2. Рафинирование и дегазация сплавов в вакуумно-индукационных печах

Процессы, происходящие в жидком металле в вакууме, связаны между собой и в большинстве случаев протекают одновременно. Так, например, процесс раскисления металла углеродом, сопровождаемый выделением пузырей окиси и двуокиси углерода, сопровождается выделением водорода и азота, всплыванием и восстановлением неметаллических включений, испарением примесей легколетучих компонентов и т. д. [2].

Как известно, рафинирование сплавов – это очистка их от примесей, которые ухудшают физико-химические показатели и снижают уровень механических характеристик.

Очистка металлических расплавов от растворённых металлических и неметаллических примесей является одной из главных целей металлургического производства.

Наиболее полное удаление растворённых примесей из никелевых расплавов осуществляется путём окислительного рафинирования, при котором расплав глубоко насыщается кислородом благодаря созданию окислительной атмосферы в печах, продувкой воздухом или кислородом, или за счёт использования окислительного шлака. Растворённые примеси, обладающие бо́льшим сродством к кислороду, чем основной металл, связываются в свободные оксиды. Из этих оксидов только монооксид углерода СО является газом и в виде пузырей уходит из расплава. Остальные примеси дают твёрдые или жидкие оксиды. Частицы подобных оксидов собираются на поверхности расплава в шлаке. Таким путём удаляются Si, Mn, Fe из никелевых расплавов. При подобном способе удаления примесей из расплава не уходят легирующие компоненты, обладающие малым сродством к кислороду. После окислительного рафинирования должно быть обязательно проведено раскисление расплава, т. е. удаление избытка растворённого кислорода [1].

Удаление растворённой примеси, обладающей малым сродством к кислороду, может быть достигнуто в сильно восстановительных условиях, когда атомы подобных примесей становятся отрицательно заряженными ионами, способными соединяться с сильными положительно заряженными ионами металла в шлаке. В результате образуется нерастворимое в расплаве соединение. На подобном явлении основано удаление серы из никелевых расплавов, осуществляемое за счёт образования сульфида кальция Ca2+шл + S2-расрл = CaSшл (индекс «шл» – шлак). Для создания необходимого количества ионов кальция в шлак добавляют карбид кальция СаС2 или фторид кальция СаF2.

Удаление растворённой примеси из расплава может быть осуществлено её взаимодействием со шлаком или флюсом. Примером этого может служить уже описанное связывание серы в сульфид кальция.

Летучие растворённые примеси могут быть удалены из металлических расплавов достаточно высоким перегревом или более надёжным способом – плавкой в вакууме. Достигаемая степень очистки зависит от равновесного давления пара примеси, определяемого её содержанием и коэффициентом активности, от величины остаточного давления над расплавом, от механических препятствий, создаваемых слоем оксидов или шлака, от условий перемешивания расплава и других внешних обстоятельств [1].

Крайне важную роль в этом процессе также играют приёмы, связанные с введением в расплав элементов (например, С, Mg, Ca или РЗМ), которые связывают присутствующие в жидком металле газы или вредные примесные атомы в легкоудаляемые в виде пара, а также оседающие на стенках тигля окисные или шлаковые соединения, кроме того связывающие их в высокотемпературные дисперсные частицы, что обеспечивает перевод вредных разупрочняющих материал-элементов в форму упрочняющих соединений.

Примеси попадают в сплав из исходных шихтовых материалов, а также в результате высокотемпературного взаимодействия жидкого сплава с формой.

Например, при выплавке никелевого жаропрочного сплава ЖСбУ из чистых шихтовых материалов содержание вредной примеси серы, как указывается в работе [3], достигает 0,0089 % масс. Приведённая концентрация серы в сплаве обусловлена наличием её в исходных металлах, входящих в состав этого сплава (таблица 3).


Таблица 3

Содержание серы в шихтовых материалах и в сплаве ЖСбУ-ВИ


Все шихтовые материалы, применяемые при плавке литейных жаропрочных сплавов и, в частности, сплава ЖСбУ-ВИ, содержат серу (таблица 3). В результате из шихтовых материалов может перейти в сплав максимально до 0,009 % серы, причём около половины этого количества серы переходит в сплав из электролитического катодного никеля [3].

2.1. Взаимодействие компонентов сплава с газами и футеровкой тигеля

Высокое качество деталей из литейных жаропрочных сплавов, особенно деталей с монокристаллической структурой, обеспечивается высокой чистотой металла по газам (азоту, водороду и кислороду) и вредным неметаллическим примесям (в первую очередь сере, фосфору, кремнию) [4–5]. Одной из вредных примесей в жаропрочных сплавах является азот, который при кристаллизации никелевого расплава образует нитриды и карбонитриды, являющиеся источником образования различных дефектов структуры при получении монокристаллов, в т. ч. равноосных «паразитных» зёрен на поверхности деталей.

Очистка металлических расплавов от растворённых водорода и азота называется также дегазацией. Удаление из расплавов растворённого кислорода называется раскислением. Этот последний процесс ввиду его специфичности рассматривается далее отдельно.

На использовании явления уменьшения растворимости газов при снижении температуры металла основано снижение газонасыщенности сплавов путём простой предварительной переплавки с последующей кристаллизацией, когда полученный расплав разливают в чушки, используемые уже для приготовления рабочего сплава.

Дегазация металлических расплавов очень часто достигается путём продувки расплавов инертными или активными газами, а также обработкой расплавов летучими соединениями (главным образом, хлоридами). Во всех случаях процесс дегазации основан на диффузии растворённого газа из расплава в пузырь, образованный продуваемым газом, где парциальное давление растворённого газа вначале теоретически равно нулю, а затем приближается к равновесному, определяемому остаточным содержанием газа в растворе-расплаве. Удаление газа из расплава по такому механизму возможно и без продувки, через свободную поверхность при выдержке расплава в атмосфере, где парциальное давление растворённого газа меньше равновесного, определяемого его содержанием и температурой. Однако ввиду малой интенсивности массопереноса, зависящей от диффузии в расплаве, требуется большая поверхность раздела расплав – газ, что и достигается при продувке, когда газ подаётся в расплав в виде пузырьков диаметром 1–2 мм. Для этого применяют различные пористые насадки на конце рабочего патрубка (фурмы).

При дегазации расплавов продувкой газами или обработкой летучими веществами вопросом первостепенной важности становится содержание примесей в используемых газах и веществах, главным образом влаги, азота, кислорода [1].

Кроме того, было показано [6], что при кристаллизации жаропрочных никелевых сплавов с повышенной концентрацией азота в отливках может образовываться значительная микропористость. Это приводит к снижению свойств сплава.

При исследовании закономерностей поведения азота при выплавке монокристаллического жаропрочного сплава ЖС30-ВИ была установлена [4] зависимость между содержанием в сплаве азота и формой выделяющихся при кристаллизации сплава нитридов и карбонитридов: при повышенном содержании азота – выше 0,001 % (фактически 0,0014–0,0027 %) – образуются довольно крупные карбиды округлой или полиэдрической формы, а при низком содержании азота (0,0005–0,0007 %) формируются тонкодисперсные игольчатые вытянутые карбиды.

В монокристаллах сплава ЖС30-ВИ в пределах рассмотренного содержания азота имеется прямая зависимость: чем меньше содержание азота, тем больше число циклов до разрушения при испытаниях на МЦУ. При повышении содержания азота от 5 до 20 ppm среднее число циклов до разрушения уменьшается в 1,5 раза.

Приведённые результаты исследований указывают на крайнюю актуальность работ, направленных на обеспечение предельно низкого содержания газов и таких вредных примесей, как сера, фосфор, кремний и др.

Важнейшими процессами рафинирования безуглеродистых сложнолегированных расплавов никеля, используемых в качестве шихты заготовок для монокристаллического литья лопаток современных газотурбинных двигателей, являются десульфурация, дефосфорация и деазотация металла в зависимости от окислительного и восстановительного потенциалов вакуумной индукционной плавки [7].

Физико-химическими особенностями процессов рафинирования расплава во время окислительного периода плавки являются одновременное протекание процессов плавления матричного металла (никеля) и растворения легирующих компонентов (Co, Mo, W, Re и др.), а также образование первичного и вторичного шлака после введения в расплав закиси никеля [8]. В результате из расплава в газовую фазу удаляется сера в виде SO2, в шлаковую фазу – фосфор в виде аниона РО43-, и за счёт флотации пузырьками СО, образующимися при реакции обезуглероживания металлического расплава, – азот в виде N2. Очевидно, что все эти процессы связаны со свойствами поверхности реагирующих фаз, в т. ч. с поверхностью металлического расплава.

С точки зрения процессов рафинирования металлов и сплавов законы термодинамики определяют направление протекания процессов рафинирования: какое количество энергии при этом будет выделяться или поглощаться, каково соотношение концентрации (активностей), при которой наступает состояние равновесия, и каковы возможные конечные состояния в зависимости от внешних условий.

Химическая же кинетика позволяет ответить на вопросы, будет ли достигнуто за приемлемый промежуток времени состояние, предсказанное термодинамикой, каким путём оно может быть достигнуто и как влияют при этом внешние условия на полноту протекания химических процессов.

В гетерогенных реакциях кинетика связана с термодинамикой для процессов, протекающих на границе раздела фаз, условия равновесия которых предсказывает термодинамика.

Раскисление металла

Раскисление металлических расплавов означает удаление из них растворённого кислорода. Раскислению подвергают лишь расплавы, где кислород присутствует именно в растворённом виде. Поэтому сплавы на основе никеля при плавке обязательно раскисляют.

Раскисление может быть осуществлено несколькими способами. Наиболее универсальным способом является осадочное или глубинное раскисление, при котором в расплав, содержащий растворённый кислород, вводится элемент-раскислитель R, образующий соединения с кислородом, нерастворимые в расплаве. В обобщённом виде происходящий процесс может быть описан реакцией: [O]Me + [R]Me ←→ RO. Главное условие осадочного раскисления заключается в том, чтобы реакция была сильно сдвинута вправо, в сторону образования оксида RO. Это обеспечивается большой отрицательной величиной свободной энергии Гиббса указанной реакции. Отличительная особенность осадочного раскисления состоит в том, что этот процесс приводит к загрязнению расплава продуктами реакции в виде частиц оксидов RO, являющихся типичными эндогенными докристаллизационными включениями. Их удаление из расплава требует соответствующего внимания.

Подобного недостатка лишено так называемое контактное раскисление, при котором кислород либо переходит в специально наводимый на расплав шлак в виде оксида расплавляемого металла МеО, либо связывается на поверхности нерастворимого твёрдого раскислителя в оксид, также нерастворимый в расплаве. Раскисление через шлак широко применяется в металлургии как начальная ступень удаления кислорода, после которого проводится глубинное осадочное раскисление добавками марганца, кремния, кальция, алюминия. В этих случаях в качестве раскислителя используют углерод в виде графита или карбида кальция. Раскисление проходит по реакции [O]Me + C → CO. Продуктом раскисления является монооксид углерода, пузыри которого легко уходят в атмосферу. Контактное раскисление, большое достоинство которого состоит в том, что расплав не загрязняется неметаллическими включениями, отличается малой скоростью и требует для своего завершения десятков минут, т. к. поступление кислорода к поверхности, где идёт реакция, хотя и осуществляется конвекцией в макромасштабе, у самой границы расплав-раскислитель реализуется только за счёт диффузионного массопереноса.

Для некоторых сплавов раскисление достигается при плавке в достаточно глубоком вакууме. Для этого необходимо, чтобы остаточное давление в вакуумной камере было в несколько раз меньше равновесного парциального давления кислорода, определяемого необходимым минимальным его содержанием в расплаве.

На практике, как правило, пользуются комплексными раскислителями, состоящими из нескольких металлов и элементов.

Так, никель раскисляют углеродом и магнием. Одно из преимуществ комплексных раскислителей состоит в том, что остаточное содержание каждого из составляющих оказывается в расплаве небольшим, тогда как общее снижение содержания кислорода достигается суммарным действием всех элементов и металлов, входящих в состав комплексного раскислителя.

Термодинамические расчёты показывают принципиальную пригодность данного элемента как раскислителя. Технология приготовления сплавов требует решения вопроса об удалении из расплава продуктов раскисления. Наилучшие условия для этого создаются, когда продукты раскисления газообразны. Именно поэтому углерод очень часто используется как раскислитель для тех металлов, где это возможно [1].

Одной из важнейших реакций, протекающих в жидкой металлической ванне в условиях пониженного давления газовой фазы, является реакция взаимодействия углерода с кислородом, который может находиться в металле в растворённом состоянии или в виде окисных неметаллических включений.

При взаимодействии углерода с кислородом образуются газообразные продукты СО и СО2; в вакууме эта реакция протекает значительно полнее, чем при атмосферном давлении. При выделении пузырьков СО и СО2 не только происходит раскисление и обезуглероживание металла, но и создаются благоприятные условия для выделения водорода, азота, всплывания неметаллических включений.

Реакцию обезуглероживания в общем виде можно записать следующим образом:

[C] + x[O] = Acox, (1)

где х свидетельствует о том, что в этом процессе образуется как СО, так и СО2; в зависимости от количества образующейся двуокиси углерода х может быть равен единице или больше. Раскисление металла углеродом в вакууме будет зависеть только от парциального давления СО в газовой фазе над металлом. Чем ниже давление, тем выше раскислительная способность углерода, тем меньше кислорода должно находиться в равновесии с данной концентрацией углерода. Термодинамические расчёты показывают, что при 1600 °С при давлении СО 133 н/м2 (1 мм рт. ст.) и содержании углерода 0,1 % в металле должно было бы остаться всего 3 · 10-5 % кислорода. Однако такое низкое содержание кислорода ни разу не достигалось ни в одном из вакуумных металлургических процессов. Более того, содержание кислорода в металле, выплавленном в вакууме, значительно превышает равновесное относительно углерода. Оказалось, что ниже определённого давления СО раскислительная способность углерода перестаёт зависеть от снижения давления СО над металлом и остаётся постоянной [1].

Дальнейшие исследования показали, что за равновесное давление СО следует принимать величину этого параметра в газовом пузырьке, образующемся в той части жидкого расплава, в которой происходит выделение СО из объёма металла, окружающего пузырик.

А это давление больше, чем давление остаточного после вакуумирования газа над поверхностью расплава на удельную величину веса столба жидкого расплава от поверхности до образующегося пузырька, а также ту часть давления в пузырьке, которое нейтрализует поверхностное натяжение.

При переплаве твёрдого металла в вакуумно-индукционных печах большая часть кислорода в виде окиси углерода выделяется во время расплавления, азот удаляется в течение всей плавки, удаление водорода происходит в основном из жидкого металла в первой половине выдержки жидкого металла в вакууме. Необходимо учитывать также возможное удаление водорода из твёрдого металла во время его нагрева.

При переплаве отходов выделяется значительно меньше газов и в других соотношениях, чем при выплавке сплава на свежих материалах.

Очевидно, что раскисление становится совершенно необходимым, если сплав готовится из чистых металлов, и оказывается совершенно ненужным, если проводится простая переплавка готового сплава.

Подбор раскислителей, расчёт их количества, время и способ введения в расплав определяются составом сплава, набором исходных шихтовых материалов, применяемым оборудованием. Расчёты на основе термодинамики, физической химии, механики являются основой для решения технологических вопросов, но не могут заменить саму технологию, требующую обязательного практического опробования.

Раскислители, как это видно из изложенного ранее, представляют собою очень активные по отношению к кислороду и нередко летучие элементы. Поэтому для их введения применяют лигатуры.

Исследования, проведённые в последнее время, показали, что удаление растворённого кислорода из никелевых сплавов, т. е. их раскисление, в определённой мере происходит в процессе фильтрования расплава. Физическая сущность этого явления заключается в следующем. После ввода в расплав раскислителей должна пройти реакция с образованием новых фаз – продуктов раскисления. Образование новых фаз в расплаве требует определённого пересыщения и проходит во времени. В процессе фильтрования вся масса расплава протекает через поры фильтрующего материала, который может выполнить роль готовых центров образования оксидных фаз – продуктов раскисления, если этот материал обладает соответствующей кристаллической структурой. Поскольку продуктами раскисления являются обычно силикаты, то фильтр, состоящий из динаса или шамота, вполне способен быть активной подложкой, на которой из пересыщенного раствора могут возникать частицы продуктов раскисления [1].

Наиболее надёжный способ дегазации металлических расплавов, т. е. рафинирования от растворённых газов, заключается в их вакуумировании, хотя для этого необходимо сложное технологическое оборудование: вакуумные камеры или стенды, насосы, измерительная аппаратура.

Все процессы дегазации вакуумированием основаны на законе Сивертса, показывающем зависимость содержания газа в растворе от его давления над расплавом: [Г] = k√рг2. По существу, вакуумирование происходит при простой выдержке приготовленного расплава. В самом деле, если при открытой плавке использовались недостаточно хорошо просушенные материалы или, например, катоды меди или никеля, насыщенные при электролизе водородом, то в расплаве окажется какое-то количество растворённого водорода [Н], для которого равновесное давление будет равно рН2 = [Н]2/k2. При выдержке такого расплава в атмосфере сухого воздуха, где парциальное давление водорода практически равно нулю, должен неизбежно пойти процесс перехода водорода из расплава в атмосферу. Этим явлением иногда пользуются для удаления большого избытка водорода из расплавов.

Процесс дегазации расплавов вакуумированием осуществляется созданием над расплавом разрежения или помещением расплава в специальную камеру с остаточным давлением 10–1000 Па. В таких условиях расплавы, содержащие газы, «закипают», в них образуются пузыри водорода, азота, монооксида углерода, которые всплывают на поверхность и создают видимость кипения. Этот процесс сопровождается активным падением содержания растворённых газов. Через несколько минут «кипение» прекращается, одновременно заканчивается активное снижение содержания газов [1].

С целью повышения эффективности процессов рафинирования и дегазации жаропрочных сплавов при осуществлении вакуумно-индукционной плавки в нашей стране и за рубежом были опробованы различные перспективные технологии.

Преимущественной задачей при вакуумно-индукционной плавке является не допустить окисления активных легирующих элементов типа Al, Ti, Zr и Hf. В дополнение к этому необходимо обеспечить испарение вредных летучих элементов типа висмута, свинца и селена, которые присутствуют обычно в сырье и которые существенно снижают механические свойства в жаропрочных сплавах.

На содержание оксидов и нитридов в плавке влияют:

1) используемые для плавки шихтовые материалы;

2) реакции, которые могут произойти в течение времени, пока материал находится в тигле.

В вакуумно-индукционной плавке, где используются первичные шихтовые материалы, общей практикой является рафинирование неактивных элементов (Ni, Со, Cr, Mo, W, Та и т. д.), прежде чем вводятся активные элементы (Ti, Al, Hf, Zr), которые легко поглощают растворённый кислород и образуют оксиды (Al2O3, HfO, ZrO2) и нитриды (TiN).

Удаление кислорода из металла в вакууме может происходить различными путями: а) путём раскисления металла углеродом, водородом, металлическими раскислителями; б) путём всплывания неметаллических и окисных включений; в) путём испарения летучих окислов; г) путём непосредственного выделения в газовую фазу [2].

Удаление кислорода является относительно простой задачей, пока в сплаве не присутствуют активные элементы. Раскисление производится углеродом, взаимодействующим с кислородом и вызывающим удаление образовавшегося СО. Уровень кислорода, который может быть достигнут, не соответствует рассчитанному по равновесной реакции. Конкурирующие условия, такие как кинетика перемещения СО и образование кислорода из материала тигля, воздействуют на уровень концентрации кислорода, который может быть достигнут при раскислении.

Точно так же азот может быть эффективно удалён вакуумной дегазацией, пока в расплав не введены сильные нитридообразующие элементы. Это справедливо, например, для титана, после введения которого дальнейшая вакуумная дегазация азота происходит чрезвычайно медленно.

Раскисление металла водородом

С термодинамической точки зрения применение водорода для раскисления металла в вакууме не имеет преимуществ по сравнению с его использованием в открытой плавке. На реакцию раскисления

H2(r) + [O] = H2Or, (2)

снижение давления не оказывает влияния и не приводит к смещению равновесия. Однако при помощи водорода удаётся значительно снизить содержание кислорода в металле. Особенностью применения водорода в вакуумных печах является то, что после обдувки или продувки металла водородом снижение давления обеспечивает полное удаление водорода из металла.

Особое значение применение водорода для раскисления имеет при производстве безуглеродистых и низкоуглеродистых сплавов, когда применение углерода не может быть рекомендовано из-за опасности загрязнения металла углеродом. По сравнению с раскислением углеродом раскисление водородом требует большего времени для достижения тех же минимальных концентраций кислорода.

Водород в вакуумной индукционной плавке используется для обдувки поверхности металла или продувки его. В первом случае раскисление идёт только с поверхности ванны, и скорость этого процесса определяется скоростью подвода водорода к поверхности металла, которая имеет малую величину; в случае продувки металла раскисление должно происходить значительно быстрее [2].

Раскисление металлическими раскислителями

Раскисление низкоуглеродистого металла только углеродом в вакууме не даёт возможности получить низкие концентрации кислорода, а применение водорода большей частью не находит места из-за сложности и опасности его использования.

Поэтому применение металлических раскислителей в вакуумных агрегатах продолжает оставаться актуальным.

Отсутствие окислительной атмосферы в вакуумных установках значительно повышает эффективность раскислителей, которые не окисляются кислородом воздуха и шлаком; основная масса присадки попадает в металл и выполняет свою функцию.

В работе [9] было исследовано раскисление железоуглеродистых и железохромистых сплавов марганцем, кремнием, алюминием, миш-металлом, сплавом АМС и алюминием совместно с церием. Присадка Mn и Si не оказывает существенного влияния на снижение содержания кислорода в металле.

При раскислении металла алюминием в первый момент после введения алюминия содержание кислорода заметно снижается. При выплавке сплавов как с 10, так и с 20 % Cr экспериментальные содержания кислорода лежат выше равновесных значений, следовательно, введение алюминия обеспечивает заметное раскисление металла.

В результате раскисления алюминием содержание кислорода в металле составляло 0,002–0,003 % и 0,004–0,005 % для железоуглеродистых и железохромистых сплавов соответственно [2].

Кроме рассмотренных выше механизмов удаления кислорода из металла в вакууме, существует и другой: кислород может удаляться путём испарения летучих субокислов некоторых компонентов. Субокислы – это низшие окислы, обладающие высокой упругостью пара.

Количество оксидов, присутствующих в первичных материалах, может лимитироваться путём выбора поставщиков и условий на получаемые материалы. К сожалению, самые чистые, не содержащие оксиды, материалы могут быстро стать загрязнёнными большим количеством оксидов в зависимости от состава сплава и огнеупорного тигля, содержащего расплав. Химический состав (MgO, AlO3, ZrO2), пористость и реакционная способность материала тигля являются важными факторами.

Оксиды, содержащиеся в материале футеровки, могут взаимодействовать со многими элементами, и впоследствии образовавшийся кислород легко взаимодействует с более устойчивыми оксидами, присутствующими в расплаве. Например:

2Al (расплав) + 3MgO (тигель) → Al2О3 (расплав) + 3Mg (расплав).

Это – типичная ситуация, т. к. большинство промышленных плавок производится в тиглях с магнезитовой набивкой и большинство жаропрочных сплавов содержит алюминий. Оксиды, образующиеся в MgO – тигле, как полагают, более легко агломерируются и удаляются из расплава, если они образуются. Недостатки корундовых и цирконовых тиглей заключаются в разбросе показателей термомеханических свойств и высокой стоимости.

Магний и редкоземельные элементы типа церия или миш-металла также используются для удаления серы. Церий легко формирует сульфоксиды, которые удаляются в шлак.

Магний является одним из весьма активных элементов, вводимых в жаропрочные никелевые сплавы при их рафинировании. Следует указать, что часть магния попадает в жидкий металл при плавке из керамических тиглей (магнезитовых или корундо-магнезитовых). В работе [10] приведены результаты исследований влияния модифицирующей добавки магния на структуру и свойства никелевых сплавов при плавке их в вакуумных индукционных печах.

Автор [10] указывает, что магний заметно снижает поверхностное натяжение сплава ЖСбКП при температуре 1400 и 1500 °С и, следовательно, является поверхностно-активным элементом.

Форма и распределение карбидов титана находятся в такой же зависимости от содержания магния, как и величина поверхностного натяжения металла. В исходном металле до присадки магния карбиды титана преимущественно вытянутые, игольчатые, имеют характер распределения в виде «китайских иероглифов». В результате снижения поверхностного натяжения после присадки магния карбиды становятся мелкими, круглыми, равномерно распределёнными в объёме металла.

Магний заметно снижает диффузионную подвижность атомов при рабочей температуре сплава, что находится в полном соответствии с результатами испытаний на жаропрочность. Исследования микроструктуры сплава ЖСбКП без магния и с магнием показали, что после нагрева при температуре 1000 °С (без приложения нагрузки) в течение 1000 ч в металле с магнием сохраняется более мелкая и тонкая γ’-фаза, чем в металле без магния.

Исследования с использованием электронного микроскопа разрушенных образцов из сплава ЖСбКП без магния и с магнием показали, что магний задерживает коагуляцию γ’-фазы в сплаве при рабочих температуре и напряжении и стабилизирует структуру. Это обеспечивает повышение жаропрочных свойств сплава.

При микроструктурном исследовании после травления в течение 0,3 мин различий в состоянии границ зёрен металла без магния и с магнием не наблюдали. Однако при более продолжительном воздействии реактива границы зёрен в металле с магнием растравились меньше (особенно после травления в течение 90 мин), т. е. границы зёрен в этом случае имели большую химическую устойчивость к воздействию кислот, что в свою очередь указывает на способность магния замедлять диффузионную подвижность атомов по границам зёрен при высокой температуре, т. е. дополнительно упрочнять границы.

В соответствии с работой [10] для получения сплавов с высокими показателями жаропрочности и пластичности в металле должно быть около 0,01 % Mg.

Магний является поверхностно-активным элементом и распределяется в металле по границам зёрен и в междендритных участках, а также на поверхностях раздела фаз.

Металл с магнием имеет пониженную диффузионную подвижность атомов; такой металл менее подвержен разупрочнению при рабочей температуре и напряжении.

Окись магния может восстанавливаться алюминием уже при содержании алюминия в металле около 0,1 %, поэтому с точки зрения термодинамики длительная выдержка в индукционной вакуумной печи жаропрочных сплавов, содержащих алюминий, нежелательна.

Введение церия совместно с алюминием является эффективным средством рафинирования металла от кислорода. Особое значение это имеет для сплавов с высоким содержанием хрома, в которых активность углерода понижена из-за наличия хрома [1].

Любой технологический процесс, который может привести к удалению оксидных и нитридных включений или предотвратить их образование, очевидно важен для окончательной чистоты получаемого продукта.

Как показывает отечественный и зарубежный опыт, получить высококачественные лопатки с бездефектной монокристаллической структурой возможно только при использовании для их отливки сплавов с ультранизким содержанием в них вредных примесей углерода, серы, фосфора, кремния и газов – кислорода и азота. Это обусловлено тем, что образующиеся с участием указанных элементов соединения (карбиды, сульфиды, фосфиды, оксиды, нитриды) выделяются внутри монокристалла и являются, с одной стороны, концентраторами напряжений, инициирующими зарождение трещин, а с другой стороны, источником гетерогенного зарождения равноосных «паразитных» зёрен, что существенно снижает прочностные характеристики и стабильность свойств монокристаллов, а также выход годных лопаток. Так, при содержании в сплаве 0,0025–0,0030 % азота выход годных лопаток по бездефектной монокристаллической структуре составляет всего 50–60 %; при снижении содержания азота в этом сплаве до уровня 0,0006–0,0007 % выход годных лопаток повышается до 80–90 %.

В случае снижения суммарного содержания газов (кислорода и азота) в жаропрочном сплаве для монокристаллического литья с 0,005 до 0,002 % его долговечность при испытании на длительную прочность увеличивается в 1,5–2,0 раза; снижение содержания углерода в этом сплаве с 0,02 до 0,005 % позволяет увеличить его долговечность в 2–3 раза. Отрицательное влияние серы, кроме образования в сплаве сульфидов, проявляется также в том, что с увеличением её содержания в металле с 0,0005 до 0,0020 % температура локального плавления сплава снижается с 1375 до 1330 °С, т. е. рабочая температура сплава понижается на 45 °С [5].

В отличие от жаропрочных сплавов, отливаемых методом равноосной кристаллизации, при которой имеет место объёмная кристаллизация и, соответственно, большая протяжённость границ зёрен, при получении монокристаллических отливок, в которых границы зёрен отсутствуют, кристаллизация расплава происходит однонаправленно – в направлении теплового потока; при этом примеси концентрируются перед плоским фронтом кристаллизации и нарушают его устойчивость, что приводит к появлению дефектов в монокристалле [11].

Таким образом, жаропрочные сплавы с монокристаллической структурой более чувствительны к примесям, чем сплавы с равноосной структурой, что связано с особенностями их структурообразования.

Удаление водорода и азота

Большой интерес представляет механизм удаления водорода и азота из жидкого металла. При рассмотрении выделения из жидкого металла в вакууме необходимо учитывать газовыделение через стенки тигля.

В работе [2] представлена следующая схема удаления водорода и азота из жидкого металла:

1. Перенос растворённых атомов азота или водорода в объёме жидкого металла, включающий массопередачу, благодаря конвективным потокам и диффузии через непромешиваемый слой на границе раздела фаз. Перенос атомов азота и водорода осуществляется из объёма металла к границам раздела: металл – футеровка, металл – газовая атмосфера над металлом, металл – газовые пузырьки, находящиеся в металле.

2. Адсорбция атомов азота и водорода в поверхностном слое:

[Н] → Надс; [N] → Naдc.

3. Рекомбинация адсорбированных атомов азота и водорода на поверхности раздела в газовые молекулы по реакции:

Надс + Надс = Н2адс; Nадс + Nадс = N2адс.

4. Десорбция газовых молекул.

5. Отвод молекулярного азота и водорода в газовую фазу, в т. ч. всплывание пузырьков в металле, отвод газа от поверхности металла в результате работы вакуумных насосов.

Повышение температуры и понижение давления в печи значительно ускоряют процесс дегазации и обеспечивают достижение более низких остаточных содержаний водорода и азота.

Более низкое значение скорости дегазации в алундовом тигле по сравнению с магнезитовым объясняется тем, что алундовый тигель более плотный, дегазация идёт преимущественно с поверхности ванны, в то время как при плавке в магнезитовом тигле газ может уходить и через его стенки.

Необходимо считаться и с тем, что наличие в металле хрома, ванадия, ниобия, титана понижает коэффициент активности азота в расплаве и тем самым прочнее связывает азот в растворе. С другой стороны, присутствие углерода и кремния повышает активность азота и способствует его удалению. Удалению азота мешает также и то, что он обладает низким коэффициентом диффузии по сравнению с водородом (DN = l – 4 · 10-4 см2/сек).

Удаление азота может происходить как путём образования и всплывания пузырьков, так и выделением при помощи конвективного переноса в газовую фазу. С повышением температуры процесс деазотации значительно ускоряется [2].

Ранее указывалось [4], что в сплаве ЖС30-ВИ при повышенном содержании азота (> 0,001 %) образуются карбидные включения округлой или полиэдрической формы, а при низком содержании азота (0,0006–0,0008 %) возникают игольчатые, вытянутые карбиды в виде «китайских иероглифов». В первом случае отмечался повышенный брак монокристаллических лопаток, отливаемых из такого металла, по макроструктуре (образование равноосных зёрен в монокристалле). При повышенной загрязнённости металла азотом образующиеся включения становятся центрами произвольной кристаллизации и нарушают естественный рост монокристаллов [11].

В этом исследовании изучалось влияние азота на структуру монокристаллов жаропрочных никелевых сплавов и разработаны эффективные способы рафинирования расплава от примеси азота в условиях вакуумной индукционной плавки.

Реакция деазотации относится к гетерогенным и происходит на границе раздела металл – газ. Уравнение скорости удаления азота из расплава будет иметь вид:



где Sрас – площадь поверхности расплава; Vрас – объём расплава; В – константа; Ср и С – равновесная и текущая константа соответственно; 0 – доля площади поверхности, заблокированная поверхностно-активными элементами (ПАЭ); D – коэффициент диффузии (D = Dмол + Dтурб, где Dмол – молекулярная диффузия; Dтурб – турбулентная диффузия); ν – кинематическая вязкость.

Из уравнения следует, что скорость деазотации может быть увеличена путём более интенсивного перемешивания расплава, увеличения поверхности раздела, металл – газ, уменьшения величины Ѳ (за счёт раскисления и десульфурации расплава), а также увеличения коэффициента Dмол и уменьшения ν (путём повышения температуры расплава).

Кроме того, повышение температуры расплава облегчает диссоциацию нитридных и карбонитридных включений в условиях вакуума.

Исследовано влияние температуры расплава на полноту удаления из него азота в условиях вакуумной индукционной плавки в сплаве ЖС30-ВИ.

На рис. 5 показано, что с повышением температуры расплава с 1620 до 1680 °С высота пиков падения вакуума в печи увеличивается, что свидетельствует о более интенсивном газовыделении при температуре расплава 1680 °С. При температуре расплава 1560 °С пиков падения вакуума не наблюдается.

На рис. 6 приведено изменение содержания азота в сплаве ЖС30-ВИ во время рафинирования расплава при разных температурах. Видно, что при температурах расплава 1560 и 1620 °С азот удалился незначительно (до 0,003 %), и только после рафинирования при температуре расплава 1680 °С его содержание понизилось до 0,0007 %. Содержание газов в металле определяли на анализаторе ТСН 600 фирмы Leco.


Рис. 5. Изменение уровня вакуума при проведении плавок сплава ЖС30-ВИ с различной термовременной обработкой расплава: 1620 °С (1), 1600 °С (2) и 1680 °С (3)


Рис. 6. Изменение содержания азота в сплаве ЖС30-ВИ во время рафинирования расплава при температурах 1560 (1), 1620 (2) и 1680 °С (3)


Для подтверждения полученных результатов в условиях промышленного производства сплава ЖС30-ВИ в вакуумной индукционной печи ИСВ 0,6 с ёмкостью тигля 600 кг было сделано пять плавок данного сплава.

Из металла всех плавок в условиях моторостроительного завода отлиты лопатки с монокристаллической структурой с кристаллографической ориентацией <001>. При проведении контроля макроструктуры лопаток установлено, что если содержание азота в металле составляет < 0,001 % (по массе), то брак лопаток по макроструктуре незначителен; если же содержание азота > 0,001 % (по массе), то отмечался повышенный брак монокристаллических лопаток по макроструктуре – образование в них равноосных зёрен.


Рис. 7. Количество бракованных лопаток по макроструктуре в зависимости от содержания азота в сплаве ЖС30-ВИ


На рис. 7 приведены статистические данные моторостроительного завода по количеству бракованных по макроструктуре лопаток из сплава ЖС30-ВИ, отлитых с монокристаллической структурой из металла с высоким и низким содержанием азота; при содержании в сплаве > 0,001 % азота (фактически 0,014–0,027 %) бракованных лопаток оказалось > 80 %, в то время как при содержании азота < 0,001 % (фактически 0,0006–0,0008 %) таких лопаток всего 15 %.

Микроструктуру образцов всех плавок исследовали на оптическом микроскопе Axio Imager. В образцах с высоким содержанием азота наблюдались карбидные и карбонитридные включения в виде частиц округлой и полиэдрической морфологии. Следует отметить, что значительное их количество располагалось не в междендритных областях, а непосредственно в осях дендритов 2-го порядка.

Это свидетельствует об их образовании одновременно с формированием дендритной матрицы основного твёрдого раствора или даже о том, что эти частицы выделялись из расплава как первичные.

Выделение таких частиц в верхней части жидко-твёрдой зоны при формировании монокристалла методом направленной кристаллизации приводит к образованию посторонних кристаллов, поскольку эти частицы являются центрами образования зародышей таких кристаллов в температурной области, где ещё не закончилось формирование дендритного каркаса растущего монокристалла.

В образцах с низким содержанием азота карбидные выделения имеют вытянутую шрифтовую морфологию в виде «китайских иероглифов» и располагаются строго в междендритных областях. Выделений карбидов в осях дендритов не обнаружено. Таким образом, для обеспечения высокой технологичности сплава ЖС30-ВИ при получении монокристаллов с высоким выходом годного необходимо обеспечивать содержание азота в металле на уровне < 0,001 % (по массе).

Полученные в работе результаты можно распространить и на другие литейные жаропрочные сплавы, отливаемые с монокристаллической структурой методом направленной кристаллизации.

Десульфурация в вакууме

При выплавке металла в вакуумных печах, в условиях недостаточно высокого вакуума, не происходит заметного удаления серы. Для существенного снижения концентрации серы путём испарения необходимо проводить плавку при остаточном давлении ниже 0,1 н/м2 (0,001 мм рт. ст.) и выдерживать жидкий металл длительное время. При исходном содержании серы около 0,02 % после трёхчасовой выдержки металла в вакуумной индукционной печи при остаточном давлении 10-3 н/м2 (10-5 мм рт. ст.) концентрация её снижается до 0,01 % [12].

Для уменьшения содержания серы в металле необходимо применять шлаковые смеси. Наилучшие результаты даёт использование смеси, состоящей из 90 % СаО и 10 % CaF2 в зёрнах размером 2–5 мм, которую загружают на дно тигля под слой шихты [13].

Применение шлакообразующих в вакуумных процессах позволяет значительно облегчить процесс десульфурации сплава. В работе [14] стенки тигля вакуумной индукционной печи обмазывали пастой из свежегашёной извести. После плавки при давлении 0,25 н/м2 (0,002 мм рт. ст.) содержание серы снизилось с 0,03 до 0,002–0,003 %.

Использование шлаковых смесей открывает перспективу значительного повышения эффективности десульфурации в вакууме. При прочих равных условиях (температура, состав шлака, содержание углерода в металле) понижение давления должно вызывать смещение равновесия реакции в направлении возрастания величины LS (характеризующей долю серы, перешедшей из металла в шлак), и поэтому удаление серы в вакууме должно протекать с большей полнотой, чем при атмосферном давлении.

В плавках, проведённых в вакуумной индукционной печи с добавками шлака на дно тигля, по сравнению с плавками, проведёнными при атмосферном давлении, особенно в случае низкоуглеродистых или безуглеродистых никелевых сплавов, сера удаляется значительно полнее [2].

Сера в никелевых жаропрочных сплавах является вредной примесью. Поэтому одна из целей рафинирования – полное (почти полное) удаление этого элемента в процессе выплавки. В работе [3] отмечается, что при содержании в сплаве серы свыше 1 ppm ухудшается адгезия защитного покрытия к основному металлу из-за диффузии серы в покрытие. При этом снижаются надёжность и ресурс работы защитного покрытия на деталях двигателя. В связи с этим вопросы эффективного глубокого рафинирования сплавов от примеси серы приобретают первостепенное значение.

Наиболее эффективным способом удаления серы из металла при плавке в вакууме является применение шлаковых смесей на основе оксида кальция.

Авторами [3] установлено, что при обработке расплава сложнолегированного жаропрочного сплава ЖСбУ в вакуумной индукционной печи высокоосновными шлаковыми смесями содержание серы в сплаве снижается, но при этом из шлака восстанавливается кальций, отрицательно влияющий на длительную прочность сплава. Поэтому повышение жаропрочных свойств сплава может быть достигнуто только при одновременном осуществлении двух процессов: глубокой десульфурации расплава путём применения шлаков на основе оксида кальция и полном удалении из расплава избыточного кальция как продукта реакции десульфурации.

Результаты комплексного решения проблемы удаления серы из никелевого жаропрочного сплава и при этом обеспечения отсутствия в его составе остаточного кальция приведены в работе [15]. Был исследован одностадийный процесс десульфурации сплава ЖСбУ-ВИ, предусматривающий ввод металлического кальция непосредственно при плавке сплава. Кальций в количестве 0,30 % присаживали или в тигель вместе с шихтой, или перед выпуском под давлением аргона 20 кПа. В случае присадки кальция в тигель вместе с шихтой и проведения всего технологического процесса под вакуумом остаточное содержание кальция в готовом металле после порционного переплава составляет менее 0,001 %, т. е. следы. Долговечность сплава ЖСбУ-ВИ, в котором имеется остаточный кальций, низкая, в то время как металл, не содержащий остаточный кальций, отличается весьма высоким уровнем долговечности, который в 1,5–2,0 раза выше, чем у металла, выплавленного по традиционной технологии.

Очистить сложнолегированный никелевый расплав от примеси серы можно также путём ввода в него редкоземельных металлов, например лантана.

В ренийрутенийсодержащем сплаве ВЖМ4-ВИ, микролегированном лантаном, обнаружены соединения лантан-никель, в состав которых также входит сера. Лантан связывает серу в термически прочные тугоплавкие включения с температурой плавления выше 1500 °С и тем самым нейтрализует её вредное влияние.

Загрузка...