаваемых на сегодняшний день супергрупп эукариот. Ту эукариотическую клетку с ее врожденными противоречиями, проявляющимися или в виде типичных сбоев в ее функционировании, или в виде иных проблем, например с соседями, такими же, как она, эукариотами, или с совсем непохожими на нее вирусами и бактериями. То есть с врожденной предрасположенностью к болезням и, в конце концов, к смерти. Поэтому в отношении роли митохондрий для здоровья человека предлагается рассмотреть для начала только два самых важных аспекта, сообразующихся с центральной идеей данной книги: как появилась электрон-транспортная цепь (ЭТЦ) – ключевое событие для возникновения жизни[2] и самый важный энергетический механизм в митохондриях, и как правильно организованный энергетический метаболизм клетки определяет ее гомеостаз и адаптационные способности организма. Если рассматривать эволюцию именно энергетического метаболизма от самых истоков зарождения жизни, то мы по прямой линии скорее наследники бактерий-предков митохондрий, чем архей, приютивших их хозяев.
По крутым, покрытым облаками склонам узкого ущелья к мелкой горной речке сползают сине-зеленые волны высоких сосен. Иногда в утреннем тумане возникает просвет, и, если вглядеться, на крутом правом берегу проступают контуры полуразрушенного каменного строения метров двадцать высотой. Я сижу на противоположном берегу, где спуск к реке более пологий, на ступенях недавно отреставрированного великокняжеского дворца XIX века в мавританском стиле. Километрах в двух отсюда, уже на левом берегу, есть похожие, но совсем малозаметные за городской застройкой развалины второй каменной башни. Это останки «парных» крепостей легендарных братьев Петре и Гогиа Авалишвили – феодалов с явными разбойничьими наклонностями, постоянно враждовавших друг с другом, но изредка и замирявшихся. Крепость Петре – Петрес-цихе – была главной, но только вместе со второй – Гогиас-цихе – обретала полноценное стратегическое значение: крепости охраняли древнюю переправу через Куру, по которой часто шли в центральную Грузию захватчики с юга.
В голову приходит мысль, что здесь может быть еще один вариант разгадки происхождения названия этого места. Тысяча триста лет назад сюда пришли арабы. Возможно, укрепления на этих местах существовали и до [без]башенных братьев Авалишвили. «Две башни» – по-арабски «боржан» («боржан» одно слово, без числительного, так как семитские языки – из ныне существующих иврит и арабский – сохранили уникальную форму двойственного числа существительных, практически утраченную в индоевропейских языках). В местном картлийском наречии «боржан» – «боржани» за века легко могли превратиться в «Боржоми». Старые источники «Боржоми» находятся как раз неподалеку, с другой стороны Куры, где к стремительной горной реке торопливо подбирается не то маленькая речка, не то большой ручей Боржомка.
Ранним утром возле павильона «Боржоми» еще совсем мало курортников, и вода из крана льется не полной струей, а прерывистой маленькой струйкой, но все равно чувствуется устойчивый запах сероводорода. Сто семьдесят лет назад здесь была яма, заполненная слегка замутненной, но сильно пахнущей водой. Со дна ямы била мощная горячая струя. Сильно щелочная вода источника зарождается в нескольких километрах под землей, в толщах вулканической породы, где еще незастывшая магма подбирается исключительно близко к земной поверхности. Считается, что часть этой воды имеет ювенильное происхождение, то есть образуется в ходе прямой реакции выделяющихся из магматических масс кислорода и водорода. Хотя это (и не только) делает боржомскую воду весьма особенной, но на самом деле щелочных гидрокарбонатных источников иного происхождения на Земле всегда было относительно много как на поверхности, так и в морской глубине или на границе воды и суши. Вполне возможно, щелочные источники могли возникнуть и на дне или берегу соленого озера, похожего на нынешнее Мертвое море, расположенное, кстати, неподалеку от другого места с таким же двойственным названием – Ерушалаим (Иерусалим). Именно двойственность, точнее, дополнительность двух базовых сущностей, лежащая в основе базовых биологических форм – многоклеточного организма, эукариотической клетки, просто первой клетки или первичного протоклеточного состояния, обладающего всеми признаками живого организма, и многих других, – составляет второй основной лейтмотив данной книги, наряду с упомянутой во вступлении сквозной фрактальностью биологических форм движения материи.
Горячие щелочные гидротермальные подводные источники все чаще называются наиболее вероятным местом возникновения жизни, по крайней мере в рамках «первично-метаболических» теорий.
Гюнтер Вехтерсхойзер в начале 80-х указал на принципиальную возможность образования в таких источниках органических молекул путем восстановления углекислого газа при участии восстановителей – сероводорода или водорода – на поверхности сульфидов железа, сгруппированных в железосерные кластеры. Очень важно подчеркнуть, что невероятно похожие железосерные кластеры являются коферментами, то есть «рабочими частями» важнейших ферментов энергетического и дыхательного метаболизма у всех живых организмов. Если Гюнтера Вехтерсхойзера вдохновляли завораживающие картины гидротермальных «черных курильщиков», перегретых магмой водных потоков, перенасыщенными сероводородами, сульфидами, водородом, вырывающимися на двух-трехкилометровой глубине черными клубами в толщу океана, то Майк Рассел и Билл Мартин перевели фокус внимания на горячие щелочные гидрокарбонатные источники, часто располагающиеся на гораздо меньшей глубине или вообще на суше. Эти источники также содержат водород, сероводород и железо, правда, как правило, в гораздо меньшей концентрации, меньше простейших соединений углерода, и имеют меньшую температуру, так как образуются не в результате взаимодействия с магмой, а в результате химического взаимодействия с мантийными породами («Боржоми», кстати, и в этом смысле может быть исключением: как упоминалось выше, он может быть в значительной степени ювенильной водой, результатом прямой реакции кислорода и водорода магмы, причем водород участвует в явном переизбытке; также в «Боржоми», хоть и в крайне незначительных количествах, обнаруживаются разнообразные простые одно- и двууглеродные соединения, в том числе азотно-углеродные). Как существующие ныне подводные щелочные гидротермальные источники, так, очевидно, и древние часто имели строение проводящей их породы в виде микропористой губки, с ячеистостью от нескольких сантиметров до долей миллиметра. Такое строение позволяет поддерживать полупроницаемый барьер между двумя видами сред: условно наружной, кислой и богатой натрием, и внутренней, щелочной. Одновременно малые размеры ячеек обеспечивают возможность создания внутри них достаточно высоких концентраций углекислоты, сероводорода и(или) водорода, которые в присутствии каталитических железосерных кластеров и в условиях повышенной температуры и высокого давления могут образовывать примитивные органические молекулы. Необходимый приток энергии самоорганизуется за счет разности потенциалов, созданной полупроницаемыми неорганическими (на тот момент) барьерами. Собственно, это практически уже две из трех форм биологически свободно конвертируемых форм энергии, согласно первому закону биоэнергетики академика РАН Владимира Скулачева (первая и вторая – это натриевый и протонный (водородный) потенциалы; третья форма – АТФ). В более широком смысле – это возникновение и, что более важно, стабилизация химической неуравновешенности и молекулярной упорядоченности, что в терминах термодинамики можно назвать локальным уменьшением энтропии[3]. Обобщая, можно сказать, что наличие большого количества легкодоступной энергии соответствует низкоэнтропийному состоянию системы, и, напротив, дефицит легкодоступной энергии – высокоэнтропийному.
В последние годы исследовательская группа Тары Джокич, Дэвида Димера и Мартина ван Кранендонка (Tara Jokic, David Deamer and Martin van Kranendonk, 2017) активно разрабатывает альтернативную теорию наиболее вероятного места и механизма происхождения жизни. Они располагают это сакральное место в окрестностях систем древних наземных вулканических водоемов, похожих на современные гейзерные поля Йеллоустоуна или Камчатки, но обладавших цикличностью высыхания-гелеобразования-увлажнения. Подобная цикличность позволяет образовываться многослойным протоорганическим формированиям, предшественникам органических полупроницаемых мембран – первоначально, в сухую фазу, плоским, и изредка во влажную фазу, со сферическими отпочкованиями. Однако энергетический баланс протоклеточных структур в этом случае с трудом покрывается простыми неорганическими источниками энергии, например полифосфатами. Принципиально эта теория не отвергает роль щелочных гидротермальных источников: на примере Боржоми мы видим, что такие источники вполне могут быть наземными; более того, в историческом плане они могут быть наземно-приморскими: та же местность Боржоми еще в позднем миоцене, возможно, представляла собой прибрежную зону деградирующего океана Тетис с разворачивающейся вулканической деятельностью. Вероятность подобных сочетаний в эоархее, предполагаемой эпохе возникновения настоящих жизненных форм, в общем-то тоже не исключена. В подобных случаях цикличность может включать два типа влажных фаз (или серий фаз): щелочную гидротермальную и кислую морскую (приливную?). В любом случае крайне маловероятно, что даже в «чистой» теории щелочных гидротермальных источников линия разграничения щелочного и кислого потоков будет стабильна; более вероятно, что в части микроячеистой породы с большей проницаемостью попеременно меняется рН среды, а в части микроячеек с меньшей проницаемостью рН более стабильно, но меняется их окружение. Возможная «сухая» фаза способствует дополнительной концентрации органических молекул на первичных минеральных мембранах, дополнительно к феноменам термофорезаи компартментализации (то есть концентрирования в пограничных сегментах за счет тепловых градиентов и тепловых конвекционных потоков во множестве полупроницаемых разграничений). В принципе, как показано исследовательской группой под руководством Джулиана Тэннера и Андерсона Шума из Университета Гонконга на примере термодинамики «высыхающих капель», компартментализации в протобиологических структурах может способствовать даже процесс частичного испарения в двухфазовых водных системах (Guo W. et al., 2021).
В последующем неорганическая основа может почти полностью «вымываться» или механически, или кислотным воздействием, подобно вытравливанию кислотой элементной платы, оставляя функциональные каталитические фрагменты – те же железосерные кластеры. С другой стороны, «чистая» теория щелочных гидротермальных источников «выталкивает» наиболее вероятных прародителей биологической изменчивости и наследственности – это неустойчивые в щелочной среде полимеры рибонуклеиновой кислоты (РНК) – на кислую сторону первичных полупроницаемых мембран, где этой теорией не предполагается (хотя и не исключается) ячеистая неорганическая мембранная структура (компартментализация). В комбинированном циклическом варианте с двумя – кислой и щелочной – влажными фазами фрагменты РНК могут быть заключены в ячейку с кислой средой внутри, находящуюся в щелочном окружении. Более того, подобным образом могут организовываться вторичные и третичные матрешкообразные ячеистые формирования, где мелкие кислые пузырьки в окружении более крупных щелочных конгломератов, оказывающиеся внутри крупных кислых кластеров, частично окруженных щелочной средой и так далее (рис. 2–6).
Рис. 2. Микропористые ячейки, проводящие щелочную воду гидротермального источника, частично заполнены также подкисленной соленой морской водой
Рис. 3. Сухая фаза: минеральные и органические осадки из щелочной воды источников и соленой морской воды оставили отложения на стенках микроячеек (отмечены черным и серым цветом соответственно)
Рис. 4. Повторное заполнение во влажную фазу: граница раздела фаз проходит по новой линии, в результате чего часть ячеек с щелочными отложениями на стенках заполняется кислой средой и наоборот
Рис. 5. После нескольких циклов смены сухих и влажных фаз часть ячеек оказывается заполненными разнородными слоями, с возможным формированием биоэлектрического «вольтового столба» – аккумулятора энергии, а сами ячейки окружены ячейками с содержимым существенно иного рН
Рис. 6. Мембраны «научились» энергетически самоподдерживаться и самовосстанавливаться, возможно, с помощью структурных нуклеиновых кислот и рибозимов. Минеральная составляющая полупроницаемых мембран может впоследствии «вымываться», оставляя ассоциированные с новыми органическими оболочками каталитические железосерные кластеры
На близком принципе – чередования соленых и пресных фаз в изолированных элементах – уже построен ряд экспериментальных энергетических установок. С их помощью предполагается использовать «энтропийную» энергию градиента солености Мирового океана, оцениваемую до 1700 ТВт*ч/год (Skilhagen S.E., 2011), так называемую «голубую энергию» океана. Интересными прототипами можно назвать емкостную технологию итальянского инженера-физика Дориано Броджиоли (Doriano Borgioli, 2009) на основе двуслойного электролитического конденсатора (ионистора) большой емкости, работающего по сложному циклу заряда/разряда и поочередного наполнения камеры конденсатора соленой и пресной водой, и более продвинутую технологию группы исследователей из Стэнфордского университета (Ye M. et al., 2019), использующую «батареи энтропийного смешивания» (БЭС; Mixing Entropy Batteries, MEB). БЭС включает два электрода с большой поверхностью контакта, между которыми происходит чередование фаз морской и пресной воды. Один электрод состоит из берлинской лазури, смеси нескольких гексацианоферратов (II), весьма простых соединений железа, азота и углерода, другой представляет собой проводящий органический полимер, полипиррол. В циклическом процессе при заполнении камеры батареи пресной водой ионы натрия и хлориды выходят из соответствующих электродов в воду, создавая электрический ток между электродами. При смене пресной воды на морскую ионы натрия и хлориды забираются обратно в электроды, также образуя электрический ток, но уже обратной направленности.
Технически протонный градиент между средами с разным рН может быть заменен на натриевый и/или калиевый градиенты, имеющие бОльшую буферную емкость из-за большего содержания калия и натрия в рассматриваемых водах, нежели свободные протоны. На идее первичного калиевого градиента, наследуемого почти всеми формами жизни – преобладания калия внутри, а натрия снаружи клетки – основывается модель Армена Мулкиджаняна, Дарьи Дибровой, Михаила Гальперина и Евгения Кунина (Mulkijanian A. et al., 2012; Диброва Д. и соавт., 2015). В этой модели за основу для формирования протобиологических структур принимается конденсат испарений наземных геотермальных полей, в котором, как и в клеточных цитоплазмах, преобладает калий. Сам пресный конденсат неизбежно должен был находиться в щелочном окружении богатых натрием горячих геотермальных вод. При наличии адекватного полупроницаемого разделения на этой основе могла возникнуть первичная фосфатная, а затем самоподдерживающаяся натрий-калиевая мембранная энергетика. Как показывают недавние биоинформационные исследования группы Мулкиджаняна (Козлова М. И. и соавт., 2020), эта древнейшая натриевая энергетика («натриевый мир») не заместилась полностью более «современной» протонной энергетикой, а оказалась органично встроенной в конфигурацию биоэнергетических и биоинформационных процессов большинства современных эукариот, архей и бактерий. Даже у высших животных, включая человека, ключевые белки межклеточных коммуникаций – ассоциированные с G-белком рецепторы (GPCR, G-protein coupled receptors), одна из самых широко представленных в организме групп белков, – имеют прямое происхождение от древнейших белковых энергетических структур «натриевого мира».
Было бы любопытно предположить, какие органические полимеры могли составить первичную органическую основу многослойных отложений на минеральных мембранах, обеспечив функциональный базис дальнейшего развития. Липиды и полисахариды, составляющие такую основу для большинства современных мембран живых организмов, возможны, но их синтез требует достаточно изощренных каталитических механизмов, практически невероятных на данном этапе развития биологической сложности. Белки также вполне могут подойти на эту роль, так как принципиально способны образовывать стабильные оболочки живых структур и способны к автокаталитическому самоподдержанию. Потенциальным недостатком может оказаться тот факт, что белки с (почти) случайной последовательностью аминокислот (в отсутствие еще носителей наследственной информации) чаще всего будут оказываться структурно неустойчивыми и неспособными к самоукладке в четвертичные (многомолекулярные) макрокомплексы. Для нуклеиновых кислот структурная функция не рассматривается в качестве первичной даже на ранних этапах эволюции. Обычно предполагается, что нуклеиновые кислоты эволюционно начинают как носители наследственной информации и катализаторы первых биохимических реакций. Однако и сейчас, в современных организмах, нуклеиновые кислоты зачастую выполняют структурную функцию даже у эволюционно далеких организмов, причем, и очень часто, в экстремальных для них условиях. При этом выполнение такой структурной функции нуклеиновыми кислотами не демонстрирует критической зависимости от четкой нуклеотидной последовательности. Так, нуклеиновые кислоты составляют основу гнойного содержимого ран – практически последней линии защиты при атаке патогенами физических повреждений многоклеточных организмов. Видимо, совсем неслучайно именно это содержимое стало местом открытия самих нуклеиновых кислот (ДНК) швейцарским врачом Иоганном Фридрихом Мишером в 1869 году.
Физиологической основой формирования воспалительных структур, основанных на ДНК – так называемых внеклеточных нитей нейтрофилов (NET, neutrophil extracellular traps), является процесс нетоза нейтрофилов. Нейтрофилы – наиболее распространенная разновидность лейкоцитов, рядовые солдаты острой воспалительной реакции организма. Сам нетоз можно считать разновидностью апоптоза – запрограммированной клеточной смерти, а нейтрофилы – клетками-камикадзе, предназначенными умереть, отдав самое святое – свою ДНК – в качестве кирпичей на строительство оборонительных рубежей всего организма (собственно смерть нейтрофила при этом не является совсем обязательной, а сам нетоз может создавать при определенных условиях и существенные проблемы для всего организма (Papayannopoulos V., 2018)). Важность этого защитного механизма, имеющего, вероятно, очень глубокие эволюционные корни – своего рода возврат к первичным основаниям жизни, своеобразное повторение филогенеза в патогенезе, подтверждается тем фактом, что наличие ферментов экзонуклеаз, способных разрушать NET структуры, служит существенным фактором вирулентности бактерий (Sharma P. et al., 2019). Напротив, и сами бактерии способны формировать из ДНК несущую решетку своего внеклеточного матрикса – основу бактериальных биопленок, своеобразный защитный чехол бактериального сообщества. Причем ключевые единицы такой ДНК-решетки аналогичны так называемым структурам Холидея – крестообразным формированиям двухцепочечной ДНК (рис. 7). И совершенно неслучайно именно ДНК-структуры, в том числе сформированные с использованием структур Холидея, применяются в качестве строительных блоков для ряда нанотехнологических материалов. Тем более что ДНК в качестве структурного материала обладает рядом уникальных свойств: например, высокоточной самосборкой и самоукладкой в полимолекулярные комплексы (Rothemund P. W. K., 2006), способностью проводить ток (в том числе фотохимического происхождения), что может быть весьма существенным фактором для участия в энергопроизводящих ячеистых структурах (см. рис. 2-6). Причем менее организованная, но более компактная А-форма (конформационно близкая к двухцепочечной РНК и ДНК-РНК гибридам) делает это на порядок более эффективно, чем более известная В-форма – правозакрученная спираль (Artes J. M. et al., 2015).
Рис. 7. Структуры Холидея и их искусственные производные
Рассматривается, что именно ДНК-РНК гибриды и могли быть первыми протобиологическими молекулами: Цзяньфен Сю и Джон Сазерленд с коллегами (Jianfeng Xu, John Sutherland et al., 2020) показали, что в кислой среде, в присутствии ионов натрия, магния, хлоридов и нитритов из простейших неорганических веществ типа цианидов может образовываться система нуклеозидов из 4 оснований, 2 из которых – пуриновые дезоксирибонуклеозиды (аденозин и инозин), и 2 пиримидиновые рибонуклеозиды (цитидин и уридин). До этого не удавалось продемонстрировать возможность возникновения рибозы и рибозидов в условиях первичной Земли (в отличие от дезоксирибозы и ее производных). В последнее время, при почти полном доминировании идеи РНК-мира (первичной роли РНК в возникновении жизни, ввиду ее способности как к сохранению информации, так и к катализу, в том числе способствующему саморепликации), появляются и другие свидетельства того, что РНК и ДНК, а возможно, и их гибриды, появились и могли сосуществовать еще до возникновения жизни (Extance A., 2020). В качестве одного из таких вариантов японскими исследователями из университета Нагоя (Murayama K. et al., 2021) предложены близкие к ДНК достаточно стабильные ксенонуклеиновые кислоты (КНК), в частности на основе L-треонинола (L-aТНК) – алифатической нуклеиновой кислоты (то есть без пуринового или пиримидинового колец, свойственных «нормальным» нуклеиновым кислотам). Особенностью полимеров данной кислоты, возможно, даже с включением «нормальных» нуклеотидов, является возможность самосборки (автополимеризации) в виде двойных цепей без участия белковых ферментов. Более того, фрагменты КНК способны далее сами выступать в качестве катализаторов самосборки, подобно некоторым РНК-фрагментам (рибозимам). Дополнительным свидетельством возможности сценария первичных структурных нуклеиновых кислот может служить обнаружение конъюгатов углеводов с некодирующими РНК – гликан-РНК – в составе мембран ряда организмов, где они, похоже, выполняют роль сигнальных рецепторов (Flynn R. A. et al., 2021). Этим самым открыт своеобразный мостик, возможно, очень древний, между миром генетической информации нуклеиновых кислот и миром разделительных и сигнальных углеводных структур.
Важность разделительных структур в эволюции нуклеиновых кислот акцентируется в работах немецкого исследователя Кристофа Маста (Christof Mast et al., 2010; 2013). Мастом сформулирована теория термодинамической ловушки. Она показывает, что наличие термохимических градиентов создает дополнительные состояния неравновесности, стимулирующие в частных случаях полимеризацию, репликацию и концентрирование ДНК и возникновение дарвинского отбора в более общих случаях (табл. 1). Помимо термического градиента, вызванного геологическими условиями (разница температур гидротермального источника и внешней (например, морской воды), дополнительный, хотя и сравнительно микроскопический, но в некоторых ситуациях решающий вклад мог вносить и химический градиент протонов (электронов) и/или натрия, способный, в принципе, также создавать температурный градиент. Этот искусственно возникающий градиент, в свою очередь, несмотря на свою кажущуюся незначительность, мог способствовать впоследствии независимости протобиологических структур от геологических. По некоторым расчетам, даже незначительного температурного градиента в отдельных случаях может оказаться достаточно, например для обеспечения простого деления протоклеток: перемещение более «горячих» молекул двуслойной наружной мембраны наружу, движимое простыми физическими механизмами, увеличивает среднюю кривизну и усиливает любое локальное сжатие протоклетки вплоть до полного разделения на две (Romain Attal and Laurent Schwartz, 2021).
С другой стороны, мы видим, как уже на самых ранних этапах возникает двухвариантность реализации химического (протонного) градиента: 1) как концентрирование в форме химических связей (или в составе любых синтезируемых соединений, или, что оказывается выгоднее, в форме нескольких универсальных «энергетических валют», например АТФ); 2) как рассеивание (диссипация) энергии для более общей неспецифической модификации условий окружающей среды («контекста организации»).
Таблица 1. Примеры состояний геологической неравновесности (по Mast C. et al., 2010)
Насыщенные нуклеиновыми кислотами неорганические мембраны могли участвовать в трансмембранном и трансклеточном переносе энергии, что запустило бы эволюционный отбор нуклеиновых кислот. Впоследствии же возникший отбор нуклеиновых кислот с первоначально случайными последовательностями смог бы выявить ряд комбинаций, оказавшихся способных к саморепликации, и сделал «чистые» ДНК и РНК ключевыми операторами наследственной информации со своим четко определенным функционалом. В этом смысле первыми автореплицирующимися структурами могли быть общие предки вирусов и прокариот, паразитировавшие на длинных структурных/проводящих ДНК. Чередование кислотных и щелочных, влажных и сухих фаз в существовании доклеточных протобиологических структур можно сопоставить с чередованием хаотической и динамической фаз в теории эволюции информационных систем. Учитывая бóльшую чувствительность РНК к рН среды, щелочные влажные фазы могли выполнять роль хаотического «перемешивающего слоя» в протоэволюции нуклеиновых кислот и в большей степени могло быть связаны с РНК, а в кислотные или сухие фазы более стабильные ДНК фиксировали достижения и канализировали развитие (БОН: глава IV). Д. С. Чернавский, физик и математик, автор статистической теории «перемешивающих слоев», исходя из физических и информационных представлений, также считал ДНК более предпочтительной в качестве приоритетной молекулы при возникновении биологической сложности.
Есть основания предполагать, что эволюция протоживого и живого первые миллионы, если не миллиарды лет – от первых, еще не идентифицированных самореплицирующихся молекул до возникновения уцелевших до наших дней, хоть и в довольно измененном виде, архей и бактерий – проходила в значительной степени в привязке к горячим щелочным термальным источникам, подводным или наземным, являвшимися в первую очередь источниками химической энергии и минимальной упорядоченности, негэнтропии, которую и научились «есть» первые организмы.
В зависимости от того, с какой стороны кислотно-щелочного раздела им оказалось сподручнее усваивать эту негэнтропию, то есть в какую сторону оказался направлен протонный (протонно-натриевый?) насос – на выталкивание или запуск протонов в клетку – первые организмы разделились на линию бактерий (выталкивание протонов) и линию архей (запуск в клетку). Представляется, что самым ранним протобактериям и протоархеям энергетически выгоднее было бы сосуществование; само отнесение к протоархеям и протобактериям могло оказываться достаточно условным: направленность транспорта протонов в конкретной ячейке/протоклетке могла меняться в зависимости от изменения условий окружения в циклической геологической системе. Совершенствование биохимических механизмов в любом случае позволило им в конце концов разделиться и стать полностью самостоятельными. Уже самые древние независимые археи и бактерии имели между собой значительные различия как в ключевых наследственных генетических механизмах, так и структуре – в первую очередь в строении наружных оболочек на основе липидных полупроницаемых мембран. И когда этим двум сильно разошедшимся формам жизни вновь оказалось выгодным заново начать жить вместе в странном симбиозе, то, несмотря на громадные различия, накопившиеся за почти два миллиарда лет раздельного существования, позволившие успешно произойти этому событию только один раз и предопределившие все последующие проблемы совместного существования базовые энергетические механизмы археи и бактерии в новом симбиозе снова подошли друг к другу как ключ к замку. Бактерии, казалось бы, заняли в этом симбиозе подчиненное, «крепостное» положение маленьких органелл в большой архейной протоэукариотической клетке – с вроде бы как ограниченной ролью маленьких «электростанций», с невероятной эффективностью вырабатывающих огромное количество необходимой клетке энергии. Это сожительство дало начало как большей части наблюдаемой эволюции сложной жизни, так и ее предопределенной смерти.
Работа их наследников – митохондрий – в сущности сохранила принципиальную схему выработки энергии, предполагаемую для первичных форм жизни в морских подводных щелочных гидротермальных источниках:
1. Наличие источника протонов (ионов водорода) и/или ионов натрия – для первичных форм жизни это окружающая среда: богатая протонами (то есть кислая) и соленая (то есть богатая натрием) морская вода или соленая вода закрытых озер; в митохондриях это узкое пространство между наружной и внутренней мембранами митохондрий. Сюда изнутри митохондрий выталкивает протоны цепь белковых комплексов, расположенных на внутренней мембране. Выталкивание происходит за счет движения электронов по этой цепи – так называемой дыхательной или электрон-транспортной цепи (ЭТЦ). Электроны и протоны берутся из происходящего внутри митохондрий цикла ферментативных реакций (цикла Кребса), полностью, до углекислого газа и воды, разлагающего пируват – продукт распада глюкозы в гликолизе. Электроны по ЭТЦ движутся к своему «приемному пункту» – конечному акцептору электронов, окислителю. Реакции приема-передачи электронов соответственно называются окислительно-восстановительными. У животных конечным приемщиком (акцептором) электронов служит кислород, но есть одноклеточные (например, некоторые бактерии), у которых электроны принимаются серой, нитратами, железом и другими веществами.
2. Наличие бедной протонами (то есть щелочной) среды – для первичных форм жизни это щелочная вода источников, в митохондриях это внутренний матрикс с ферментами цикла Кребса, откуда по ЭТЦ наружу выкачиваются протоны.
3. Наличие полупроницаемой мембраны между указанными выше средами. Полупроницаемая – это значит, что для прохождения через нее вещества должны потратить энергию или совершить работу (или, как обычно бывает в жизни, кто-то должен сделать это за них). В данном случае работа может совершаться за счет разницы концентраций протонов или натрия по разные стороны мембраны (что и образует уже названные протонный или натриевый потенциалы). Для первичных форм жизни мембраны могли быть неорганические, например серпентинитовые, с каталитическими железосерными кластерами, для современных форм жизни характерны липидные, в которые встроены многочисленные каталитические белки – ферменты, включая белки ЭТЦ. По сути, как говорилось, сам по себе потенциал уже является формой энергии. В развитых формах жизни этот потенциал «заряжает» универсальный биологический аккумулятор, то есть благодаря ему на окончании цепочки ЭТЦ в процессе упомянутого окислительного фосфорилирования образуется АТФ из АДФ. Для первичных форм жизни вопрос транспорта электронов учеными еще не решен: его постоянный направленный механизм обязан был существовать, чтобы обеспечить образование первичных, самых простых органических молекул, например из углекислого газа, самого распространенного во все времена источника углерода. Но что стало самым первым источником электронов – восстановителем – в цепи реакций, в результате которой могли бы образовываться хотя бы самые простые органические молекулы: метан, формальдегид, цианид и им подобные простые вещества? Теоретически им мог стать тот же молекулярный водород Н2, но практически пока не удается продемонстрировать реальность подобной реакции. Известный ученый и популяризатор науки Ник Лейн (2015) очень упорно, но, как многим представляется, недостаточно убедительно, настаивает, что подходящие условия для вовлечения водорода в эту реакцию могли возникнуть именно в щелочных гидротермальных источниках с участием железосерных кластеров. Других приличных вариантов первичного запуска транспорта электронов в любом случае пока еще нет. Для нас же важна уверенность многих ученых, что в любом случае эволюция живого от первых до-жизненных форм до сложившихся клеток происходила в щелочных термальных источниках или в непосредственной связи с ними, сохраняя на этом отрезке развития общие принципы получения, удержания и использования энергии.
Когда приблизительно 1,5–2 миллиарда лет назад бактериальные предки митохондрий начали свой переезд в живой «замок» древней археи, они, разумеется, прихватили вместе с собой весь свой небогатый скарб: не ахти какой, но все-таки своеобразный биологический «капитал» – свой наследственный материал.
Но со временем необходимость поддержания стабильности «главного» генома археи (а по факту – уже общей наследственности) предопределила перемещение и почти всего митохондриального генома во вновь возникшее ядро – ризницу хранения священного наследственного материала в главном соборе усложнившегося архейного-эукариотического замка (БОН: глава VII). Однако проблемы качественного управления на месте (гемба-менеджмента) заставили несколько последних генов (у человека – 13 генов белков, 22 транспортных РНК и 2 рибосомальных РНК) до конца оставаться непосредственно в самих митохондриях. В конечном счете та же необходимость уменьшения митохондриальной гетероплазмии, то есть спонтанно возникающего в жестких биохимических условиях внутриклеточной водородной «электростанции» чрезмерного разнообразия генов – «локальных производственных процедур», совершенно логическим образом вызвало возникновение двух полов с наследованием родительского ядерного материала в пропорции 50 на 50 %, и со 100 % наследованием митохондриального генома от одного материнского родителя. Практически любой сбой в согласованной работе между митохондриальными генами, локализованными в ядре, и локализованными в митохондрионе ведет к падению эффективности работы электрон-транспортной цепи (ЭТЦ), что проявляется увеличением образования активных форм кислорода (АФК), и, соответственно, итоговым уменьшением образования АТФ. Если рассогласованность имеет постоянный характер, это, согласно модифицированной свободнорадикальной теории старения, увеличивает скорость старения и сокращает продолжительность жизни особи (Lane N., 2015).
Опираясь на представление о стержневой роли митохондрий в энергетическом обеспечении как эволюции сложных организмов, так и развития – от рождения до смерти – отдельного организма, можно увидеть глубочайшую вовлеченность митохондрий во все физиологические процессы организма. В своей тяжелейшей и наиболее очевидной форме для человека это проявляется в виде так называемых митохондриальных заболеваний, но участие митохондриона неизбежно просвечивается и во множестве других, самых неожиданных феноменах других патологий.
Собственно, митохондриальными заболеваниями (МЗ) в узком смысле называют болезни, непосредственно связанные с дефектами дыхательной (электрон-транспортной) цепи (ЭТЦ), то есть процесса окислительного фосфорилирования. Например, синдром Лея (Leigh syndrome) – подострая некротизирующая энцефаломиелопатия вследствие появления в стволе мозга, мозжечке, базальных ганглиях очагов некроза, глиоза, прорастания сосудов, проявляющаяся задержкой или даже регрессией психомоторного развития, мышечной гипотонией, на что впоследствии накладываются самые разнообразные психосоматические нарушения, вплоть до судорожных припадков. Связана с функциональной дисфункцией крупных молекул I или IV комплекса ЭТЦ и/или дисфункцией малой молекулы – цитохрома С. МЗ возникают вследствие наследственных или спонтанных мутаций в митохондриальной ДНК (мтДНК) или в ДНК ядерных генов, контролирующих работу митохондрий. Сейчас известно более 300 таких возможных мутаций, затрагивающих около 100 генов. Остаются тем не менее случаи с явной клиникой митохондриальных заболеваний, но без выявленных генетических нарушений. Как правило, МЗ затрагивают только отдельные типы клеток в определенных органах и тканях, преимущественно (но далеко не всегда) с высокими энергетическими потребностями, такими как нервная и мышечная ткани. Тем не менее узкая поражаемость во многих случаях только определенных органов, как, например, оптическая нейропатия Лебера (Leber Hereditary Optic Atrophy, LHON), при которой повреждаются только ганглиозные клетки сетчатки глаза, все еще требует более точного объяснения. Возможно, более системные нарушения митохондриальной функции останавливают жизнь организма еще на уровне первых делений оплодотворенной яйцеклетки, а для реализации скрытых нарушений, которые приводят к органоспецифичным МЗ, требуются существенные ко-факторы, скорее приобретенные, чем наследуемые.
Дополнительным объяснением может быть как раз то, что митохондрии – не столько «маленькие энергетические станции» клетки, а ключевые фигуранты практически всего клеточного метаболизма, в том числе узкоспециализированного для определенных клеток и тканей, а также коммутаторы обмена информацией как внутри клетки, так и вовне, включая коммуникации с другими симбионтами организма, такими, какими когда-то были их предки. В конце концов вполне можно представить (БОН: глава VII), что это не архейная клетка милостиво соблаговолить изволила впустить митохондриальных предков в свой богатый внутренний мир за «мзду малую» ради взаимовыгодного сожительства-симбиоза (бывает ли когда сожительство равно взаимовыгодным?), но предки митохондрий сами пришли и взяли свое по «праву сильного». И до сих пор их наследники, несмотря на свою малость и невзрачность, держат ключевые пути метаболизма и коммуникаций всей единой клетки и всего единого организма в своих руках.
В работе митохондрий задействовано около 3000 генов из порядка 22 000 генов человека. Из них чуть больше 100 генов (3 %) кодируют белки ЭТЦ. И только 13 из них, обеспечивающих самую быструю реакцию, остались в самой митохондрии. Остальные 97 % митохондриальных белков, преимущественно ферментов, обеспечивают во всех клетках окисление белков, жиров и углеводов, метаболизм холестерина, эстрогенов и тестостерона, дифференцировку и специализацию клеток, а в уже специализированных клетках – выполнение ключевых операций их узкого функционала.
Например, в эндокринных клетках – выработку большинства нейротрансмиттеров, в клетках печени – реакции детоксикации, в предшественниках эритроцитов – синтез гема. Даже функциональность иммунных клеток, например цитотоксических Т-лимфоцитов, определяется их уровнем митохондриальной белковой трансляции, где митохондрии оказываются ранее недооцененными гомеостатическими регуляторами их цитотоксичности (Lisci M. et al., 2021). Перечень функций белков, работающих в митохондриях, пусть и закодированных в генах ядерных хромосом, этим перечнем, разумеется, далеко не ограничивается.
Дикий прапор из фильма «ДМБ», если бы проводил экскурсию молодым солдатам-молекулам по многочисленным криптам-закоулкам митохондрии, показал бы как минимум четыре места «откуда, ребятки, наша митохондрия диктует свою непреклонную волю остальному клеточному сообществу».
1. Белок цитохром С – одна из небольших, но важных шестеренок ЭТЦ. Однако при выпадении из цепи она становится «черной меткой» для всей клетки: активирует каскад ферментов-каспаз, заканчивающийся организованной (запрограммированной) смертью всей клетки – апоптозом (Liu X. et al., 1996).
2. Промежутки между основными белковым комплексами ЭТЦ. Отсюда, как снопы искр из-под вагонных тележек, выскакивают активные формы кислорода (АФК: например перекись водорода, супероксид-анион, гидроксил). Через окисление тиоловых групп в промежуточных белках они активируют факторы транскрипции ключевых групп генов, определяющих функциональный статус всей клетки (Chandel N.S. et al., 1998).
3. Фермент 5’АМФ-активируемая протеинкиназа (AMP-activated protein kinase, AMPK) – регулятор энергетического статуса клетки. Контролирует слияние митохондрий в длинные рабочие нити-спагетти при высокой потребности клетки в энергии и распад на мелкие зернышки-орзо (в терминах итальянской пасты, рис. 8), при переходе клетки в экономный режим существования (Herzig Sand Shaw R. J., 2018).
4. Митохондриальная ДНК (мтДНК). Когда находится внутри митохондрии, выполняет естественную функцию хранилища последних митохондриальных генов. Но при попадании в цитозоль у некоторых иммунных (миелоидных) клеток запускает особую последовательность молекулярных взаимодействий, так называемый ДНК-чувствительный cGAS – STING сигнальный путь. Этот путь отлично работает при разрушении, например, чужеродной ДНК вирусов. Но в случае мтДНК иммунная клетка идет дальше и переходит в состояние готовности немедленно начать воспалительную реакцию даже в отсутствии вредоносного вируса-патогена. Одновременно запускает формирование сложных многобелковых воспалительных комплексов – инфламмасом (West A. P. and Shadel G. S., 2017).
Рис. 8. Митохондрии в форме орзо и спагетти
Инмакулада Мартинез-Рейз и Навдип Чандел (Inmaculada Martinez-Reyes and Navdeep Chandel, 2020) из Медицинской Школы Северо-Западного Университета в Чикаго считают, что эти четыре механизма власти митохондрий можно дополнить еще и пятым, через который также определяется жизнь и судьба, но уже не столько самой клетки, а всего организма. Этот пятый механизм непосредственно влияет на иммунную систему, включая его возможности защититься от инфекций и опухолевого перерождения. Сердцем этого механизма является уже упоминавшийся цикл Кребса, или цикл трикарбоновых кислот (у которых основной «скелет» составляют три атома углерода). Это своего рода центральная карусель во всеобщем метаболическом парке развлечений любой сложной клетки располагается именно в митохондриях. На ней без остановок катаются девять непрестанно взаимопревращающихся трикарбоновых кислот. Эту карусель вращают непрерывно заскакивающие на нее пируват и ацетил-коэнзим А, и соскакивающие с нее восстановительные эквиваленты. Соскочив, они несут свои атомы водорода, как игровые бонусы, прямиком в кассу ЭТЦ, чтобы обменять на универсальную и доступную всем энергетическую валюту АТФ. Но катающиеся на карусели органические кислоты тоже могут иногда соскакивать с карусели и начать разруливать сложные проблемы в парке обмена веществ и во всем организме.
Так, лимонная кислота может выйти из митохондрии через свою особую дверь – декарбоксилатный антипортер А1 25-го семейства переносчиков растворенных веществ SLC25A1 (хорошо, что ей при выходе не нужно называть весь этот пароль). Оказавшись в цитозоле или ядре, она с помощью специального фермента ACLY превращается в ацетил-коэнзим А (митохондриальный ацетил-коэнзим А из самой митохондрии, увы, просто так не выпускают – он должен непрерывно «вращать карусель»).
В ядре ацетил-коэнзим А может ацетилировать хроматин. Это вообще-то его основная задача – ацетилировать все, что нужно (то есть прикреплять к другим молекулам остаток уксусной кислоты – ацетата). Но ацетилирование хроматина – белкового комплекса из гистонов, вокруг которого закручена вся ядерная ДНК, – имеет далеко идущие последствия. Это одна из форм изменения так называемой эпигенетической наследственности, то есть способа включения и выключения определенных генов, не связанного с изменением собственно нуклеотидной последовательности ДНК (другая форма, например метилирование самой ДНК). Так как большинство генов регуляторные, то частичное ацетилирование хроматина изменяет профиль экспрессии генов – часть генов тормозится, часть, наоборот, активируется в зависимости от наличия и уровня множества других специальных факторов транскрипции (запуска генов).
В любом случае даже небольшое изменение содержание ацетил-коэнзима А в ядре ведет к значительной перестройке работы всей генетической программы клетки (Sivanand S., Viney I., Wellen K. E., 2018), преимущественно в сторону ускорения реакций роста и размножения (анаболизма и пролиферации). Такая полная и быстрая перестройка через ацетилирование хроматина исключительно важна для согласованной работы ключевых клеток иммунной системы – макрофагов, Т-лимфоцитов. В них, с учетом всей поступившей информации (информационного контекста, БОН: глава XII) – в первую очередь о возможности бактериального присутствия (по уровню липополисахарида, ЛПС), о предпочтительности активного, воспалительного типа реагирования (по уровню провоспалительных факторов транскрипции STAT и нуклеарного фактора каппа NF-κB) – повышается уровень ACLY, лимонная кислота из митохондрий мобилизируется в ядро и цитоплазму, где превращается в ацетил-коэнзим А, ядерный хроматин ацетилируется и запускается программа ускоренного размножения и выработки молекул воспаления, включая АФК, оксид азота и простагландины макрофагами (Infantino V. et al., 2013), γ-интерферона Т-лимфоцитами (Peng M. et al., 2016).
Подобный путь поддержки роста и размножения активно работает и во многих опухолевых клетках. Искусственное торможение фермента ACLY в опухолевых клетках может задерживать их рост (Hatzivassiliou G. et al., 2005), но, к сожалению, в плане практического применения этот способ пока трудноосуществим. Также с возможностью опухолевого перерождения клетки связано накопление в ядре и цитоплазме двух других кислот с митохондриальной трикарбоновой карусели – фумаровой и янтарной (фумарата и сукцината). Как правило, это вызывается неблагоприятными мутациями в генах обслуживающих их ферментов-дегидрогеназ. Появление и накопление этих кислот в ядре вызывает гиперметилирование ДНК и хроматина. А поскольку это формы эпигенетического изменения наследственности, то в клетке также изменяется и реализация генетической программы в сторону опухолевого типа метаболизма (Niemann S. and Muller U., 2000; Sciacovelli M. et al., 2016). Вообще, признав митохондрии краеугольным камнем эволюции сложной жизни, неким гарантом энергетической и информационной целостности сложных многоклеточных организмов, нетрудно представить, что они несут определенную ответственность и за распад этой целостности в случае злокачественных опухолей. Рассмотрению этого вопроса будет посвящен основной раздел предпоследней главы этой книги.
В нормальных физиологических условиях метаболиты цикла Кребса функционируют как модуляторы иммунитета. Янтарная кислота скорее поддерживает развитие воспаления (Tannahill G. et al., 2013; Littlewood-Evans A. et a.l, 2016), хотя на макрофаги, особенно в некоторых тканях, например жировой, янтарная кислота действует противовоспалительно (Keiran N. et al., 2019) Торможение воспаления фумаровой кислотой, особенно в слегка измененной, но физиологической форме диметилфумаровой кислоты еще более выражено (O’Neill L. A., Kishton R. J. and Rathmell J., 2016). Вообще, близкие родственники (производные) трикарбоновых кислот с митохондриальной карусели, как правило, еще более активны. Так, итаконовая (метилен-янтарная) кислота обладает очень выраженными иммуномодулирующими и антибактериальными свойствами. Своим действием она уравновешивает провоспалительные эффекты янтарной кислоты, а также способна «перекрывать кран» с углеводами организма для многих бактерий-паразитов. Также крайне разносторонними эффектами на иммунную систему обладает трикарбоновая альфа-кетоглутаровая кислота (α-КГ). Она влияет и на эпигенетику клетки: не расставляет, как ацетил-коэнзим А, ацетиловые метки на хроматине, а убирает метиловые метки, расставленные, например, S-аденозилметионином. В особенности активна производная от α-КГ – 2-гидроксиглутаровая кислота. Она способна ключевым образом влиять на дифференцировку иммунных Т-клеток с помощью аналогичных эпигенетических механизмов (Xu T. et al., 2017). И, пожалуй, самое главное, что большинство из названных факторов конструируют специфический эпигенетический ландшафт неадаптивных иммунных клеток при формировании «тренированного иммунитета» (БОН: глава XII).
Располагая таким внушительным арсеналом определяющих воздействий на состояние всей клетки и даже влияя на функциональный статус всей совокупности клеток – всего организма, митохондрион не может быть простым пассивным топливным элементом клетки; очевидно, что именно он ведущий игрок в сложной внутриклеточной игре, определяющий функциональный потенциал и в целом судьбу как «своей» клетки, так и, во многом, всего организма. Но является ли он лишь одним из ведущих игроков, разделяя дуумвират или триумвират, например с ядром и/или хлоропластами (в растительной клетке), или обладает безусловным лидерством, подчиняя остальных своим интересам? Ответ может лежать у самых оснований жизни и эволюции, на зыбкой границе термодинамики, квантовой физики и физической химии.
1. Димер Д., Джокич Т., ван Кранендонк М. (2017). Источники жизни. ВМН № 10, с. 14–20.
2. Диброва Д. В., Гальперин М. Ю., Кунин Е. В., Мулкиджанян А. Я. (2015). Древние системы натрий-калиевого гомеостаза клетки как предшественники мембранной биоэнергетики. Биохимия, 80, с. 590–611.
3. Козлова М. И., Бушмакин И. М., Беляева Ю. Д., Шалаева Д. Н., Диброва Д. В., Черепанов Д. А., Мулкиджанян А. Я. (2020). Экспансия «натриевого мира» сквозь эволюционное время и таксономическое пространство. Биохимия, 85, с. 1788–1815.
4. Guo W., Kinghorn A. B., Zhang Y., Li Q., Poonam A. D., Tanner J. A., Shum H. C. (2021). Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat Commun 12, 3194.
5. Mulkidjanian A. Y., Bychkov A. Y., Dibrova D. V., Galperin M. Y., Koonin E. V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA. Apr 3; 109(14): E821-30.
6. Skilhagen S. E. (2011). Osmotic power; status, opportunities and future plans. Osmotic power seminar, Tokyo, November 8th, 2011.
7. Brogioli D. (2009). Extracting renewable energy from a salinity difference using a capacitor. Physical review letters, 103 5, 058501.
8. Ye M., Pasta M., Xie X., Dubrawski K., Xu J., Liu C., Cui Y., Criddle C. (2019). Charge-Free Mixing Entropy Battery Enabled by Low-Cost Electrode Materials. ACS Omega, 4, 11785–11790.
9. Papayannopoulos V. (2018). Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology 18, 134–147.
10. Sharma P., Garg N., Sharma A., Capalash N., Singh R. (2019). Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int J of Medical Microbiology, Vol. 309, Issue 8, 151354.
11. Artés J., Li Y., Qi J., Anantram L. P., Hihath J (2015). Conformational gating of DNA conductance. Nat Commun 6, 8870.
12. Rothemund P. W. K. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302.
13. Xu J., Chmela V., Green N., Russel D.A., Janicki M. L., Gora R. W., Szabla R. A., Bond A. D., Sutherland J. D. (2020). Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60–66.
14. Extance A. (2020). The First Gene on Earth May Have Been a Hybrid. Scientific American, Vol. 323, issue 3.
15. Murayama K., Okita H., Kuriki T., Asanuma H. (2021). Nonenzymatic polymerase-like template-directed synthesis of acyclic L-threoninol nucleic acid. Nat Commun 12, 804.
16. Flynn R. A., Pedram K., Malaker S. A., Batista P. J., Smith B. A. H., Johnson A. G., George B. M., Majzoub K., Villalta P. W., Carette J. E., Bertozzi C. R. (2021). Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 8:S0092-8674(21)00503-1.
17. Mast C. B., Osterman N., Braun D. (2010). Disequilibrium First: The Origin of Life. Journal of Cosmology, Vol. 10, 3305–3314.
18. Mast C. B., Schink S., Gerland U., Braun D. (2013). Escalation of polymerization in a thermal trap. PNAS 110 (20).
19. Attal R., Schwartz L. (2021). Thermally driven fission of protocells. Biophys J. 21; 120 (18): 3937–3959.
20. Lane N. (2015). The Vital Question: Why is Life the Way It Is? Profile Books Ltd, Great Britain.
21. Lisci M., Barton P. R., Randzavola L. O., Ma C. Y., Marchingo J. M., Cantrell D. A., Paupe V., Prudent J., Stinchcombe J. C., Griffiths G. M. (2021). Mitochondrial translation is required for sustained killing by cytotoxic T cells. Science. 15; 374 (6565): eabe9977.
22. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157.
23. Chandel N. S., Maltepe E., Goldwasser E., Mathieu C. E., Simon M. C., Schumacker P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720.
24. Herzig S., ShawR. J. (2018). AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135.
25. West A. P., Shadel G. S. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375.
26. Martinez-Reyes I., Chandel N.S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat Comm, 11: 102.
27. Sivanand S., Viney I., Wellen K. E. (2018). Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74.
28. Infantino V., Iacobazzi V., Palmieri F., Menga A. (2013). ATP-citrate lyase is essential for macrophage inflammatory response. Biochem. Biophys. Res. Commun. 440, 105–111.
29. Peng M., Yin N, Chhangawala S., Xu K., Leslie C. S., Li M. O. (2016). Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484.
30. Hatzivassiliou G., Zhao F., Bauer D. E., Andreadis C., Shaw A. N., Dhanak D., Hingorani S. R., Tuveson D. A., Thompson C. B. (2005). ATP citrate lyase inhibition can suppress tumorcellgrowth. Cancer Cell 8, 311–321.
31. Niemann S., Muller U. (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26, 268–270.
32. Sciacovelli M., Gonçalves E., Johnson T. I., Zecchini V. R., da Costa A. S., Gaude E., Drubbel A. V., Theobald S. J., Abbo S. R., Tran M. G., Rajeeve V., Cardaci S., Foster S., Yun H., Cutillas P., Warren A., Gnanapragasam V., Gottlieb E., Franze K., Huntly B., Maher E. R., Maxwell P. H., Saez-Rodriguez J., Frezza C. (2016). Fumarate is an epigenetic modifier that elicits epithelial to-mesenchymal transition. Nature 537, 544–547.
33. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E. M., McGettrick A. F., Goel G., Frezza C., Bernard N.J., Kelly B., Foley N. H., Zheng L., Gardet A., Tong Z., Jany S. S., Corr S. C., Haneklaus M… Caffrey B. E., Pierce K., Walmsley S., Beasley F. C., Cummins E., Nizet V., Whyte M., Taylor C. T., Lin H., Masters S. L., Gottlieb E., Kelly V. P., Clish C., Auron P. E., Xavier R. J., O’Neill L. A. (2013). Succinate is an inflammatory signal that induces IL-1 beta through HIF-1alpha. Nature 496, 238–242.
34. Littlewood-Evans A., Sarret S., Apfel V., Loesle P., Dawson J., Zhang J., Muller A., Tigani B., Kneuer R., Patel S., Valeaux S., Gommermann N., Rubic-Schneider T., Junt T., Carballido J. M. (2016). GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662.
35. Keiran N., Ceperuelo-Mallafré V., Calvo E., Hernández-Alvarez M.I., Ejarque M., Núñez-Roa C., Horrillo D., Maymó-Masip E., Rodríguez M. M., Fradera R., de la Rosa J. V., Jorba R., Megia A., Zorzano A., Medina-Gómez G., Serena C., Castrillo A., Vendrell J., Fernández-Veledo S. (2019). SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol.; 20 (5): 581–592.
36 O’Neill L. A., Kishton R. J., Rathmell J. (2016). Aguide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565.
37. XuT., Stewart K. M., Wang X., Liu K., Xie M., Ryu J. K., Li K., Ma T., Wang H., Ni L., Zhu S., Cao N., Zhu D., Zhang Y., Akassoglou K., Dong C., Driggers E. M., Ding S. (2017). Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233.