Этюд о единице, породившей бесконечность


Этюд – небольшое исследование, посвященное какому-либо вопросу, изучению узкой темы.


Математика школьная – это учебный предмет, имеющий множество разветвлений. В расписании начальной школы стоит предмет «математика», которая представляет собой арифметику, с вкраплениями геометрических сведений. В средней школе она перерастает в два предмета: алгебру и геометрию, на стыке геометрии и алгебры появляется раздел тригонометрия. Геометрия из планиметрии переходит в стереометрию, а алгебра подступает к началам математического анализа. Попутно бегло просматриваются комбинаторика и теория вероятностей. В каждом из этих разделов изучается некая основа, необходимый минимум и программа идет дальше, чтобы в следующем разделе изучить тоже только самое необходимое. В результате, коснувшись в арифметике теории чисел, дальше необходимости научить детей выполнению четырех математических действий с числами мы не идем. В эпоху компьютеров, когда калькулятор есть в каждом смартфоне, необходимость этих практических навыков энтузиазма не вызывает, тем более не вызывает интереса. Остается простое требование: «надо, Федя, надо!» То, что может увлечь математикой, заинтересовать, не изучается, а остаются простые примеры на выполнение действий с числами. Именно примеры, не требующие ничего кроме механического соблюдения правил, а не задачи, в которых есть вопросы, заставляющие думать. Тем более не остается времени на рассказы из истории математики, показывающие развитие человеческой мысли.

Когда то в институте, в качестве учебника, мы пользовались книгой «Теория чисел» Александра Адольфовича Бухштаба. Особое впечатление на меня произвело начало книги, где приводился Краткий исторический очерк развития теории чисел и ее последняя глава, в которой перечислялись нерешенные проблемы аддитивной теории чисел, начиная с проблемы Гольдбаха, проблемы простых чисел-близнецов, и далее прямо по пунктам были сформулированы 18 недоказанных на то время утверждений. В этих гипотезах нет каких-то специальных терминов, сложных формулировок. Они просты для понимания, но оказались сложны для доказательства. Прошло полвека с момента моей учебы в институте, появились мощные компьютеры, а в тех проблемах из книги Бухштаба мало что сдвинулось. Проверить выполнение какой-либо гипотезы до немыслимо больших чисел, затратив многие часы компьютерного времени, пожалуйста, а доказать, что это верно для всех чисел вообще – с этим проблемы. Вот что вызывает истинный интерес: вроде бы все просто, понятно, а попробуй, докажи или опровергни!

Поэтому, имея цель заинтересовать, возможно, даже увлечь математикой, выбираем основу основ – натуральные числа.

Натуральные числа (от лат. naturalis – естественный) – числа, возникающие естественным образом при счёте: 1, 2, 3, 4, 5, 6, 7, 8, … . Последовательность всех натуральных чисел, расположенных в порядке возрастания, называется натуральным рядом чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, … .

Сделан первый шаг, и сразу возникают сложности. Некоторые считают, что в математике точность абсолютная, «дважды два четыре», независимо от каких бы то ни было обстоятельств, стран, личностей и чего-то другого. На самом деле были споры и до сих пор нет единого мнения о включении нуля во множество натуральных чисел. В нашей стране возобладало приведенное выше определение натуральных чисел, как возникших при счете и не имеющих в своем составе нуля. Существует и альтернативное определение натуральных чисел, как чисел обозначающих количество предметов. Вроде бы небольшая разница, но понятие количество допускает отсутствие предметов, то есть ноль, а счет предполагает, что есть предметы для счета, хотя бы один, а пустоту не считают. Это отступление сделано, чтобы подчеркнуть важность точного определения любого понятия. Измени его и многое меняется. Мы оставляем нулю невысокий статус просто цифры, используемой для позиционной записи чисел, но отказываем ему в высокой чести быть натуральным числом.

Расположение чисел в натуральном ряду позволяет сравнивать их по величине: число, отстоящее дальше от начала натурального ряда, больше числа, стоящего ближе к началу; число, стоящее правее в натуральном ряду чисел, больше любого числа, стоящего левее.

Не будь у нас натурального ряда чисел, мы бы не знали слова упорядочить. Натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, … – демонстрирует упорядочение по возрастанию в чистейшем виде и становится эталонным инструментом для упорядочения других объектов. Применяемое в словарях лексикографическое упорядочение слов делается на основе упорядочения алфавита, а алфавит упорядочен с использованием натурального ряда чисел: буква «а» – первая, буква «б» – вторая и так далее.

Натуральные числа – это первые числа, которые придумал человек. Множество натуральных чисел ограничено с одной стороны, у него есть минимальное число – единица, но в сторону увеличения оно бесконечно и этим объясняется тот факт, что до сих пор все свойства этого множества чисел не изучены до конца и многие тайны скрыты в этом стройном ряду чисел.

Числа возникли из потребности счета различных предметов и сравнения количественных показателей различных совокупностей предметов. Число – это абстракция, используемая для количественной характеристики объектов, отвлекаясь от природы этих объектов. Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать сами числа независимо от тех задач, в связи с которыми они возникли. Говоря о натуральных числах, сразу же нужно говорить о действиях или математических операциях с числами. В самой природе построения натурального ряда чисел заложено действие прибавление единицы, так как каждое следующее натуральное число получается из предыдущего увеличением его на единицу. Это первое действие с числами. Если в языке вначале было слово, то в математике вначале была единица. Затем к ней прибавили еще единицу и получили число два. К двойке прибавили единицу – получили три, и процесс устремился в бесконечность. Можно сказать, что единица и операция прибавление единицы породили бесконечно много натуральных чисел. Сложение двух натуральных чисел – это уже следующее действие, которое фактически является неоднократным прибавлением единицы. 5+3=5+1+1+1, то есть прибавить к числу 5 число 3 – это прибавить к пяти три раза единицу. При сложении любых двух натуральных чисел получается тоже натуральное число, действие замкнуто на множестве натуральных чисел. Особо останавливаться на фактах известных любому школьнику не будем, хотя и перепрыгнуть через них не упоминая нельзя, но цель книги – поиски интересного, может быть для кого-то нового материала.

Следующим замкнутым действием на множестве натуральных чисел будет умножение, которое по существу представляет собой дальнейшее развитие действия сложения. Умножение – это многократное сложение одинаковых слагаемых: 3·5=3+3+3+3+3.

Третье действие, не выводящее за рамки натуральных чисел, – это возведение в степень, которое в свою очередь представляет собой многократное умножение одинаковых множителей: 43=4·4·4.

Таким образом, в основе сложения стоит неоднократное прибавление единицы, в основе умножения стоит неоднократное сложение, а в основе возведения в степень – неоднократное умножение, поднимая каждый раз предыдущее действие на новую ступень.

32=3·3=3+3+3=3+1+1+1+1+1+1.

Эти действия можно считать основными, хотя исторически, после сложения, скорее всего, появилось вычитание, как действие обратное сложению. Но вычитание не замкнуто на множестве натуральных чисел, вычитать здесь можно только из большего числа меньшее число. Даже вычитание равных чисел выводит нас из множества натуральных чисел, среди которых нет нуля. Ноль не является натуральным числом, и ноль не может стоять первой цифрой в записи натурального числа. Даже если его там искусственно поставить, он будет незначащей цифрой.

В связи ограничениями, накладываемыми на вычитание чисел, необходимо ввести действия сравнения чисел между собой, чтобы иметь возможность определить, выполнимо ли вычитание для определенной пары взятых чисел. Учитывая упорядоченность натурального ряда чисел по возрастанию, для любой пары чисел a и b можно сделать одно из трех заключений: a<b, a>b, a=b.

Действие, с которым больше всего проблем на множестве натуральных чисел – это действие деления натуральных чисел, так как выполнимо оно не всегда, и определение возможности деления одного числа на другое не выходя за рамки натуральных чисел, не такое простое действие как для вычитания. Существует целый ряд признаков делимости, которые позволяют, не выполняя само деление, дать ответ возможно ли деление без остатка в принципе. Основные признаки делимости рассмотрим в разделе упражнений с натуральными числами.

Вернемся к единице. Единица единственное из натуральных чисел, которое порождает новые натуральные числа только при сложении, но не при умножении или возведении в степень. При умножении на единицу нового числа не получается, единица в любой степени остается единицей! У древних греков единица служила основой всех других натуральных чисел и с этим не поспоришь. Прибавление единицы к числу меняло его четность. Изменение четности числа от прибавления единицы можно посмотреть в одном очень интересном алгоритме. Алгоритм, позволяет за конечное число шагов-операций превратить любое натуральное число в единицу. Назовем его Алгоритм возвращения к началу. Алгоритм циклический, шаги повторяются до получения единицы. Берем произвольное натуральное число.

Шаг 1. Если взятое число четное, нужно разделить его на 2. Если число нечетное, перейти к шагу 2.

Шаг 2. Если число нечетное, нужно умножить его на 3 и прибавить 1. После чего перейти к шагу 3.

Шаг 3. Вернуться в начало алгоритма и повторять вышеописанные действия циклически, пока не получится единица.

Как видите, второй шаг превращает нечетное число в четное число в результате прибавления единицы. Возьмем произвольное двузначное число, например, 53. Число нечетное – выполняем шаг 2. Получаем 160 – возвращаемся и делаем шаг 1, получаем 80, продолжаем 40, 20, 10, 5. Снова шаг 2 – 16. Шаг 1: 8, 4, 2, 1. Казалось бы, при нечетности числа, умножая его на три, алгоритм будет уводить нас к большим числам, но нет, в конечном итоге приходим к единице. Считается, что по этому алгоритму любое число можно вернуть к «неделимой сущности», то есть, к единице. Ни один специалист по теории чисел пока не смог доказать, что такой алгоритм заканчивается единицей для любого первоначально взятого натурального числа. Второй, не выясненный вопрос, связанный с этим алгоритмом: почему для одних чисел последовательность получаемых значений короткая, а для других слишком длинная. Показанная выше последовательность имеет вид: 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1. Всего 12 чисел, включая начальное число и конечную единицу. Возьмем для примера число 25, значительно меньше 53, и выпишем получаемую последовательность чисел: 25, 76, 38, 19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1. Число меньше, а шагов больше в два раза. Теперь испытаем число 27, недалеко отстоящее от 25: 27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, … . Честно говоря, мне уже надоело, последовательность получается длинная-длинная. В ней встретится даже четырехзначное число больше девяти тысяч. В конечном итоге она придет к единице, но почему так долго, в чем отличие начальных чисел 25 и 27?

Если кто-то заинтересуется исследованием этого алгоритма и захочет поэкспериментировать с ним, то можно видоизменить второй шаг, делая в нем деление полученного четного числа на 2 и только потом возвращение к шагу 1. Это сократит ряд членов последовательности, приводящей к единице. Шаг 2. Если число нечетное, нужно умножить его на 3, затем прибавить 1 и результат поделить на 2. После чего перейти к шагу 3. Можно посмотреть, как изменится алгоритм, если на втором шаге умножать не на 3, а на другое простое нечетное число. Так уже на первых страницах повествования появились интересные и еще не решенные вопросы, которые ждут своих исследователей.

После лирического отступления с интересным алгоритмом вернемся к математическим операциям с натуральными числами. Все перечисленные ранее действия или операции называются бинарными (приставка би от слова два, по числу аргументов арифметической операции), так как в них всегда два исходных компонента: два слагаемых, уменьшаемое и вычитаемое, два сомножителя, делимое и делитель, основание и степень, два сравниваемых между собой числа. Для всех действий, кроме возведения в степень придуманы свои знаки операций, которые ставятся между исходными компонентами:

a+b; a-b; a·b; a:b; ab; a<b; a>b; a=b.

Возведение в степень, аристократ среди действий с числами, показывается не с помощью специального знака, а особой позиционной записью ab. Аристократизм этого действия проявляется и в том, что у него, в отличие от сложения и умножения нет переместительного закона. От перестановки слагаемых сумма не меняется, от перестановки сомножителей не меняется произведение, но стоит поменять местами основание и показатель степени, и равенства нет:

23=8≠32=9; 54=625≠45=1024.

Правда в этом правиле есть одно исключение: 24=42=16.

Еще одно отличие действия возведения в степень от сложения и умножения в том, что у сложения и умножения есть ровно по одному обратному действию: для сложение – вычитание, для умножения – деление. Возведение в степень имеет два обратных действия: извлечение корня и вычисление логарифма. У действий, обратных возведению в степень, появляются свои знаки – радикал и логарифм, но о них мы не будем вести речь, так как их выполнимость на множестве натуральных чисел еще сильнее под вопросом, чем деление чисел.

Каждое обратное действие приводило к расширению понятия числа. Вычитание, чтобы быть замкнутой операцией, расширило множество натуральных чисел до чисел целых, которые включают в себя все натуральные числа, к ним еще добавляется ноль, и числа противоположные натуральным – отрицательные числа. Для замкнутости деления чисел пришлось снова расширять множество чисел, уже до чисел рациональных. Наконец, извлечение корня и вычисление логарифмов потребовали введения чисел иррациональных, которые вместе с рациональными числами составили множество действительных или вещественных чисел.

На множестве действительных чисел стали выполняться все перечисленные операции, но…захотелось извлекать корни четной степени из отрицательных чисел, и придумали числа комплексные. Думаете на этом остановились, как бы ни так. Есть еще числа гиперкомплексные. И все это тоже удивительно интересно, но мы не станем «растекаться мыслью по древу» и вернемся к числам натуральным.

Все перечисленные бинарные операции с натуральными числами известны из программы начальной и средней школы, также, надеюсь, как и свойства этих операций.

Работая с натуральными числами, в особенности с многозначными числами, состоящими из нескольких цифр, часто приходится выполнять с ними операции, которые являются унарными (приставка уно от слова один), то есть операции, выполняемые с одним отдельно взятым числом, а не с парой чисел. Например, признак делимости на 3 определяется так: многозначное число делится на 3, если сумма его цифр делится на 3. Аналогично, на 9 делятся те числа, сумма цифр которых делится на 9. Оба раза звучит словесный оборот «сумма цифр данного числа», который для каждого числа однозначно определяет некоторое другое натуральное число. Фактически, это действие можно считать функций, заданной на множестве натуральных чисел, а иначе можно назвать унарной операций. Часто работая с этим понятием, для него почему-то не придумали специального знака. Работая далее с натуральными числами, приходится рассматривать сумму квадратов цифр данного числа или сумму кубов цифр числа, количество делителей числа, сумму всех его делителей или сумму собственных делителей (в которые не входит само число), приходится упорядочивать цифры числа по возрастанию или по убыванию и так далее. Все эти операции применяются к отдельно взятому числу, то есть являются унарными операциями. Для обозначения этих операций математики используют разные знаки, например, для обозначения суммы всех делителей натурального числа Леонард Эйлер ставил перед числом знак интеграла, об этом написал Д. Пойа, который сам использовал обозначение «функция сигма от n» [25]. В разных книгах встречаются и другие попытки обозначения подобных операций. Или же для них сохраняются словесные формулировки. Это привело меня к мысли ввести для этих унарных операций специальные, различные, но однотипные, обозначения.

Если рассматривать знаки бинарных операций (кроме возведения в степень и обратных к нему), то знак действия ставится между двумя числами. Для унарной операции это не подойдет, число одно. Не поставишь знак и справа от числа, там будет стоять знак равенства, справа от числа и выше ставится показатель степени, справа и ниже ставится индекс числа. Выход один, навеянный физиками:



Свободна левая сторона числа. Предлагаю ввести новую группу знаков для обозначения унарных математических операций с натуральными числами. Например, ставим знак плюс слева и снизу от числа для обозначения суммы цифр числа, получаем запись:

+n – сумма цифр данного натурального числа, например, +56235=5+6+2+3+5=21.

Далее вводим обозначения других унарных операций по аналогии с первой операцией:

+2n – сумма квадратов цифр данного натурального числа,

+2562=52+62+22=25+36+4=65;


+3n – сумма кубов цифр данного натурального числа,

+3235=23+33+53=8+27+125=160;


+dn – сумма всех делителей данного натурального числа,

+d12=1+2+3+4+6+12=28;


+sn – сумма собственных делителей данного числа,

+s6=1+2+3=6;


qdn – количество делителей данного числа, qd24=8;


qsn – количество собственных делителей числа, qs30=7;


вn – упорядочение цифр данного числа по возрастанию,

в4723=2347;


уn – упорядочение цифр данного числа по убыванию,

у4723=7432;


хn – произведение цифр данного числа,

х1953=1·9·5·3=135.

В этом предложении есть свои плюсы. Во-первых, любой введенный математический знак фактически является иероглифом, то есть заменяет целое слово или, как здесь, целую группу слов.

Во-вторых, все эти знаки есть в редакторе формул программы Microsoft Word и, следовательно, никаких проблем с набором текстов на компьютере не создадут.

Время покажет, приживется ли это предложение.

Среди унарных операций, которые можно провести с каждым натуральным числом есть одна, которая первоначально использовалась не в математических целях, а в целях околонаучных, типа гаданий, предсказаний и тому подобного. Операция называется вычисление цифрового корня числа. Цифровой корень натурального числа – это цифра, полученная в результате повторяющегося процесса суммирования цифр сначала данного числа, затем вновь полученного, повторяя процесс до тех пор, пока не будет получена одна цифра. Например, цифровой корень числа 1987652 это 2, потому что 1+9+8+7+6+5+2=38, далее 3+8=11 и, наконец, 1+1=2. Для этой операции встречается и другое название – конечная сумма цифр. В обоих случаях название многословное. Пользуясь сказанным выше, по аналогии, можно ввести обозначение для этой унарной операции: (+)n – тогда запись примет вид: (+)1987652=2. Объяснение вводимого знака следующее: + означает суммирование цифр, а круглые скобки показывают, что суммирование неоднократное, как в периодической дроби они показывают период цифры.

Очевидное свойство цифрового корня: n≤9(+)n=n, то есть цифровой корень однозначного числа равен этому числу, а точнее этой цифре. Имеет место следующее утверждение: Сумма цифр числа n имеет такой же остаток при делении на 9, как и число n.

Поскольку, если число больше 9, сумма цифр этого числа меньше самого числа, то справедливы следующие две формулировки:

а). Цифровой корень числа совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0.

б). Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является точным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9.

Определившись с математическими операциями на множестве натуральных чисел, в том числе с операциями унарными, которые в этом множестве часто применяются, перейдем к изучению свойств натуральных чисел. Но прежде хочу поместить изображения вводимых унарных операций так, как они выглядят в редакторе формул, а не в клавиатурном наборе. Клавиатурный набор искажает эти знаки. Последний знак еще не введен, он встретится в дальнейшем изложении. Подчеркну, что введенные обозначения объединены одной идеей, легко запоминаются и допускают продолжение, то есть введение новых обозначений по аналогии при возникновении необходимости.



Вернемся к числам. При рассмотрении натуральных чисел имеют место несколько подходов к изучению их свойств. Рассматривая некое свойство, из множества всех натуральных чисел выделяется подмножество чисел, обладающих данным свойством, и этому подмножеству присваивается характеристический термин в виде прилагательного. Как оказалось, таких прилагательных потребуется много. Иногда в таком подмножестве будет конечное количество чисел, но это редко, чаще всего из бесконечности выделяется другая бесконечность. Мы получаем интереснейшее явление: в бесконечном множестве можно выделить бесконечно много бесконечных подмножеств.

С другой стороны выделенное подмножество можно рассматривать как числовую последовательность, обладающую определенным свойством и говорить не просто о подмножестве, а об упорядоченном подмножестве, в котором можно пронумеровать его члены, то есть превратить подмножество в последовательность.

Еще один подход в рассмотрении натуральных чисел – это извлечь из натурального ряда конкретное число, рассмотреть свойства этого числа, присущие именно ему и поставить вопрос, есть ли другие числа, обладающие подобным свойством. Иначе говоря, дать числу характеристику. Особенно интересен вопрос вариативного представления чисел с помощью математических действий и знаков. Например, 100=(1+2+3+4)2=13+23+33+43. В таких вариациях с числами своя, математическая красота. Этими процессами мы и займемся далее.

Натуральный ряд чисел напоминает мне клавиатуру фортепиано с чередованием черных и белых клавишей: нечетное, четное, нечетно, четное и так далее. Представьте себе, что каждому числу был бы присущ определенный звук. Если уж на 88 клавишах фортепиано много веков композиторы создают мелодии, исчерпать разнообразие которых кажется невозможно, то какую музыку услышали бы мы, если бы числа звучали! Подумав об этом, решил писать не главы книги, а этюды, вариации и упражнения. Как будто мы учимся играть на фортепиано.

Загрузка...