Для начала введем некоторые обозначения. Предположим, что некоторая величина Y зависит от величин . Введем понятие регрессионного уравнения – это уравнение вида
, где
. Через n обозначим число наблюдений, по которым строится регрессия, k – число регрессоров в модели,
– случайная величина, которая носит название ошибки регрессии.
Модель такого вида называется классической линейной регрессионной моделью (ЛРМ) в случае, если выполняются следующие предпосылки:
1. ,
– линейная спецификация модели, где
– коэффициенты модели, которые подлежат определению,
,
– ошибки модели.
2. ,
– детерминированные величины.
3. – математическое ожидание ошибок равно нулю,
, дисперсия ошибок не зависит от номера наблюдения.
4. ,
– совместное математическое ожидание ошибок разных наблюдений равно нулю.
5. Если выполняется дополнительная предпосылка о нормальном распределении ошибок , то классическая линейная регрессионная модель называется нормальной линейной регрессионной моделью (НЛРМ).
Подробнее о предпосылках линейной регрессионной модели можно прочесть в [2, 3].