2. ГЕОЛОГИЧЕСКИЙ ЭТАП ЭВОЛЮЦИИ ПРИРОДЫ К ЖИЗНИ

Природа в пределах нашей звездно-планетной системы после Солнечной развилки эволюционировала по нескольким планетарным вариантам. Направления эволюции природы на формирование Марса и Венеры, возможно, привели к образованию простейших живых существ, но дальнейшее развитие этих планет оказалось неблагоприятным для усложнения жизни. Эволюция Меркурия, Юпитера, Сатурна, Урана и Нептуна не привели к появлению жизни. На некоторых спутниках этих планет предполагается возможность существования лишь каких-то примитивных форм жизни. Только уникальные характеристики эволюции Земли создали благоприятные условия для зарождения и усложнения живых организмов до современного человека. Ранняя эволюция Земли прошла через череду развилок, ведущих к появлению жизни. Самыми необходимыми для образования биотических объектов были эволюционные развилки: Земная, Лунная, Литосферная, Океаническая и Континентальная. Антропный маршрут развития природы, проходящий через эти развилки, выделим в качестве Геологического этапа эволюции природы в направлении к жизни. Еще этому этапу можно дать название – Добиотический, поскольку он готовил планету к возникновению живых организмов.

2.1. Земная развилка направила эволюцию Солнечной системы к человечеству. 4,567 миллиардов лет назад

Для создания сознательных существ типа человека разумного природа воспользовалась поворотом своей эволюции на Земной развилке. Это важное событие соответствует моменту образования земного шара, 4,56 миллиарда лет назад. Планета Земля попала на антропный эволюционный маршрут потому, что она по многим своим характеристикам оказалась благоприятной для появления, эволюции и современного обитания огромного многообразия живых существ от одноклеточных, относительно простых микроорганизмов до очень сложных макроживотных – людей, способных познавать окружающий мир и создавать комфортные условия для своего обитания. Землю можно характеризовать в качестве Планетной формы эволюции природы на пути к жизни.

2.1.1. Состав и структура Земли

Земля является сложной системой, эволюция которой направлена, как бы специально, на образование живых существ и их развитие до человечества. Для того чтобы понять – почему это удивительное явление природы связано с этой планетой, рассмотрим основные её характеристики. Приблизительно 4,56 млрд. л.н. завершилась первая стадия формирования земного шара. Осуществилась аккреция (слипание) около 99 % нынешней массы Земли. К этому времени наша планета практически полностью очистила свою орбиту от вещества, находившегося в газово-пылевом диске вокруг Солнца. На долю Земли и других планет осталось та, относительно малая часть холодного твердого и газообразного вещества, которая не была использована в процессе образования крупнейших объектов Солнечной системы: Солнца и Юпитера. После этих первых объектов Солнечной системы почти одновременно с Землей на разных орбитах нашей системы образовались другие планеты. Гравитационное поле придало Земле форму шара немного приплюснутого в полюсах – геоида. Сферическая форма присуща всем достаточно крупным космическим объектам: планетам, спутникам, звездам, галактикам, да и самой Вселенной. Средний диаметр планеты составляет 12742 км. Средняя плотность вещества планеты оценивается значением около 5,517 г/м3.

Первично все минеральные вещества и отдельные элементы находились в Земле в перемешанном состоянии. Немалую долю составляли углистые хондриты, которые являлись основным источником воды на Земле. Основной объем вещества был представлен соединениями кремния и железа. В более-менее однородной смеси разнообразных минералов довольно значительную долю составлял гидросиликат магния (Mg2SiO5H2), который содержал более 11 % воды по весу. Этот твердый минерал является одним из эффективных вместилищ воды, молекулы которой занимают второе место по распространенности во Вселенной после водорода. Гидросиликат магния остается стабильным в условиях земного ядра, то есть при давлении более 2 миллионов атмосфер и при температурах около 5000°C. На протяжении 30 млн. лет значительная часть воды в форме гидросиликатов сохранялась в ядерной части планеты. По мере погружения тяжелых железа и никеля к центру планеты и образования ядра происходило вытеснение силикатов выше – в слой, который постепенно превратился в мантию. В условиях меньшего давления гидросиликат магния стал нестабильным и разложился на оксид магния, силикат магния и воду. Вода в виде перегретого пара стала пробиваться к земной поверхности. Другие составляющие этого гидросиликата заложили основу мантии. Сейчас преобладающая масса этого водогенерирующего минерала уже израсходована.

Вода в результате гравитационного сжатия и химического преобразования протопланетного вещества начала проникать на поверхность планеты. Процесс перераспределения по плотности и гравитационного уплотнения первично холодного вещества сопровождался выделением огромного количества тепла, что привело к разогреву и расплавлению всей планеты, кроме внутреннего ядра. Состояние веществ в центре Земли, скорее всего, не соответствует нашим представлениям о расплавах и твердых веществах. Радиоактивный распад тяжелых элементов также послужил мощным источником внутреннего тепла. Радиогенное тепло в начальный период истории Земли значительно превышало современное, поскольку производилось большим количеством радиоактивных короткоживущих изотопов, которые к настоящему времени уже распались. Вносили свой вклад в тепловой баланс, как и сейчас, долгоживущие изотопы урана, тория, калия и некоторые другие.

Около 4,54 млрд. л.н. температура на поверхности Земли достигала 4000°C. Планета представляла собой расплавленный шар кипящего, газонасыщенного вещества. Спустя приблизительно тридцать миллионов лет, т. е. 4,51 млрд. л.н. планета остыла до 1500°C, что создало условия для обособления газовой оболочки в относительно стабильную атмосферу. Первичная газовая оболочка – Ранняя гелиево-водородная горячая атмосфера существовала на протяжении 30 млн. лет (4,51-4,48 млрд. л.н.), состояла из газов протопланетного облака – преимущественно из водорода (~95 %), гелия (~5 %), метана (от 0,83 до 0,75 %). Отсутствие магнитного поля у ранней Земли позволяло солнечному ветру (потоку частиц от Солнца) уносить в космос легкий водород и гелий. На смену этим компонентам первичной атмосферы поступали пары воды и другие газы из дегазируемой мантии и из испаряющихся космических веществ, падавших на Землю. Прежде всего, за счет активной вулканической деятельности поступили из недр огромные объемы водяного пара и других газов. Эти летучие соединения выделились из первичного вещества планеты, в котором они находились в связанном состоянии: вода в основном в гидросиликатах, углекислый газ в карбонатах, азот в нитридах и нитратах и т. д. Поверхность планеты продолжала охлаждаться до 700°C. В результате 4,48 млрд. л.н. произошла смена воздушной геосферы – сформировалась вторая – Палеокатархейская углекисло-водяная атмосфера. Вторая атмосфере состояла сначала из одного водяного пара, а затем с добавлением нарастающей доли углекислого газа (до 44 %), и немного других веществ: водорода (7 %), азота (6 %), аммония (3 %), гелия (2,4 %), метана (0,8 %), аммиака, сероводорода, хлористого водорода и некоторых других газообразных веществ. Вторая атмосфера просуществовала также около 30 млн. лет (до 4,45 млрд. л.н.). Этот этап тепловой истории Земли можно назвать «Расплавленная Земля», к концу, которого средняя температура поверхности уменьшилась до 500°C. Скорость вращения Земли вокруг своей оси значительно превышала нынешнюю, поэтому длина суток равнялась 4 часам 8 минутам.

Начало образования второй атмосферы (около 4,48 млрд. л.н.) коррелируется с завершением первичного распределения твердого вещества земного шара на сферические оболочки. Современная степень изученности Земли позволяет представлять нынешнюю нашу планету в виде сложной динамической системы, заключенной в толстостенный шар радиусом 6371 км. Массивная твердая оболочка шара (представленная корой и мантией) толщиной около 3000 км окружает полость, заполненную относительно жидким (вязким) веществом внешнего ядра. В центре этого жидкого слоя плавает небольшое твердое внутреннее ядро. От поверхности планеты к центру возрастают давление (до 3,61011 Па), плотность (до 12,8–13 г/см3) и температура (до ~6000 °C). Вращение такой сложной системы характеризуется разными скоростями обращения твердой оболочки и ядра.

Концентрация вещества планеты по плотности началась с обособления земного ядра радиусом ~3,4 тыс. км. Тяжелые металлы (преимущественно железо и его минералы, а также никель) погрузились в центр, формируя внутреннее суперплотное ядро радиусом ~1,2 тыс. км и внешний жидкий слой железо-никелевого ядра толщиной ~ 2,2 тыс. км. Внутреннее, центральное ядро в форме шара расположено на глубинах от 5150 до 6371 км. Элементный состав этой части земного шара представлен в основном железом (около 90 %) и никелем, кроме того, присутствуют минералы серы, кислорода и ряда других элементов. Внутреннее ядро проявляет себя в геофизических полях как неоднородное тело: наружная оболочка включает огромные, протяженные кристаллы (длиной около 10 км.), ориентированные с юга на север, а центральная часть ядра заполнена кристаллами, вытянутыми с запада на восток. Однако прежде вещество как внешнего, так и внутреннего ядра было жидким. Постепенное охлаждение недр Земли со скоростью около 100 °C за миллиард лет привело к затвердению внутреннего ядра. По одним оценкам твердое ядро сформировалось к рубежу около 1,24 млрд. л.н. (к концу эктазия), по другим – около 550 миллионов л.н. (к концу венда).

Сохранение к настоящему времени довольно высокой температуры во внутреннем ядре может быть объяснено, в какой-то степени радиоактивным распадом изотопов урана, тория и возможно некоторых других элементов. Хотя этот источник тепла не может быть основным по причине ничтожно малого содержания радиоактивных элементов в ядре по сравнению с земной корой. В земной коре эти, очень тяжелые долгоживущие радиоактивные элементы оказались потому, что их соединения с легкими элементами имеют малую плотность. Благодаря весьма высокому давлению вещество в ядре не кипит, несмотря на огромную температуру. Считается, что внутреннее ядро постепенно увеличивается в размерах за счет охлаждения и затвердевания переходной зоны от жидкого ядра.

Внешний слой железо-никелевого ядра (слой E), или, иначе говоря, внешнее ядро, представляет собой жидкую оболочку, которая обволакивает внутреннее твердое ядро. Состав внешнего ядра представлен в основном железом, его оксидами, никелем, в небольшой пропорции – кремнием, серой и другими примесями. Жидкое его состояние объясняется тем, что меньшее давление при высокой температуре в этом слое не обеспечивает затвердение раскаленного металла. Сохранение до настоящего времени на нашей планете жидкого состояния вещества во внешнем ядре является важным её отличием от других планет земного типа Солнечной системы. Наличие твердого ядра (слоя G) в жидкой оболочке представляется одной из тех важных особенностей планетного направления эволюции природы, которое связано с Земной развилкой. Конвекция вещества во внешнем ядре, которая подобна бушующему морю жидкого металла, порождает земной магнетизм. Появление и эволюция жизни на нашей планете во многом обязаны наличию геомагнитного поля, генерация которого связана с присутствием именно пары – внутреннее твердое ядро в жидком слое внешнего ядра, что является своеобразной динамо-машиной. Магнитосфера вокруг Земли защищает все живое от губительного воздействия заряженных частиц космоса и солнечного ветра, о чем описано выше, в разделах: Ранняя магнитная развилка и Поздняя магнитная развилка эволюции Земли.

Исследования показали, что внутреннее ядро и внешний слой вращаются в разные стороны. Внешнее жидкое ядро вращается вокруг своей оси с востока на запад, а внутреннее – с запада на восток. Интересно, что скорость вращения внутреннего ядра немного превышает скорость обращения в целом планеты. Центр Земли является мотором, который обеспечивает активность всех систем планеты, включая биосферу. Например, на Марсе всё ядро уже отвердело и там прекращена глобальная тектоника, отсутствует магнитное поле, способное защитить живые организмы. Эта планета лишилась внутренней энергии, она стала «мертвой», не способной к рождению и эволюции жизни.

Обособление земного ядра не означало прекращение его подпитывания новыми порциями тяжелого вещества, источником которого была и остается мощнейшая оболочка – двухслойная мантия, перекрывающая ядро. В мантии собрано две трети планетного объема, в то время как на ядро приходится одна треть. Мантия состоит в основном из соединений кремния, магния, кислорода, железа, кальция и алюминия. Её состав до сих пор остаётся очень близким к первичному веществу Земли, несмотря на продолжающиеся более 4 млрд. лет активные процессы химико-плотностной дифференциации. За счет такой дифференциации происходит вещественное обеднение мантии. Постепенно тяжелые соединения перемещаются из мантии к центру – в ядро. Легкие элементы и их минеральные комплексы всплывают в верхние слои планеты, формируя и обновляя литосферу, гидросферу и атмосферу. В результате в мантии теперь отсутствуют тяжелые железо, никель, а также соединение железа и серы – сульфид железа. А также произошло обеднение состава первичного вещества мантии легкими веществами (азотом, водородом, оксидами калия и натрия и др.). Зато за счет химико-плотностной дифференциации мантия обогатилась окислами кремния (SiO2) и магния (MgO). Первичное вещество Земли содержало 57 % этих двух окислов, а современная мантия – 83 %.

Мантия перекрыта корой, подошва которой называется границей Мохоровичича (сокращено, Мохо). Переход от коры к мантии отражается резким возрастанием плотности горных пород, который прослеживается на глубинах от 7 км (под океанами) до 70 км (под горными массивами). Мантия разделена на две части: верхнюю мантию и нижнюю. Верхняя мантия имеет толщину ~ 980 км, нижняя – 1920 км.

В верхней мантии самый верхний слой (волновод Гутенберга) имеет твердую кристаллическую структуру, не отличающуюся от вышележащей коры. Поэтому этот слой мантии совместно с корой образуют литосферу. Литосфера подстилается пластичной оболочкой мантии – астеносферой. Кровля астеносферы характеризуется фазовым переходом от кристаллических пород к пачке частично расплавленных пород, совпадающим с изотермой 1200–1300 °С. Она простирается на разных глубинах: от минимальных в зонах срединно-океанических хребтов под океанами (50 км) до максимальных (~ 200 км) под материками. Толщина астеносферы ~ 150–200 км и более. Нижняя граница нерезкая, приблизительно совпадает с изотермой 1500–1600 °С. Повышение температуры или снижение давления приводит к увеличению расплава в астеносфере и к образованию магматических камер, питающих магматизм. Астеносфера образует сплошную оболочку с изменяющейся по латерали вязкостью-пластичностью. Предельная глубина самых глубокофокусных землетрясений соответствует подошве глубокозалегающей астеносферы, до ~ 650 км, что указывает на определенную роль астеносферы в происхождении всех землетрясений. В астеносфере реализуется наиболее активная мантийная конвекция, движущая литосферные плиты. В астеносфере зарождаются все тектонические процессы, которые происходят в литосфере. Поэтому астеносфера в совокупности с литосферой называется тектоносферой.

Астеносфера состоит из 5–6 слоев, представленных чередованием твердых и расплавленных ультраосновных пород (дунитов, перидотитов и др., состоящих в основном из цветных минералов – оливина, пироксенов; бедных кремнием – SiO2; обогащенных магнием). В целом состав астеносферы представлен минералами: оливином 57 %, пироксеном 29 %, гранатом 23 %. Плавление пород при огромных температурах и давлениях на таких глубинах возможно только в присутствии воды. Откуда вода там? Дело в том, что находящийся там минерал роговая обманка имеет в своем составе связанную воду, которая при тех температурах приобретает свободную форму. Эта вода способна обеспечить частичное плавление пород астеносферы.

Вещество астеносферы не обладает пределом прочности, в отличие от литосферы, поэтому оно может деформироваться (течь) под действием даже очень малых избыточных давлений. Конвективное течение вещества астеносферного слоя увлекало за собой литосферу, расколов ее на ряд крупных и множество мелких плит. Под воздействием поднимающихся по разломам раскаленных магматических масс из мантии происходило раздвижение (спрединг) плит в океанах и наращивание новых участков океанической коры. Такие зоны называются срединно-океаническими хребтами. От этих зон литосферные плиты медленно раздвигаются. В зонах столкновения одна плита поддвигается под другую (субдукция), возникает глубокий океанический желоб. Рядом возникает цепь вулканов и гряда высоких гор (например, Гималаи поднялись 45 млн. л.н. в процессе столкновения Индийской и Евразийской плит). В океанических желобах литосферные плиты погружаются в земные недра с температурами более 500 °С, где происходит переплавление погрузившихся пород. Проникшие в мантию горные породы снова изливаются на поверхность в виде раскалённой магмы в зонах раздвижения плит. Такой механизм постоянной переработки вещества планеты за счет горизонтального перемещения литосферных плит способствует продолжению дифференциации вещества по плотности и формированию все более сложных минеральных форм. Астеносфера является основным источником эндогенных процессов в земной коре (магматизма, метаморфизма).

Под тектоносферой, между верхней и нижней мантией на глубине ~ 400 км существует следующий фазовый переход (слой Голицына[17], слой C, переходная зона толщиной 600 км), обусловленный увеличением давления с глубиной без изменения химического состава. На этой границе минералы граната и шпинели приобретают более плотную структуру перовскита и ильменита (FeTiO2, примеси: магний, марганец), характерную минералам нижней мантии. Распространяется нижняя мантия до глубин около 2900 км. Толщина её достигает 2230 км. Температура составляет до 2000 °С.

В составе нижней мантии (слой D), на её границе с ядром выделяется переходная зона на глубине около 2700 км, толщиной около 200 км. Здесь осуществляется значительное освобождение силикатной мантии от железа, которое переходит в ядро. В этой зоне облегченное вещество формирует плюмы, которые представляют собой горячие потоки мантийного вещества, движущиеся вверх от основания мантии. Плюм представляет собой субвертикальную колонну диаметром около 100 км с грибообразной верхней частью. Они поднимаются от границы мантии и ядра с глубины 2980 км или от границы нижней и верхней мантии с глубины около 660–670 км и выносят под литосферу вещество и тепло глубинных недр Земли. На поверхности Земли над плюмами возникает область вулканизма, формируются трапповые провинции, внутриконтинентальные рифты и другие геологические явления. Тектоника плюмов, наряду с тектоникой литосферных плит, определяет изменения в строении Земли, её рельефе и составе. Каким образом горные породы мантии, не менее твердые, чем сталь, способны течь в недрах планеты? Дело в том, что пластическим деформациям способствует очень длительная продолжительность времени, в течение которого массивы горных пород находятся в механическом напряжении. Высокое давление и значительная температура в недрах способны вызвать пластические деформации кристаллических минералов. Кроме того, в определенных жестких термобарических условиях кристаллические тела превращаются в аморфные, которые могут течь подобно жидкости. Породы на глубинах от 15–20 км и глубже, оставаясь твердыми, способны быть пластичными. Такие же минералы, как, например, галит (каменная соль, NaCl) обладают способностью течь и формировать грибообразные колонны, купола на глубинах от 2–3 км и более. В практике бурения нефтедобывающих скважин глубиной 3–6 км часто встречаются случаи, когда каменная соль или пласты глины проявляют свои пластичные свойства тем, что сдавливают в стволе скважины буровые инструменты.

Недра Земли представляют собой сложный механизм генерации и поставки энергии на поверхность. В этом механизме невозможно выделить главный элемент, поскольку каждый является необходимой частью системы. Тем не менее, подчеркнем, что в мантии, всегда – начиная с её обособления от ядра, происходят мощные конвективные движения, благодаря которым тепло ядра и самой мантии передается в вышележащие сферы. Состав ядра постепенно изменяется за счет перемещения струй вещества из ядра в мантию. Иногда эти струи даже проникают на поверхность планеты, где их вещество окисляется и вновь погружается в форме столбообразных потоков к центру Земли. Это приводит к ответному перетоку струй вещества из ядра в мантию. Исследования изотопов вольфрама, которые присутствует в ядре и в мантии, показали, что период земной истории после распределения вещества планеты на оболочки, между 4,3 и 2,7 миллиарда л.н. характеризовался почти полным отсутствием обмена материала между ядром и мантией. Зато, начиная с границы 2,5 млрд. л.н., такой обмен до сих пор активно протекает. Интересно, что временной рубеж новой активизации перетока материала ядра в мантию и обратно совпал с поворотом эволюции на Окислительной развилке. Процессы в мантии являются источником энергии и вещества для вулканизма, землетрясений, горообразования, формирования рудных месторождений и движения тектонических плит.

После краткого ознакомления с внутренним строением нашей планеты, в следующем разделе перечислим некоторые особенности Земли, которые привели ее к обитаемости. Эти характеристики, возможно, являются уникальными, возникшими благодаря повороту эволюции природы на Земной развилке. Все другие планетные развилки вели к формированию планет, обладающих определенной совокупностью общих характеристик, но в каждом случае это были объекты с большим набором собственных данных. Природа всегда находится в поиске нового, и ей не свойственно повторяться полностью, во всех деталях. Кто-то в той или иной части нашей Вселенной, может быть, и обладает свойством осознавать свое существование, но почти невозможно, чтобы эти разумные существа были похожими обликом на нас. Невероятно много событий в эволюционном пути тех существ должно совпасть с эволюцией природы до земного человека, чтобы получилось два аналога. Земная развилка эволюции Солнечной системы представляется одним из решающих событий в судьбе человека разумного.

По мнению ученых, среди не менее 600 миллиардов планет Галактики имеется приблизительно 1 миллиард тех, которые сходны по размеру с Землей. Образование этих космических тел дало начало такому же числу развилок планетной эволюции. К настоящему времени выявлено около 6000 экзопланет в нашей Галактике. Эта цифра постоянно увеличивается за счет открытия все новых планет вне пределов Солнечной системы. Наблюдаемая астрономами несходность всех известных космических объектов убеждает в том, что при подобии каких-то характеристик планет, все же каждая из них эволюционирует своим неповторимым образом.

2.1.2. Предрасположенность Земли к жизни

Что же такое важное присуще Земле как планете, которое способствовало зарождению и эволюции жизни? Перечислим некоторые главнейшие характеристики, свойственные нашей планете в целом. Прежде всего, отметим, что необходимым условием обитания планеты является наличие разнообразных химических элементов. Большинство космических объектов и даже химически богатые области галактик представлены почти на 98 % водородом и гелием. Земле, как уже отмечалось выше, повезло образоваться на одной из внутренних орбит Солнечной системы, откуда Солнце выдавило во внешнюю область преобладающую часть водорода и гелия, оставив значительную долю всех более тяжелых элементов. Из этого разнообразия элементов были образованы каменные планеты: Меркурий, Венера, Земля и Марс. Земля скомпонована из соединений всех 92 химических элементов, включая воду и определенный объем органических веществ, т. е. молекул углерода с водородом (метан, CH4 и другие, более сложные молекулы), с кислородом (окись углерода, CO и диоксид углерода – углекислый газ, CO2). Поэтому Земля после затвердения поверхности представляла собой огромное многообразие химических соединений в форме простых кристаллов (например, таких как графит или алмаз) и сложнейших многомолекулярных минералов, а также разнообразных горных пород. Конечно, единые химические законы во Вселенной обусловили распространение многих одинаковых минералов в протопланетном диске, на Земле и других планетах. Но значительное количество соединений могло образоваться только в специфических геохимических условиях Земли. Например, на Земле атмосфера с высоким содержанием кислорода преобразует некоторые «космические» минералы в другие, земные вещества. Так, земным соединениями являются многие из аминокислот – молекул, из которых сделаны все белки, а также генетический материал для нуклеотидов. На нашей планете образовалось большинство известных углеводов, часто используемых организмами в роли батарейки для хранения энергии. Скорее всего, земное происхождение имеют также жирные фосфолипиды, которые образуют клеточные мембраны.

Земля образовалась на расстоянии 150 млн. км от Солнца, почти посередине узкой обитаемой зоны. Уже это обстоятельство дало шанс природе на создание биосферы, поскольку именно такое расстояние обеспечивает оптимальный для жизни температурный режим земной поверхности, при котором вода существует в жидком виде. Уникальность положения Земли подтверждается температурными условиями на поверхности планет Солнечной системы. Так, температура на них по мере удаления от Солнца изменяется следующим образом, в °C: Меркурий средняя + 167 (от 427 до -173), Венера +460, Земля 7,2 (от -91,2 до +70,7), Марс -65 (от -140 до +20), Юпитер -110 (в ядре Юпитера +24000, горячее, чем на поверхности Солнца), Сатурн -140 (в ядре 11700), Уран -195 (в ядре около 4740), Нептун -200 (в ядре около 7000). Только температура на поверхности Земли обеспечивает присутствие воды в жидкой фазе в среднем всегда, а в разных частях планеты в то или иное время. Присущий Земле оптимальный режим прогрева недр обеспечивает циркуляционное перемещение масс вещества планеты, что, в свою очередь, вызывает действие внутренней динамо-машины, вырабатывающей магнитное поле Земли. Кроме того, стабильное радиоактивное тепло является основным источником энергии для постоянных процессов тектоники литосферных плит (раздробленности и подвижности литосферы), магматизма и вулканизма. Не будь магнитного поля и движения материков, не было бы известных нам форм жизни. Уникальным для Солнечной системы, а возможно, для Галактики является содержание в недрах Земли радиоактивных элементов урана и тория в таких количествах и в таком их соотношении, радиоактивный распад которых обеспечивает благоприятный для жизни тепловой режим планеты, начиная с рубежа около 4,1 млрд. л.н. (эоархейская эра) и до сих пор. Если бы объемы урана и тория отличались в меньшую или большую сторону в два-три раза от реальных земных значений, то их тепловой эффект не дал бы необходимые для обитаемости результаты. Так, в случае малого содержания этих долгоживущих радиоактивных веществ, планета была бы недостаточно тектонически активна, магнитное поле не существовало бы. При варианте их повышенного количества, Земля все время находилась бы в расплавленном состоянии, что совсем не подходит для живых существ.

Удачным для Земли оказалось не такое уж далекое соседство с гигантским Юпитером, который обладает очень сильным гравитационным полем. Благодаря воздействию этого поля были отклонены от Земли траектории многих комет, способных нанести огромные разрушения Земле. Можно сказать, что Юпитер – космический защитник человечества.

Параметры движения нашей планеты являются оптимальными для обитания. Дело в том, что существующий наклон земной оси под углом 23° обеспечивает смену времен года и тем самым, создает благоприятные условия для эволюции жизни. В том случае, если бы этот наклон составлял, например, 90° по отношению к Солнцу, то на Земле не было бы четырех времен года. При таком варианте параметров движения Земли, то есть без смены времен года, условия обитания не были бы благоприятными. Дело в том, что в областях северного и южного полюсов были бы постоянные холодные сумерки, где замерзала бы вода, испаряющаяся и переносимая ветром из экваториальных, прогретых частей океанов. В течение довольно короткого периода времени полярные регионы планеты превратились бы в огромные скопления льда и снега, в то время как остальная часть Земли превратилась бы в сухую пустыню. Океаны испарились бы. Угол наклона земной оси во многом обусловливает особенности земного климата. Не вызывает сомнения тот факт, что иные условия на нашей планете направили бы эволюцию живых организмов по совсем иным направлениям, чем это фактически произошло. При иных вариантах эволюции живой природы возникли бы другие виды животных, разумными среди которых совсем не обязательно были бы люди. Людям очень повезло, что сложившееся стечение обстоятельств обеспечило благоприятные условия формирования и эволюции на Земле известного разнообразия живой природы, включая человека современного типа.

Орбита Земли вокруг Солнца имеет форму близкую к эллипсу. Перемещение нашей планеты происходит с запада на восток со средней скоростью 29,78 км/c (около 107 200 км/ч). Каждый год она проходит путь более 940 млн. км, приближаясь к Солнцу в перигелии, затем максимально удаляясь от нашей звезды в афелии. Согласно гипотезе Миланковича, климат Земли в значительной степени зависит от характера её движения по орбите. Например, когда время прохождения Земли перигелия приходится на зимнее солнцестояние в северном полушарии (происходит 21 или 22 декабря), тогда лето приходится на прохождение Земли на максимальном расстоянии от Солнца.

В этом случае лето северного полушария становится более продолжительным и прохладным, что вызывает увеличение ледников. Миланкович считал, что: «Не суровая зима, но прохладное лето способствует надвиганию ледников». Через очередные 11 тыс. лет Земля проходит перигелий в момент летнего солнцестояния, что приводит к короткому и жаркому лету в северном полушарии и к сокращению ледников. Например, летнее солнцестояние в северном полушарии, в XXI веке приходится на 20 или 21 июня. В то же время для южного полушария наступают времена похолодания и активизации оледенения.

Следует отметить, что отмеченные особенности движения Земли по орбите вносят свой вклад в смену климата планеты, но вовсе не являются её единственным и решающим фактором. Смена климата на Земле имеет уникальный характер, присущий только этой планете, поскольку определяется множеством параметров самой планеты и её взаимодействием с ближайшим космосом. Климат Земли значительно изменялся по мере эволюции планеты и характеризовался разной продолжительностью ледниковых и межледниковых эпох. Например, в палеогене (65,5-23 млн. л.н.) на протяжении 40 млн. лет существовал устойчивый теплый климат. В отличие от этого периода, в последний миллион лет циклы смены эпох тепла и холода (циклы Миланковича) происходят таким образом, что ледниковые периоды наступают каждые 100 тысяч лет. Нам повезло жить в период одного из самых теплых за последний миллион лет межледниковья, которое называется «голоцен» и длится около 12 тысяч лет. Межледниковье голоцен пришло на смену холодному периоду, называемому «поздний дриас». В период от 9 до 5 тыс. л.н. Земля переживала «климатический оптимум[18] голоцена» («Атлантический оптимум»), когда температура на 1–3°C превышала нынешние значения. Прогнозируется окончание голоценового межледниковья и начало новой ледниковой эпохи через несколько тысяч лет.

Период вращения Земли вокруг своей оси со времени появления жизни и до наших дней обеспечивал смену света и темноты сначала каждые 5 часов 40 минут, постепенно увеличиваясь до 24 часов. Такой, достаточно быстрый переход от ночи ко дню позволяет земной поверхности прогреваться достаточно равномерно. При медленном вращении, стороны планеты поочерёдно невероятно сильно прогревались бы и ужасно охлаждались бы.

Важнейшей глобальной особенностью Земли, определяющей её обитаемость, является её ядерно-оболочечное строение. Каждая из сфер планеты выполняет ту или иную функцию в обеспечении зарождения и эволюции жизни. Кроме того, внутренние раскаленные недра, твердая – литосфера, водная – гидросфера и воздушная – атмосфера постоянно обмениваются между собой веществом, энергией и информацией. Только постоянное их взаимодействие определяет способность каждой сферы быть полезной для жизни. Пока не известны планеты с подобным набором разнородных оболочек ни в Солнечной системе, ни среди выявленных к настоящему времени более 6000 экзопланет. Так, атмосфера имеется далеко не у всех планет. Гидросфера в виде водных бассейнов отсутствует у планет Солнечной системы в настоящее время и только предполагается по косвенным данным у некоторых экзопланет Галактики. Твердая оболочка имеется в Солнечной системе только у плотных, каменистых планет – Земли, Марса и Венеры, а также у некоторых спутников, но Марс и Венера давно уже не имеют гидросферы. У них отсутствует перемещение тектонических плит, и практически нет магнитного поля. Газовые гиганты Юпитер и Сатурн, состоящие в основном из водорода и гелия, а также ледяные гиганты Уран и Нептун, не обзавелись планетарной корой и не имеют жидкой гидросферы.

У Земли имеется полный набор физических полей с оптимальными характеристиками. Так, наша планета обладает умеренным гравитационным полем, способным удерживать основную массу атмосферы оптимального состава, без которой невозможна эволюция жизни по земному сценарию (направлению). При меньшем размере и слабом гравитационном поле у нее отсутствовала бы атмосфера, как, например, у Меркурия и Плутона. Будь Земля такой большой, как Юпитер или Сатурн, то сверхпритяжение сформировало бы такую плотную атмосферу, что давление на глубине 10 км от поверхности облаков достигало бы миллион земных атмосфер, а температура составляла бы около 5000°C. Горячий водород, сжатый в таких условиях, имел бы характеристику жидкого металла.

Геологическое строение глубинных недр Земли обеспечило функционирование естественного гигантского магнита, создающего внутри и вокруг планеты довольно сильное магнитное поле, которое предохраняет поверхность от атаки губительных для жизни солнечных протонов и других космических излучений. Земля располагает электрическим – естественным (теллурическим) полем, источником которого, возможно, являются стратосферно-электрические процессы, грозы, электрохимические процессы и электромагнитная индукция в ядре Земли. По одной из существующих гипотез первые живые организмы сформировались благодаря электрическим разрядам в атмосфере. Сейсмическое поле – поле механических колебаний, возникающее из-за постоянной разрядки механических напряжений в литосфере, вносит значительный вклад в эволюцию планеты. Различные источники теплового поля обеспечивают энергией геологические и биологические процессы. Земля на протяжении всего своего существования, в отличие от многих других планет, получает оптимальные объемы тепла. Такое количество тепла, с одной стороны, обеспечивает существование не замерзшей, жидкой воды на всей планете. С другой стороны, земная вода не испарилась. Тепловой баланс планеты формируется за счет таких источников тепла, как: излучение Солнца, сила трения, приливные силы, радиоактивный распад, гравитационная дифференциация вещества в недрах. Наибольший тепловой поток из недр приурочен к срединно-океаническим хребтам и континентальным рифтам, наименьший – к самым древним областям континентов. Тепловая история Земли обеспечила такую эволюцию всех оболочек (литосферы, гидросферы с криосферой, атмосферы, биосферы и ноосферы – «сферы разума»), которая привела к появлению и значительному развитию жизни.

Земля располагает огромными запасами жидкой воды, без которой нет ни единого живого организма. Необходимая для жизни вода обеспечивает перемещение различных веществ в растениях, животных и в других организмах. В земных условиях вода распространена в Мировом океане, на поверхности и в ледниках континентов, а также в подземных резервуарах и в минералах (в химически связанном виде). Вода в роли живительной влаги и как фактор многих геологических процессов имеет возможность участвовать в круговороте, постоянно перемещаясь и изменяя фазовое состояние и свой состав.

Наша планета, скорее всего, обладает уникальной эволюцией атмосферы потому, что далеко не все планеты Галактики сохраняют какую-то одну атмосферу на протяжении нескольких миллиардов лет, а тем более маловероятно, чтобы в истории какой-то экзопланеты произошла смена семи атмосфер с разными составами, аналогичными земным воздушным сферам. Например, на Земле третья – Мезокатархейская водно-азотно-углекислая атмосфера[19], которая существовала в период от ~ 4, 45 до 4,1 млрд. л.н., участвовала в подготовке условий для начала образования химических соединений – предшественников живых химических систем. Следующая, четвертая – Эоархейская углекисло-азотная атмосфера в течение от 4.1 до 3.5 млрд. л.н. постепенно изменялась в сторону увеличения доли азота (от 50 до 98 %) и убывания углекислого газа (от 20 до 2 %). В воздухе появился важный парниковый газ – метан, дегазированный глубинными недрами. Состав воздуха имел восстановительную реакцию, кислород практически отсутствовал. Эта атмосфера, наряду с соответствующими гидросферой и литосферой обеспечили многовариантную возможность продолжения химической эволюции Земли. Один из реализованных вариантов привел к появлению Биотической развилки, направившей эволюцию природы на синтез сложнейших химических соединений (в частности, молекул нуклеиновых кислот), представляющих основу живой природы. Наконец, наша планета 700 млн. л.н. создала седьмую – Неопротерозойско-современную кислородно-азотную атмосферу, в которой все мы обитаем, и которая отличается от всех известных нам планетных атмосфер. Состав седьмой атмосферы претерпел интересные изменения: азот уменьшился (N= от 98 % до 77 %); кислород постепенно увеличился, но затем немного снизился (O=1%24%21 %); аргон сократился, но к настоящему времени снова возрос (Ar= 0,9%0,17 % 0,92 %). Содержание углекислого газа в течение последних 700 млн. лет несколько раз очень сильно возрастало, но к настоящему времени снизилось до начальных малых значений[20]. Данная атмосфера обеспечивает сохранение и эволюцию жизни. Она снабжает кислородом дыхание живых существ и углекислым газом питание растений. Важным компонентом атмосферы является слой озона, разновидности кислорода, который нейтрализует вредное воздействие солнечного и космического излучений на живые организмы. К тому же, земная атмосфера поддерживает температурное равновесие на поверхности. Она в качестве своеобразного покрывала предотвращает значительное охлаждение поверхности по ночам и быстрое её нагревание днем. Атмосфера предохраняет живые организмы от постоянной атаки космическими телами, так как она сжигает большинство из них.

На Земле в течение последних более 4 млрд. лет существовали температурные условий в атмосфере и гидросфере, благоприятные для обитаемости. Со времени зарождения жизни на Земле и до наших дней не было таких моментов, чтобы одновременно во всех участках биосферы планеты температура повышалась сверх точки кипения воды или снижалась до её замерзания. В те периоды, когда среднегодовая температура на большей части поверхности Земли значительно понижалась, и наступали ледниковые периоды, большая часть живых видов вымирала. Но даже в такие критические эпохи оставались на планете места, где живые организмы выживали и продолжали эволюционировать.

Земля характеризуется многообразием природных условий, включая климатических. Важным является то, что за историю существования наша планета подверглась многочисленным космическим и геологическим воздействиям, обеспечившим природе обширнейший набор вариантов эволюции. Если бы эволюция состава земной атмосферы пошла несколько иными направлениями, то мог быть вариант превращения Земли в горячую планету, подобную Венере, в случае большей доли углекислого газа на начальном этапе истории планеты. Если бы эволюция Земли привела к увеличенному объему воды, тогда океан покрыл бы всю поверхность, и не было бы материков и наземных существ, включая людей. Мог быть вариант превращения планеты в сплошную снежную пустыню и т. д.

Рассматривая благоприятные факторы зарождения и эволюции жизни на Земле, следует отметить огромный вклад Луны в активизацию тектонических процессов на нашей планете. Формирование массивного спутника на близкой околоземной орбите обусловило ускоренную тектоническую эволюцию Земли. В отсутствие Луны наша планета отстала бы в развитии своей тектонической структуры и всех своих сфер приблизительно на 3 млрд. лет. Соответственно Земля к настоящему времени была бы населена только одноклеточными организмами. Кроме того, Луна, имея довольно большой размера, обеспечивает стабилизацию земной оси, что сохраняет комфортные климатические условия и способствует формированию благоприятных условий для эволюции живых существ до человека разумного.

Описанные глобальные результаты эволюции природы после Земной развилки показывают, что подобные характеристики отсутствуют у планет Солнечной системы и не известны у выявленных экзопланет. Но это – только начало земного этапа антропного эволюционного маршрута.

Уникальность самой планеты Земля (ее структуры, свойств) показывает, что только поворот эволюции природы на Земную развилку привел к появлению человека разумного. Конечно, еще очень много потребовалось времени, чтобы природа уже на Земле методом проб и ошибок нащупала то направление, которое привело к человеку. Природе предстояло еще составить сложный пазл направления эволюции, включающий огромную совокупность благоприятных развилок в неживой и в живой природе. Назовем для краткости этот путь «антропной эволюцией природы или антропным маршрутом природы». Все перечисленные уникальные свойства Земли являлись необходимыми предпосылками возникновения жизни на нашей планете и эволюции её до человека разумного.

Продолжение маршрута эволюции по направлению к зарождению жизни после Земной развилки стало возможным потому, что на первичной мантийной твердой оболочке сформировалась более легкая земная кора и литосфера, затем океаны и континенты. Появление этих элементов на Земле является важнейшими событиями, ведущими к формированию жизни. Эти направления эволюции природы известны только на нашей планете, поэтому данные повороты выделены как Литосферная, Океаническая и Континентальная развилки. Но прежде этих эволюционных поворотов планете пришлось пройти через Лунную развилку, которая оказалась одним из решающих событий для эволюции жизни на Земле.

2.1.3. Атомы-гиды остаются в астероидах

Атомы в составе многочисленных соединений, создавшие Землю и всё живое на ней, представлены несколькими поколениями, возраст которых варьирует от 13,82 миллиардов лет до ~5 миллиардов лет. Самыми древними, возникшими вскоре после Большого взрыва, являются атомы водорода (протоны[21]) и гелия. Более тяжелые атомы создавались в разное время в звездах. Но основой всех атомов служили первые атомы водорода – протоны. Например, наши гиды появились в форме протонов в момент создания Вселенной, но все они, за исключением Гидрожена, приобрели нынешнюю атомарную форму в недрах гигантской звезды Матернитэ ~5,7 млрд. лет назад. Немного позже, в период 5,6–4,6 млрд. л.н. они, находясь в протосолнечном газопылевом облаке, объединились с различными атомами с образованием некоторых сложных молекул.

Все прибывшие на Землю атомы иногда очень долго сохранялись в прежних химических соединениях, но чаще изменяли форму своего существования во время расплавления планеты или когда вступали в какой-либо земной круговорот. Так что, большинство земных атомов периодически меняли напарников в различных молекулах.

Первыми из атомов-гидов прибыли на Землю, 4,47 млрд. л.н., Гидрожен и Оксижен в составе Гидрожен-Оксиженного серпентина. Остальные атомные гиды во время первичного формирования земного шара оставались в телах астероидов, которые продолжали обращаться вокруг Солнца на орбитах, близких к орбите недавно образованной Земли. Все эти атомы пребывали в тех молекулах, в состав которых вошли в период 5,6–4,6 млрд. л.н., находясь в протосолнечном газопылевом облаке. Карбовеж (C) и Нитрожен (N) входили в космическую органическую молекулу Карбовеж-Нитроженного урацила (C4H4N2O2). Карбомал пребывал в форме органической молекулы Карбомалного гликольальдегида (C2H4O2). Флюор (P) и Ферум (Fe) перед прибытием на Землю вошли в состав космического минерала Флюор-Ферумного шрейберзита {(FeNi9Co)3P}. Эти гиды еще находились вне Земли, когда наша планета уже прошла в своей эволюции через Земную, Лунную, Литосферную, Океаническую и Континентальную развилки. Метеориты с нашими элементами-гидами попали на Землю только после Пребиотической развилки, около 4,1 млрд. л.н., во время массивной метеоритно-астероидной бомбардировки.

2.2. Лунная развилка эволюции Земли – важный поворот природы к человечеству. Около 4,47 миллиардов лет назад

Антропный маршрут эволюции природы после поворота на Земной развилке навсегда превратился в путь развития нашей планеты. За последующие почти 100 млн. лет после возникновения земного шара произошли значительные преобразования первичного сгустка вещества. Постепенно из неупорядоченной массы атомов и химических соединений стал формироваться особый природный объект с уникальными свойствами и закономерностями своего усложнения. По мере эволюции планеты происходило все большее упорядочивание этого космического объекта. Образование и усложнение планеты направлено естественным образом на борьбу с главным разрушительным термодинамическим законом всех компактных объектов Вселенной, на противодействие увеличению энтропии[22], т. е. на сопротивление хаосу. Земля на этом пути развития успела к рубежу около 4,48 млрд. л.н. распределить вещество своих недр под воздействием гравитации на основные оболочки: ядро, мантию и первичную кору. Наиболее легкие минералы кремния, магния и алюминия сконцентрировались в большей степени в коре и верхней мантии, чем в ядре. Этот процесс дифференциации всего вещества по плотности, конечно, не был завершен. До сих пор относительно легкие химические элементы и их соединения перемещаются из ядра к поверхности Земли в форме огромных капель-плюмов расплавленных пород (объемом до 100 км3). Вместо этих масс происходит погружение более тяжелых, охлажденных блоков горных пород литосферы в мантию и ядро. Такой процесс циркуляции вещества служит одной из главных движущих сил тектонической эволюции планеты. Этот механизм глобальной мантийной конвекции (круговорота вещества) обусловил появление плюмовой[23] тектоники, которая играет значительную роль в геодинамике Земли.

Рассматриваемые события антропного маршрута эволюции природы пришлись на тепловой этап истории нашей планеты, названный «Расплавленная Земля», продолжительностью 110 млн. лет (4,56 – 4,45 млрд. л.н.), когда температура поверхности постепенно остывала от ~4000°C до 500°C. В период ~ 4,48-4,45 млрд. л.н. над пышущей жаром поверхностью планеты (температура хоть снизилась, но еще достигала значений до 550–500°C) произошла смена первой, легкой атмосферы на вторую, более тяжелую газовую оболочку – Палеокатархейскую углекисло-водяную. В это время происходило выделение из недр главным образом свободной воды, которая немедленно поступала в виде пара в атмосферу. Вулканы начали интенсивно поставлять в атмосферу кроме водяного пара, также углекислый газ и другие, газообразные и твердые вещества. Бушующая воздушная оболочка планеты насыщалась в значительной степени водяным паром, содержание которого постепенно сокращалось от 100 % до 16 % за счет увеличения доли других газов. Атмосфера насыщалась кроме паров воды, такими газами, как: углекислота (44–61 %), азот (7–9 %), водород (7 %), аммоний (3 %), гелий (2,4–2,2 %), метан (0,8–0,7 %). Воздушная оболочка в те времена была еще тонкой, но постоянное поступление из недр разнообразных газов наращивало ее общую массу. Изменения величин относительного содержания основных газов отражают динамику их извержения из недр за период существования второй газовой оболочки планеты. Так, при более-менее стабильном поступлении определенных масс водяного пара[24] объемы углекислоты нарастали. Если эта атмосфера вначале формирования была практически только водяной, то к моменту её трансформации в третью атмосферу состав стал преимущественно углекислотным.

Водяной пар, поднявшись на большую высоту, охлаждался и формировал мощный облачной покров. Облака проливались интенсивными дождями, которые, однако, при приближении к раскаленной твердой поверхности планеты снова превращались в пар, возвращающийся вверх. Такой круговорот воды на этапе «Расплавленная Земля» создавал грандиозный парниковый эффект, замедляющий охлаждение базальтового рельефа планеты.

Верхняя оболочка Земли толщиной около 1000 км была сложена расплавленной магмой, покрытый тонкой (до 10 км) первичной корой из затвердевшего мантийного вещества – перидотитовым слоем. Эта первая твердая оболочка растрескивалась, коробилась, смещалась под воздействием циркуляции расплавленного вещества мантии. По трещинам (разломам) извергались на твердую поверхность лавовые потоки, а в атмосферу устремлялись газы. Поверхность была усеяна метеоритными кратерами и вулканическими конусами. В недрах планеты уже обособились ядро и мантия. Время проявления первых последствий вертикальных и горизонтальных движений частей твердого слоя, наряду с вулканизмом (~ 4,48 млрд. л.н.) можно, с определенной долей условности, считать началом геологической истории Земли. Предыдущую историю – от момента аккреции вещества планеты до появления твердой оболочки – отнесем к этапу образования планеты (4,567- ~ 4,48 млрд. л.н.).

2.2.1. Счастливое столкновение Земли с другой планетой

Случилось так, что около 4,475 млрд. л.н. орбита Земли пересеклась с орбитой предполагаемой планеты Тея, размеры которой мало отличались от Марса. Тея на огромной скорости врезалась по касательной в раскаленный земной шар. В околоземное космическое пространство выбросилось гигантское количество вещества земной коры и верхней мантии. Наверное, от первичной формы Теи мало что осталось после такого удара. На орбите Земли оказалась колоссальная масса разноразмерных обломков возможно твердой Теи и земного базальтового слоя, а также шарообразных сгустков из земных расплавленных пород. Самый большой кусок притянул на себя значительную часть более мелких обломков. В результате довольно быстро, в течение нескольких миллионов лет, образовалось тело массивного земного спутника – Луны. Поскольку наш спутник образовался из вещества верхних оболочек Земли, то средняя плотность Луны соответствует средней плотности именно этих пород, что значительно меньше плотности Земли и тем более, её ядра. Состав лунных грунтов, доставленных на Землю, показал их сходство с породами земной коры.

На Земле еще долгое время оставался след от столкновения с Теей. Медленно заполнилась магмой огромнейшая выбоина на земной поверхности от этой космической катастрофы. Только глобальные перемещения и преобразования литосферных плит, на которые разбилась верхняя оболочка Земли спустя много миллионов лет, изменят весь первичный рельеф планеты.

Удивительно, но катастрофическая встреча Земли с планетой Тея оказалась необходимым условием для развития жизни, поскольку привела к объединению тяжелых элементов обеих планет в земном ядре. В итоге сформировалось сверхмассивное земное ядро, способное генерировать мощную магнитосферу, обеспечивающую защиту земной поверхности от губительной солнечной радиации. Возникновение Луны достаточно крупного размера существенным образом сказалось на ходе эволюции Земли. Имеются в виду лунное влияние на такие параметры земного развития, как: уменьшение вероятности падения крупного астероида, замедление скорости вращения, стабилизация оси вращения нашей планеты, протекание геологических процессов, особенности климата, условия появления и развития жизни. Например, 3 млрд. л.н. орбита Луны располагалась так близко от нашей планеты, что высокие приливные волны в земной коре приводили к растрескиванию литосферы и влияли на магматическую активность недр, а приливные волны в земном мировом океане достигали многих сотен метров. Такие периодические приливы-отливы приводили к регулярному осушению океанических мелководий и заводнению прибрежной суши, что благоприятствовало выходу жизни из моря на сушу. Водные живые существа оказывались на суше, где приходилось приспосабливаться к существованию в новых условиях. Первые наземные организмы постепенно эволюционировали в ту флору и фауну, которая заселила все континенты. С тех пор Луна отдалилась от Земли и продолжает удаляться, что влечет замедление скорости вращения нашей планеты и увеличение суток. Так, во время образования Луны вращение Земли было очень быстрым, сутки длились всего 4 часа 30 минут, а 500 млн. л.н. сутки равнялись 18 часам, сейчас – 24 часам. В будущем, через несколько миллионов лет Луна будет находиться в 1,5 раза дальше, чем сейчас и сутки на Земле составят около 54 современных суток, т. е. сутки будут длиться 1,5 месяца. Указанное постепенное изменение динамики нашей планеты, безусловно, влияет на те или иные климатические характеристики, которые ориентируют эволюцию организмов в определенных направлениях.

Принимая во внимание роль Луны в появлении и развитии жизни на Земле, с полным основанием, можно назвать момент образования Луны около 4,47 млрд. л.н. важной развилкой эволюции природы на пути к человечеству – Лунной развилкой. Если бы у Земли не появился партнер в виде Луны, эволюция планеты Земля пошло бы иным путем, чем это случилось. Можно только гадать, что было бы с жизнью в варианте существования Земли без Луны, но нет сомнения, что безлунный путь эволюции природы не привел бы к той последовательности и многообразности живых организмов, которые были реализованы. О возможной судьбе Земли в отсутствии такого крупного спутника, как Луна, можно предполагать на примере планеты Марс, которая потеряла свою атмосферу, жидкую воду, прекратила тектоническую деятельность, практически полностью лишилась магнитного поля. У Марса имеется два спутника – Фобос и Демос, радиусы которых, соответственно в 158 и 290 раз меньше лунного. Марсианские спутники настолько малы, что их гравитационные силы не способны оказывать существенное влияние на Марс. На других планетах земной группы (Венере и Меркурии) вовсе отсутствуют спутники существенных размеров. Так, что Земле очень повезло со спутником.

2.2.2. Гидрожен на горячей Земле, Оксижен – в красивом минерале. Другие гиды – в Поясе астероидов

Что происходило с атомными гидами в момент катастрофического столкновения Земли с Теей? Гидрожен и Оксижен первыми из атомов-гидов оказались на Земле 4,47 млрд. л.н. Это произошло приблизительно через 5 млн. лет после судьбоносной встречи Земли с планетой Тея и практически одновременно с образованием Луны. Возможно, гравитационное воздействие Луны способствовало встрече Гидрожена и Оксижена с Землей. Весьма крупный астероид, заключающий Гидрожен-Оксиженый серпентин врезался в земную поверхность, которая в это время была представлена первичной перидотитовой твердой оболочкой с высокой температурой (~ 650°C). Этот минерал серпентин, будучи водным магнезиальным силикатом, замечателен тем, что в его химическом составе (в основном MgO 43,0 %, SiO2 44,1 %, H2O 12,9 %) присутствует до 17 % воды. При нагревании свыше 450°C серпентины переходят в другие минералы: тальк, форстерит с выделением воды. Поскольку Гидрожен-Оксиженый серпентин попал на Земле в горячую обстановку, то из него получилось два вещества: минерал Оксиженный форстерит и Гидроженная вода. Гидрожен тут же, испарился с вмещающей его молекулой воды (H2O), добавив частичку пара в водяную атмосферу. В атмосфере Гидрожену предстояло путешествовать около 200 млн. лет до тех пор, когда понизится температура поверхности планеты и вся вода из атмосферы обрушится на твердую базальтовую оболочку, сформировав первые океаны.

Оксижен продолжил свое геохимическое путешествие внутри молекулы Оксиженного форстерита[25] в поверхностном слое Земли. Форстерит – очень твердый минерал – по десятибалльной шкале твёрдости расположен на седьмом месте. Выдерживает огромную жару, так как температура плавления минерала – около 1890°C. Считается, что этот, как правило, зеленый минерал, обладая некими целебными способностями, положительно влияет на организм человека. Форстерит даже предохраняет от многих болезней. Оксиженный форстерит, возникнув в твердой мантийной оболочке, оказался в благоприятных условиях для кристаллизации небольшого зернышка минерала в красивый, крупный кристалл высотой 15 см. Получилось так, что Оксижен в форстерите свяжет свою судьбу с перидотитовым твердым слоем мантии на весьма продолжительный период. К рубежу 4,38 млрд. л.н. этот мантийный слой покроется новым базальтовым слоем коры, сформируется базальтовая литосфера и начнется плитная тектоника. Благодаря движению плит форстерит с Оксиженом в составе одного из литосферных блоков отправится в долгий путь по астеносфере в интересное будущее.

Как удивительно в природе всё взаимосвязано. На примере Гидрожена и Оксижена можно заметить, что они меняли форму своего существования (молекулу, минерал) при смене условий нахождения (температуры, давления и многих других факторов). Причем сохраняются только те формы, которые оказываются устойчивыми к меняющимся условиям. Принципы изменчивости и естественного отбора связываются, обычно, с живой природой, но, пожалуй, все формы существования вещества, включая неживые, изменяются при смене среды нахождения и подвержены эволюционному отбору.

После Лунной развилки еще много вещества, не собранного Луной, оставалось на орбитах вокруг Земли. Эти скопления минералов разного размера постепенно падали на нашу планету или на наш спутник. Не забудем, что кроме того не малый объем протопланетного материала продолжал вращаться вокруг Солнца в основном на орбитах между Марсом и Юпитером – в Поясе астероидов. В этом Поясе мчались те атомные гиды, которые не попали на Землю во время её формирования. Эти атомы-гиды всё еще находились в тех молекулах, в состав которых вошли в период 5,6–4,6 млрд. л.н., находясь в протосолнечном газопылевом облаке. Речь идет о: космической органических молекулах Карбовеж-Нитроженного урацила и Карбомалного гликольальдегида, а также Флюор-Ферумном шрейберзите.

Эти три молекулы в процессе первичной аккреции (объединения) газово-пылевых частиц вошли в состав трёх астероидов неправильной, кускообразной формы, размером от 15 до 30 метров, которые приобрели собственные орбиты движения вокруг Солнца. Назовем эти астероиды по именам некоторых гидов, входящих в их состав: Нитроженный астероид (с молекулой урацил), Карбомалный астероид (с молекулой гликольальдегида) и Ферумный астероид (с молекулой шрейберзита). Объекты в Поясе астероидов не могли продолжать слипание в более крупные астероиды или планетеземали из-за мощного гравитационного воздействия огромного Юпитера. Так и остались эти астероиды мелкими космическими объектами, которые постепенно меняли свои орбиты под влиянием сил тяготения ближайших планет.

Направление эволюции природы к человечеству после Лунной развилки корректировалось многими земными событиями – эволюционными поворотами. Среди них выберем только те основные, отклонения от которых почти наверняка исключило бы появление на нашей планете если не жизни вообще, то человека разумного уж точно. Хронологически следующим, уникальным эволюционным поворотом стала Литосферная развилка.

2.3. Литосферная развилка эволюции Земли. Около 4,45 миллиарда лет назад

Поверхность Земли продолжала охлаждаться, и для планеты наступил следующий, второй тепловой этап, названный «Раскаленная Земля», который продолжался в течение 4,45 – 4,1 млрд. л.н. Начался этот этап со среднегодовой температуры поверхности около 500°C. В недрах формировались огромные объемы легких соединений, которые стремились в зону меньших давлений – наружу. Эти мощнейшие перепады давления порождали вулканы и трещинные излияния, которые извергали вместе с лавой много газов. Газы были представлены: парами воды, углекислотой, азотом, аммиаком, метаном, серой, разными кислотами, водородом, аргоном и рядом других газов. Активная дегазация лавы дала начало формированию третьей Мезокатархейской водно-азотно-углекислой атмосферы (~ 4,45-4,1 млрд. л.н.). Состав этой газовой оболочки за время её существования изменялся в направлении уменьшения углекислого газа (от 67 до 29 %) и наращивания азота (от 14 до 28 %). Как и в прежней атмосфере присутствовали аммиак (2,8–1,3 %), гелий (2,2–0 %), метан (0,7–0,3 %) и некоторые другие газы. Относительное содержание паров воды уменьшилось к началу этого этапа до 16 %, но абсолютное количество воды в атмосфере оставалось прежним, а может быть, даже несколько увеличилось за счет поступления из недр. Изменение соотношения главных компонентов атмосферы, приведшее к формированию третьей атмосферы, произошло в результате значительного наращивания общей массы атмосферы за счет азота, особенно на рубеже около 4,45-4,1 млрд. л.н. Вода в парообразном состоянии поддерживалась высокой температурой. Большая доля углекислого газа в атмосфере обеспечивала его растворение в водяных парах с образованием угольной кислоты (по реакции: СО2 + Н2О <=> Н2СО3)[26] (пояснения по ссылке можно смотреть в разделе "Ссылки.." в конце книги). Процесс растворения углекислого газа в воде начался еще во время существования предыдущей, второй – Палеокатархейской углекисло-водяной атмосферы. В парах воды также растворялись и другие, менее распространенные в обеих атмосферах кислоты. Так, что тучи тех периодов состояли из слабых растворов угольной и, в меньшей доле, других кислот. Эти древние атмосферы оставались еще тонкими по сравнению с толщиной нынешней атмосферы. Последующие газовые оболочки наращивали массу за счет постоянного поступления глубинных газов, а после возникновения гидросферы они насыщались также водными испарениями океанов и морей и т. д. Значительную роль в эволюции газовых оболочек также играли противоположный процесс – медленное истечение газов в космическое пространство. Вспомним, что ранняя, очень легкая атмосфера, состоящая из водорода и гелия, полностью рассталась с Землей. Вторая и последующая газовые оболочки оказались более стабильными, так как их главные составные части – азот (1,251 кг/м3), углекислый газ (1.9768 кг/м3), а затем и кислород (1,429 кг/м3) имеют плотность приблизительно в 10–20 раз превышающую плотность гелия (0,1785 кг/м3) и тем более водорода (0.08987 кг/м3). Масса Земли способна своим гравитационным полем довольно продолжительное время удерживать эти тяжелые газы. По расчетам ученых Земля может полностью потерять атмосферу не ранее, чем через пять миллиардов лет. Однако каково истинное соотношение прироста и убыли атмосферного газа в разные периоды истории Земли пока достоверно не известно. Поэтому приведенный расчет времени гибели атмосферы – весьма приблизительный.

Земля продолжала вращаться с большой скоростью, земные сутки составляли около 5 часов. Бешеное вращение планеты вызывало сильнейшие атмосферные ураганы, несравнимо более массивные и жесткие, чем нынешние самые крупные воздушные бури.

К этому времени почти вся поверхность планеты оставалась покрытой первичной твердой оболочкой, представленной ультраосновными[27] горными породами мантии. Эту оболочку называют по-разному: мантийная, докоровая, перидотитовая, симатическая. Порода перидотит, главный компонент этого твердого слоя, хотя и легче нижерасположенного вещества мантии, но все же довольно тяжелая (плотность около 3,3 г/см3). Такая оболочка была способна плавать поверх тогда расплавленной магмы верхней мантии до тех пор, пока оставалась не полностью кристаллизованной и толщиной, не превышающей около 10 км. По мере кристаллизации перидотита, приводящей к увеличению его плотности и в связи с нарастанием толщины его слоя на тех или иных участках, происходило погружение в раскаленную магму этих воздымающихся над поверхностью блоков. Поэтому рельеф поверхности планеты в тот период был пологим, без значительных возвышенностей. Постепенно происходило погружение блоков первичной твёрдой оболочки в раскаленную мантию, что приводило к частичному плавлению перидотита. В результате появлялись и продолжают до настоящего времени генерироваться дополнительные огромные объемы магмы, которая поднимаясь к поверхности, превращается в базальт. Первая перидотитовая твердая оболочка сыграла важную роль в эволюции Земли, однако после значительного охлаждения и полной кристаллизации она не сохранилась на поверхности и постепенно погрузилась в мантию. Для покрытия Земли твердой оболочкой должна была выплавиться из недр менее плотная порода. Оказалось, что необходимыми качествами обладала магматическая вулканическая порода основного состава (SiO2 от 40 до 52 %) – базальт, средний удельный вес которого (~2,7 г/см3) приблизительно на 10 % меньше, чем у перидотита. Базальты – сложная порода, состоящая из многих минералов, главное место среди которых принадлежит двум силикатным минералам. Важнейшим породообразующим минералом является плагиоклаз (NaAlSi3O8 – CaAl2Si2O8), который стал самым распространенным минералом в земной коре и главным алюмосодержащим минералом на планетах земного типа и их спутниках. Пироксен считается вторым важнейшим минералом в составе базальта. Этот обычный силикат отличается способностью вмещать большое количество элементов (кислород, кремний, алюминий, кальций, натрий, а также множество более редких элементов).

2.3.1. Начало формирования земной коры

Приблизительно 4,45 млрд. л.н. вулканы начали поставлять расплавленные горные породы – базальтовую лаву на поверхность планеты. Тем самым был запущен процесс формирования нижнего, базальтового слой земной коры. Вулканы, поставлявшие базальт, располагались на многих участках Земли, как правило, группируясь вдоль глубинных разломов. Такие разломы, связывающие поверхность с глубокозалегающим веществом мантии, возникли в первичной перидотитовой оболочке. Причиной образования подобных разломов являлись изгибания и раскалывания твердой мантии, под воздействием конвекционных течений расплавленного мантийного вещества, а также благодаря приливному давлению Луны.

Расплавленная магма извергалась из быстро нарастающих вулканических конусов, стекая вниз потоками лавы, взлетая в атмосферу чудовищными брызгами раскаленного базальта, которые при охлаждении падали на поверхность вулканическими бомбами разного размера. Извержения сопровождались фонтанами пепла, водяного пара и разнообразных газов, поднимавшимися вверх до стратосферы. Почти непрерывно поверхность планеты покрывалась пластами базальтов в форме потоков и покровов. В то же время отлагались прослои пирокластического (туфового) или осадочного материала. Пласт за пластом, черные базальтовые лавы и пепел формировали первый (нижний) твердый и устойчивый базальтовой слой земной коры. Толщина базальтового слоя была разной, существовали крупные блоки толщиной до 16 км. Такая толстая легкая базальтовая кора была способна выдерживать на плаву вулканические конусы высотой более 3 км над преобладающим уровнем поверхности. На других участках толщина данной оболочки не превышала 2–3 км. Базальтовая кора является самым распространенным типом коры у планет Солнечной системы. На Земле в настоящее время почти во всей коре (под океанами и на материках) присутствует слой базальтов. Правда, сейчас это, как правило, вновь образованные базальты, а от той первичной базальтовой коры, скорее всего, мало что осталось. Тогдашний облик Земли походил на нынешний вид базальтовой поверхности Меркурия, разбитой кратерами многочисленных астероидов. Также выглядит базальтовая, гористая кора Венеры и выветрелая красная поверхность Марса. Поверхность Земли благодаря твердой базальтовой коре и, конечно, под воздействием постоянной метеоритно-астероидной атаки приобрела разнообразный, сложной ландшафт черного цвета, изобилующий многочисленными кратерами как метеоритного, так и вулканического происхождения. Регионы с многочисленными вулканическими постройками сменялись равнинами, ограниченными скалистыми уступами. Людям в очередной раз повезло, что наша планета не остановилась на формировании базальтового слоя, но оказалась способной продолжить свою эволюцию, изменяя траекторию развития на многих эволюционных развилках, которые привели к разумному человеку.

Накопление первичного базальтового слоя заложило основу дальнейшей эволюции земной коры. Полагаем, что к рубежу около 4,38 млрд. л.н. практически вся земная поверхность покрылась черными толщами пористых базальтов, еще довольно горячими (400–300°C). Подкоровой (мантийный) твердый слой ультраосновных пород нашей планеты на тех участках, где ещё сохранился, вошел в состав верхней мантии. Молодая и тонкая базальтовая земная кора в совокупности с верхним, твердым слоем мантии (волноводом Гутенберга) образовала литосферу[28]. Литосфера в виде твердой оболочки залегает на более пластичном, более вязком, жидком астеносферном (от греч. астенос – слабый) слое в мантии. Контакт литосферы с астеносферой сейчас происходит на разной глубине в зависимости от геологического строения литосферы: от 4 км под рифтами до 200 км под древнейшими платформами-кратонами.

Появление литосферы – твердой оболочки Земли, расположенной на относительно пластичной астеносфере, имело решающее значение для продвижения эволюции природы по антропному маршруту. Дело в том, что раскалывание первоначальной, «базальтовой» литосферы на отдельные плиты, находящиеся в постоянном движении, создало условия для образования океанов с океанической корой и появления континентальной коры. В итоге возникла жизнь в океанах. Затем живые организмы вышли на материки, где эволюционировали во множество замечательных существ, среди которых оказались и люди. Учитывая важность формирования литосферной оболочки, данный поворот в развитии планет выделяется в Литосферную развилку эволюции Земли, которая случилась около 4,45 млрд. л.н. Есть основания считать, что в эволюции Венеры и Марса были повороты, направившие их развитие на появление базальтовой литосферы, подобно земной Литосферной развилки. На этих планетах имели место даже некоторые проявления тектоники плит и были образованы океаны (Океанические развилки эволюции планет). Однако эти планеты в начале океанического пути развития, похоже, остановили прогрессивную эволюцию и вступили в эпоху разрушения. Земля продолжила развиваться своим особым путем, а для других планет природа избрала иные варианты эволюции.

2.3.2. Появление плитной тектоники – необходимое условие жизни

На рубеже около 4,38 млрд. л.н., когда практически вся планета покрылась базальтовым слоем, подлитосферная циркуляция вещества горячих недр и/или деятельность плюмов раскололи молодую «базальтовую» литосферу на множество плит, которые приступили к вечному дрейфу по астеносфере[29] как по смазке. Условно, с этого времени[30] (пояснения по ссылке можно смотреть в разделе "Ссылки.." в конце книги) началась глобальная тектоника литосферных плит, охватившая всю Землю. Движение плит стало возможным благодаря различию физических свойств литосферы и астеносферы, которые определяются не особенностями их химического состава, но фазовым переходом, обусловленным давлением и температурой. Вещество литосферы находится в кристаллическом состоянии, а породы астеносферы являются частично расплавленными. Наличие раскаленных недр под холодной литосферой является потенциалом мощных тектонических движений литосферы, связанным со стремлением теплых, а потому более легких горных пород всплыть над холодными, более тяжелыми образованиями земной коры. Очень вязкая магма переносит тепло из самых глубинных недр Земли к подошве коры, вызывая движение плит. На выполнение механической работы тратится определенная доля тепла, другая часть уходит в околоземное космическое пространство. Многие геологические и другие процессы реализуются благодаря тому, что наша планета является, по-существу, тепловым двигателем.

Огромные массы раскаленной магмы и лавы внедряются между литосферными плитами, в зонах спрединга (раздвигания), расталкивая их. Эти базальтовые извержения, остывая на поверхности планеты, формировали новообразованный базальтовый слой. Таким образом, благодаря действию ранней плитной тектоники происходила постепенная замена первичного (доплитного) базальтового слоя на новообразованный слой базальта. Следует отметить, что этот процесс обновления земной коры начался еще приблизительно за 110 млн. лет до появления на Земле океанов. Регионы с обновленной базальтовой корой между смежными плитами, образовавшиеся до появления жидкой воды на Земле, условно можно считать «сухими океанами». Если кору, служащую ложем нынешних океанов, называют океанической корой (см. раздел "Океаническая развилка"), то древнейшую кору сухих океанов так и назовем «кора сухого океана». Земные древние сухие океаны, вероятно, имеют много сходного с районами новообразованной застывшей лавы – базальтовых излияний на Луне, именуемых лунными морями. Там даже имеется океан Бурь общей площадью около 4 млн. км2. Конечно, никаких водных бассейнов на Луне нет и не было. Лунные пониженные участки распространения относительно молодых базальтов назвали морями из-за их более темного цвета по сравнению с прилагающими светлыми участками «суши». Развитие Луны в отличие от Земли не прошло через Океаническую развилку.

В то же время, перемещение литосферных плит приводит к тому, что крупные холодные блоки литосферы погружаются в раскаленные недра Земли в участках их столкновения. Такие участки названы зонами субдукции, где одни блоки проталкиваются под смежные плиты, расплавляясь в недрах и перерабатываясь в процессе соединения с веществом мантии. Затем массы расплавленных пород поднимаются к поверхности, чтобы окислившись образовать новые породы. Наряду с твердыми породами в миграции участвуют жидкости (вода, водные растворы) и газы. Более того, Земля в целом, от ядра до атмосферы представляет собой сложный комплекс взаимодействующих атомов, соединенных в молекулы, минералы, горные породы, находящиеся в постоянном круговороте с той или иной скоростью. Состояния глобальных характеристик Земли порой зависят от самых незначительных изменений отдельных характеристик вещества во внутренних оболочках, а также от ряда космических воздействий.

В этом отношении следует вспомнить о роли тектоники плит в регулировании температурного режима поверхности Земли, обеспечивающего благоприятный для жизни диапазон температур между 0°C и 100°С. История планеты показывает, что сохранять такие температурные условия весьма сложно. Тем более что планета на протяжении более 4 миллиардов лет подвергается всё возрастающему воздействию солнечного излучения. Это излучение в начале истории Земли было на 30 % меньше, чем в настоящее время. Если бы не механизм действия тектоники плит, то планета разогрелась бы до температуры, при которой вся вода испарится и удалится в космическое пространство. Регулирование температуры происходит в результате взаимодействия тектонических процессов образования гор, т. е. благодаря орогенезу и процессов их разрушения, эрозии. Ветер, вода, химические процессы разрушают горных пород и перемещают продукты эрозии в океан. Одни горы разрушаются, другие образуются. Круговорот вещества продолжается постоянно.

В круговорот включается углекислый газ атмосферы, когда он растворяется в дождевой воде и в форме углекислоты растворяет горные породы. В океанах часть углерода выпадает в осадок в виде карбонатных пород: известняка-CaCO3 и доломита-MgCO3. Кроме этого, углерод удаляется из атмосферы растениями, которые используют его для производства углеводов. Растения после смерти постепенно накапливаются в мощных осадочных пластах и под воздействием температуры и давления превращаются в торф и угли. В морских отложениях захоронились органические остатки водных животных. Из этого органического вещества спустя миллионы лет образовались газ, нефть или горючие сланцы. Обширные осадочные бассейны с углеродосодержащими породами являются своеобразными долговременными хранилищами колоссальных ресурсов углерода. Кроме того, в зонах субдукции, где океанические литосферные плиты погружаются в мантию, углеродосодержащие породы могут высвобождать углерод для формирования новых минералов. Таким образом, разнообразные химические и геологические процессы как конвейерная лента перемещают углерод из атмосферы в земную кору либо в мантию. В результате содержание углекислого газа в атмосфере уменьшается, что снижает парниковый эффект[31] и вызывает похолодание климата.

В коре и мантии Земли углерод залегает в значительно большем количестве, чем в сумме на поверхности и в атмосфере. Если бы геологический конвейер работал только на захоронение углерода, тогда бы уже в тот или иной момент содержание двуокиси углерода (CO2) в атмосфере сократилось бы до критически минимального значения, и планета замерзла бы. Эволюционный маршрут природы к человечеству на этом бы прервался окончательно. Но геологический конвейер продолжает продвигать вещество, включая углерод от зон субдукции к месту выхода из земных недр в атмосферу. Такими местами являются зоны дивергенции (спрединга), где раздвигаются литосферные плиты под воздействием огромных масс раскаленной, всплывающей и циркулирующей магмы. Горячие массы пород, насыщенные водяным паром, углекислым и другими газами извергаются на поверхность континентов или на дно океанов через глубокие трещины в земной коре или через жерла вулканов. Когда появятся люди, они начнут сжигать торф, уголь, сланец, нефть, газ, тем самым освобождая углерод из подземного заточения и направляя его в круговорот. Человек будет выступать всего лишь как один из геологических факторов. В атмосферу возвращается углекислый газ, повышая её парниковый эффект, повышается температура поверхности планеты. Увеличивается объем дождей и ускоряется эрозия горных пород и их снос в океаны, а также погружение этих пород в недра. То есть ускоряется вывод углекислоты из атмосферы. Так саморегуляция планеты стремится уменьшить повышение температуры, которое происходит в результате постепенного возрастания объема солнечного излучения.

Кроме того, постоянное перемешивание земного вещества является своеобразным конвейером по производству все более сложных химических соединений, по их сепарации и концентрации в месторождениях земной коры. Хотя объем концентрированных химических элементов – относительно небольшой по сравнению с основной массой химических элементов, находящихся в рассеянном состоянии, эти скопления имеют огромное значение для развития человеческой цивилизации. Природа как бы позаботилась о людях, создав скопления (месторождения) таких полезных ископаемых, как: горючие (нефть, природный газ, горючие сланцы, торф, уголь), нерудные (строительные материалы; сырье для производства минеральных удобрений, красок, для общехимического производства, для металлургии; технические кристаллы; драгоценные и поделочные камни; абразивные материалы), рудные (черные и цветные металлы и др.). Уместно здесь напомнить, что человечество получило в свое распоряжение также водные, лесные и биологические ресурсы. Неисчерпаемые объемы световой и тепловой солнечной энергии, влаги и движения воздуха являются теми климатическими ресурсами, которые Земля использует в своей эволюции и которые в своё время предоставит живым организмам.

Возвращаясь к характеристике тектоники плит, заметим, что о первичных размерах и контурах древнейших литосферных плит отсутствуют достоверные сведения, поскольку со временем их конфигурация менялась. Плиты могут раскалываться в результате рифтинга (образования вытянутых щелевидных прогибов, ограниченных глубинными разломами) и спаиваться, создавая единую плиту в результате коллизии (столкновения плит, смятия коры и образование горных цепей). Границами древнейших плит, возможно, были первые глубинные разломы в твердой мантии, по которым поднималась магма для базальтовой коры. К настоящему времени литосфера представлена 8 крупнейшими плитами: Тихоокеанская-103 300 000 км², Северо-Американская-75 900 000 км², Евразийская-67 800 000 км², Африканская-61 300 000 км², Антарктическая-60 900 000 км², Австралийская-47 000 000 км², Южно-Американская-43 600 000 км² и Сомалийская-16 700 000 км² (Рис. 2.3.1). Кроме того выделяются 5 крупных плит: Наска-15 600 000 км², Индостанская-11 900 000 км², Филиппинская-5 500 000 км², Аравийский субконтинент-5 000 000 км² и плита Кокос – 2 900 000 км². Имеются также множество средних и мелких плит. Тринадцать вышеперечисленных плит покрывают около 90 % земной поверхности. Средние и мелкие плиты расположены между крупнейшими и крупными блоками. Блоки литосферы перемещаются по астеносферному слою с разной скоростью: от 1 до 6 см/год в процессе надвигания одной плиты на другую и до 10–18 см/год при расхождении плит. Все плиты в той или иной степени являются комбинированными, т. е. слагаются океанической и континентальной типами коры. В то же время, Тихоокеанская плита – в основном океаническая, а Евразийская – преимущественно континентальная. Основная сейсмическая, тектоническая и магматическая активность нашей планеты, проявляемая на поверхности вулканизмом, землетрясениями, горообразованием, приурочена к границам плит. В разделах об Океанической и Континентальной развилках приводится краткая характеристика разных типов земной коры.

Границы плит стали зонами раздвига, надвига, поддвига или горизонтального смещения одних плит относительно смежных. Сформировались три типа границ между плитами: 1- рифт срединного хребта (зона спрединга), 2- зона столкновения (зона субдукции) и 3- зона сдвига (трансформный разлом)[32]. Вдоль этих границ проявились и происходят до сего времени максимальные тектонические, вулканические и сейсмические явления. В рифтовых зонах срединных хребтов плиты раздвигаются, и пустоты возникающих трещин заполняются расплавленной базальтовой магмой, всплывающей из астеносферы. Конвекционные течения вещества в астеносфере растаскивают плиты в стороны от осей срединных хребтов.

В зонах раздвижения плит, т. е. на участках распространения коры сухого океана, а также на прилегающих участках распространения первичного базальтового слоя приблизительно через 110 млн. лет после начала активной плитной тектоники возникнут океаны (см. "Океаническая развилка, 4,27 млрд. л.н."). В зонах субдукции (сближения) плит одна из них погружается под другую, а если они сталкиваются, тогда обе сминаются, образуя горную цепь. После возникновения океанов в участках распространения гор будет формироваться материковая (континентальная) кора (см. Континентальная развилка, 4,2 млрд. л.н.). По трансформным разломам происходит сдвигание (скольжение) плиты относительно смежной. Кроме того, даже внутри плит происходят такие явления, как: долговременные базальтовые магматические извержения в некоторых районах, называемых горячими точками, а также грандиозные излияния расплавов, формирующих траппы на континентах и океанические плато в океанах. Перечисленные проявления динамики твердой корово-мантийной оболочки являются разными характеристиками глобальной тектоники литосферных плит, о которой уже было упомянуто выше. Конечно, в течение первых 200–400 млн. лет после начала тектоники плит (около 4,38 млрд. л.н.), кора была тоньше и вязкость мантийных конвекционных потоков непосредственно под корой была намного ниже той, которые сформировались в последующем. Поэтому в этот начальный период динамика литосферы характеризовалась относительно низкой активностью. Тем не менее, тектоническая активность оказалась достаточной, чтобы обеспечить некоторую дифференциацию рельефа планеты, необходимую для образования океанов разной глубины, морей, озер и речных потоков, а также, чтобы создать необходимые условия для появления зон генерации континентальной коры.

2.3.3. Гидрожен – в горячей атмосфере, Оксижен – в литосферном блоке. Карбомал, Карбожен с Нитроженом и Флюор с Ферумом мчатся вокруг Солнца

После Литосферной развилки, Гидрожен, прибывший на Землю практически одновременно с образованием Луны, продолжал парить над Землей в составе Гидроженной водяной молекулы, поскольку температура поверхности планеты еще оставалась очень горячей (500°C – 300°C). Вся постоянно выделявшаяся из недр вода всё ещё находилась в парообразном состоянии. Огромные объемы пара превратятся в жидкую воду после снижения температуры ниже точки кипения воды. При существовавшем тогда атмосферном давлении в пределах около 3–4 атм. этот фазовый переход произошел, приблизительно при температуре поверхности планеты около 250–200°C около 4,27 млрд. л.н.

Перидотитовый твердый слой мантии, который стал пристанищем Оксижена, после Литосферной развилки перекрылся базальтовым слоем коры. Разбитие базальтовой литосферы на плиты определило нахождение кристалла Оксиженного форстерита в одном из океанических блоков. С этим литосферным блоком наш кислородный гид отправился в дрейф по астеносфере.

Карбомал, Карбожен с Нитроженом, как и Флюор с Ферумом в своих персональных астероидах (Карбомалном, Нитроженном и Ферумном) продолжают кружить вокруг Солнца на орбитах между Марсом и Юпитером. В их судьбе мало что изменится на протяжении еще около 300 млн. лет, до Пребиотической развилки, когда они прибудут на Землю.

2.4. Океаническая развилка эволюции Земли. Около 4,27 миллиарда лет назад

На протяжении около 200 млн. лет после Литосферной развилки тепловая история планеты оставалась в границах этапа «Раскалённая Земля». Планету продолжала укутывать третья – Мезокатархейская водно-азотно-углекислая атмосфера. В этой атмосфере происходило накопление колоссальной массы паров слабых водных растворов угольной и некоторых других кислот. К рубежу ~4,27 миллиарда л.н. снижающаяся температура достигла стабильных значений существования жидкой воды, и весь водяной пар в атмосфере конденсировался, обрушившись продолжительными проливными дождями угольной кислоты на твердый черный базальтовый слой планеты. Поверхность Земли хотя и охладела в значительной степени, но все еще оставалась довольно горячей (~200°C). Рельеф планеты в ранней половине катархейской эры (4,54-4,2 млрд. л.н.) был довольно пологим. Унылые базальтовые равнины с относительно неглубокими понижениями осложнялись не высокими вулканическими постройками в форме конусов или возвышенностей иных конфигураций. Кроме того, между литосферными блоками и в некоторых других местах тектонических напряжений формировались протяженные разломы, которые выделялись на земной поверхности в форме провалов и/или уступов. Отрицательными формами рельефа – потенциальными естественными вместилищами для озер и морей были тектонические прогибы и пологие впадины на участках нового образования базальтового слоя, т. е. на коре «сухого океана», да кратеры разного диаметра и глубины от разнокалиберных метеоритов и астероидов.

Кислая вода многовековых дождей мощными потоками стекала по сухой и очень горячей земной поверхности в низкие участки базальтового рельефа Земли. Формировалась система стока, речная сеть и возникали первые водоемы. Вода на своем пути растворяла щелочные породы своих русел. С суши переносились в первичные водоемы обломки разрушенных горных пород и извлеченные их них химические элементы: прежде всего натрий, а также магний, стронций, калий, кальций, литий и др. Содержание этих катионов[33] в морской воде соответствует распространенности их в породах земной коры. Однако, содержание основных анионов, особенно хлора и брома, в водоемах значительно превышает возможности горных пород. Ученые считают, что все катионы попали в морскую воду в результате их извлечения из горных пород, а анионы (хлор, бром и др.) прибыли в воду непосредственно из мантии при её дегазации.

Первичная морская вода была слабокислотной (pH[34] от 5 до 6,5) и малосолёной, похожей по составу на пресную воду. Такой состав воды в морях обусловлен быстрым стоком, не позволявшим значительно обогатиться минеральными веществами. Кислый раствор, находясь в первичных водоемах, растворял омываемые изверженные породы. На первом этапе размывались породы твердого базальтового слоя. На протяжении последующих сотен миллионов лет водные бассейны постепенно насыщались элементами, переходившими из новообразованных океанической и континентальной земных кор: натрием, магнием, стронцием, калием. Кроме того, за счет дегазации мантии в воду поступали хлор, бром и другие анионы. Интересно проследить обогащение океанов катионами кальция (Са2+) и магния (Mg2+), наряду с комплексным анионом карбоната (СO32-), в состав которого входит катион углерода (С4+) и три аниона кислорода (O2-). Когда концентрация этих элементов в морской воде достигла точек растворения кальцита (СаСО3) и доломита (CaMg[CO3]2), на дно бассейнов начали осаждаться данные карбонаты. Выпадение из воды соединений углекислоты привело к последующему извлечению морской водой из атмосферы новых порций углекислого газа. Океан выводил «излишки» углерода из атмосферы в осадок морей и океанов. Огромные массы соединений углерода в форме мощных толщ карбонатных пород на сотни миллионов лет захоронялись в недрах планеты. Океан стал естественным регулятором, как состава атмосферы, так и ее температуры. Гидросфера включилась в кругооборот вещества и энергии между всеми оболочками Земли.

По мере увеличения продолжительности взаимодействия воды с омываемыми горными породами повышалось в ней содержание минералов (в среднем до нынешней минерализации 35 г/л). Воды постепенно превратились в слабощелочные (pH от 7, 5 до 8,5), жесткие растворы минеральных солей хлоридно-магниевого типа. В океанических и морских водах растворены в разных количествах почти все элементы таблицы Менделеева. Солевой состав вод океанов очень близок к характеристике крови животных и человека, что можно объяснять зарождением и начальной эволюцией живых организмов в океанических водах.

Вода первых дождей наполняла сначала отдельные, изолированные наиболее погруженные участки, формируя ранние озера и моря. По мере поступления новых объемов жидкости и повышения уровня морей, происходило постепенное соединение локальных водоемов в более обширные моря и, наконец, практически вся планета покрылась мелким океаном. Вода в первичных водоемах не кипела только потому, что находилась под давлением тяжелой атмосферы (по разным оценкам в 2–3 раза плотнее нынешней), состоящей в значительной степени из плотного углекислого газа. Изобилие в воде минералов железа придавало океану зеленый цвет. Суша отсутствовала, кроме выступающих кое-где из воды вершин действующих вулканов. Появляющиеся из воды вулканические острова раннего периода Земли достаточно быстро разрушались мощными волнами, поскольку состояли из пористого, мягкого, пемзообразного базальта. Луна в это время располагалась еще весьма близко от Земли, и её приливное влияние вызывало огромные волны, высотой в сотни метров, прокатывающиеся с определенной периодичностью через океан.

Забегая немного вперед, отметим, что накопление поверхностных водных бассейнов и затем образование глобального океана способствовало изменению состава третьей атмосферы и формированию четвертой воздушной оболочки. В новой – Эоархейской углекисло-азотной атмосфере в течение от 4.1 до 3.5 млрд. л.н. содержание углекислого газа сократилось до 1,3 %. Одновременно резко возросла доля азота (от 50 до 98 %), что благоприятствовало продвижению эволюции нашей планеты по антропному маршруту.

Когда атмосфера отдала в гидросферу практически весь объем воды, дегазированный до этого земными недрами, тогда количество воды в океане составляло, по разным оценкам, около 70 % нынешнего объема Мирового океана. С тех пор океаны, моря, озера и реки уже никогда не покидали земной лик. Конечно, гидросфера постоянно наращивает свой объем за счет падения на Землю водосодержащих астероидов и комет, а также в результате деятельности вулканов. Каждые тысячу лет уровень Мирового океана поднимается на 1 мм за счет поступления воды из дегазируемых недр. Древние океаны на протяжении около 1,7 млрд. лет после формирования (от 4,27 до 2,5 млрд. л.н.) были не глубокими – 150–700 м. К среднему протерозою (около 1,2 млрд. л.н.) их глубины возросли до 2900 м. Почти нынешний объём воды в Мировом океане достигнут в вендском периоде (около 570 млн. л.н.). Кроме того, водная оболочка планеты постоянно меняла свой облик за счет дрейфа континентов – исчезали и возникали целые океаны, не говоря о морях и реках, но даже в периоды самых лютых оледенений оставались где-то на планете значительные объемы жидкой воды. В настоящее время поверхность Земли покрыта пятью океанами: Тихим, Атлантическим, Северным Ледовитым, Индийским и Южным (Антарктическим или Австралийским). Южный океан возник на месте раскола некогда единого материка на два других: Южную Америку и Антарктиду.

2.4.1. Земные океаны – уникальное явление в Солнечной системе

Начало формирования первых водных бассейнов на Земле около 4, 27 млрд. л.н. стало Океанической развилкой эволюции природы, которая ориентировала развитие планеты по уникальному, земному пути. В Солнечной системе в настоящее время, кроме Земли нет ни одной планеты или спутника с поверхностными бассейнами жидкой воды. Даже на планетах земного типа небольшое количество воды теперь находится либо в газообразном состоянии (на Венере) или в замороженном виде в полярных шапках и вечной мерзлоте (на Марсе), либо в форме водяного льда в глубоких кратерах, куда не проникают солнечные лучи (на Меркурии). Вода в предполагаемых водных бассейнах на некоторых спутниках газовых гигантов (на Европе, Ганимеде и Каллисто вокруг Юпитера и на Энцеладе у Сатурна) может находиться под толстым слоем льда, покрывающем небесное тело. Эволюция водных оболочек планет только на Земле пошла по пути формирования гидросферы. На Марсе образовалась криосфера, на спутниках Юпитера и Сатурна – ледяная кора. Даже если существуют на спутниках водные бассейны, перекрытые ледяным панцирем, то они имеют мало общего с земным Мировым океаном и его эволюцией. Сведения по выявленным к настоящему времени более чем шести тысячам экзопланет указывают на то, что их эволюция, скорее всего, пошла иными направлениями, нежели земной океанический путь. Океаническая развилка направила развитие нашей планеты по настолько уникальному эволюционному вектору, который, скорее всего, редко повторяется в Галактике. Океаническая развилка ориентировала эволюцию Земли не только на появление водной оболочки, но также на её долговременное существование (более 4 млрд. лет), постоянное преобразование и взаимодействие с другими земными оболочками. Кроме того, с Океанической развилкой оказалась связана важная особенность Земли – океаническая кора. Эти направления эволюции планеты, порожденные Океанической развилкой, привели к реализации в природе двух таких обязательных условий для появления живых форм материи, как постоянное длительное существование значительных объемов жидкой воды и такую же продолжительную циркуляцию вещества между верхними и нижними оболочками планеты. Непрекращающаяся вертикальная циркуляция химических веществ в процессе постоянного образования новой океанической коры обеспечивает вынос в океан из глубинных недр энергии и веществ, необходимых для зарождения живых организмов и поддержания их эволюции при самых экстремальных вариациях климатических условий.

Океаны стали важнейшим фактором формирования климата и погоды. Водяная оболочка влияет на обмен теплом и влагой между атмосферой и сушей. Вода имеет большую удельную теплоемкость, поэтому нагревается и остывает медленнее, чем острова и материки. Океанические течения обеспечивают перемещение теплых вод в холодные регионы планеты, и возвращают холодные воды в горячие тропики. В зимние периоды Мировой океан своим теплом обогревает континенты, а летом несет на сушу прохладу. Изменения глобальных течений, например, из-за дрейфа континентов, приводят к нарушению установившихся распределений давления и температуры воздуха. В совокупности с другими климатическими факторами, такие нарушения глобального теплообмена приводят к частичным и даже глобальным оледенениям или, наоборот, к резким повышениям температурного режима поверхности, к таянию ледников. Растут или снижаются уровни океана, происходят стихийные бедствия.

Как только на первичной базальтовой коре и/или на новообразованной коре «сухого океана» начали возникать первые водные бассейны, практически одновременно на дне этих водоемов происходило накопление слоя осадков иногда очень малой толщины вдали от берега. Однако в некоторых местах – довольно большой мощности, как правило, у берегов или за счет подводных извержений. Первостепенную роль в накоплении осадочных отложений играли мощные дождевые потоки, характерные для этих времен, которые смывали рыхлый вулканический материал в протоокеаны и протоморя. Кроме того, в водоемах происходило выпадение в осадок легких минеральных частиц, которые переносились ветрами с прилегающих территорий, не занятых водой. В осадки водоемов превращались: падающая космическая пыль, вулканический пепел и бомбы. Химические реакции в самой воде или при взаимодействии ее с атмосферными газами приводили к осаждению тех или иных химических соединений. Таким образом, в участках осадконакопления началось формирование океанической коры с её двухслойным строением: нижним – базальтовым и верхним – осадочным. В областях с океанической корой происходили некоторые специфические преобразования твердой мантии, и тем самым формировалась специфическая океаническая литосфера.

Океаническая кора имеет толщину и химический состав довольно постоянными под всеми океанами. Суммарная толщина океанической коры варьирует от 5 до 15 км. Осадочный слой покрывает дно морей и океанов – прошлых и нынешних. Его толщина, как правило, колеблется от нескольких метров до 2 км вблизи континентов. По окраинам океанов установлены аномально большие толщины осадочного слоя. Например, по периферии Атлантического океана линзы осадочных пород имеют толщины свыше 15 км.

Базальтовый слой занимает большую часть океанической коры, которая представлена базальтом – темной эффузивной (излившейся) горной породой, богатой магнием. Общая мощность этого слоя, в основном составляет 5–7 км. Формируется этот слой в зонах растяжения, т. е. в зонах спрединга[35] – в узких, протяженных областях срединно-океанических хребтов за счет извержения базальтов, выплавившихся из ультраосновной магмы мантии. Вся базальтовая толща океанической коры имеет основной состав, за исключением самой нижней части, которая представлена серпентизированными перидотитами (ультраосновной породой, состоящей в основном из оливина – Mg2SiO4 Fe2SiO4 и др.). Эти породы ультраосновного состава (содержат SiO2 менее 40 %) указывают на их происхождение из мантии. Для образования присутствующего в них минерала серпентина нужно высокое давление и наличие воды. Океаническая вода проникает в зонах растяжения коры по трещинам вниз до верхней мантии, где происходит образования серпентина. Таким образом, осуществляется приращение нижнего слоя океанической коры снизу за счет мантии.

2.4.2. Появление гидротермальных источников жизни

Часть проникшей к мантии океанической воды, которая не участвовала в образовании серпентинов, после взаимодействия с раскаленным веществом мантии выходит обратно на дно океанов в виде многочисленных активных горячих термальных источников двух типов – «белых курильщиков» и «черных курильщиков». В этих источниках выходит океаническая вода, профильтрованная через породы подстилающей коры. За каждые 8 миллионов лет вся вода океанов проходила такую циркуляцию. На протяжении более 4,2 млрд. лет существования океанов действует этот процесс колоссальной интенсивности. Природа, на протяжении всего длительного периода прокачивала воду через меняющуюся кору и мантию, вынося в океан несчетное количество вариантов сочетаний химических элементов. С определенной периодичностью происходит изменение температуры и состава компонентов этих гидротермальных источников. В результате продолжительного действия такой мощной экспериментальной естественной химической лаборатории, не мудрено, сформировать комплекс химических соединений, способных самокопироваться, т. е. первое протоживое вещество.

Подводные геотермальные источники приурочены к осевым частям срединно-океанических хребтов в исчезнувших древних океанах, а также в нынешних: Тихом, Атлантическом, Индийском и других океанах. Подводные термальные излияния представляют собой трубообразные минеральные сооружения высотой в несколько десятков метров на глубинах до 2,5 км, из которых в океаны выбрасывается высокоминерализованная горячая вода (с температурой до 400°C) и пар под огромным давлением в сотни атмосфер в форме черного или белого дыма в воде. Тысячи труб «черных курильщиков» образуются вследствие выпадения из охлаждающегося раствора сульфидов металлов (соединений серы с железом, медью, никелем, цинком) и окислов железа и марганца, окрашенных в черный цвет. В настоящее время вокруг них существует среда обитания необычных биотических сообществ – хемосинтезирующих бактерий, получающих энергию не на счет продуктов фотосинтеза, а благодаря хемосинтезу. Хемосинтезирующие бактерии используют выносимые из недр сульфиды. В таких районах образуются огромные массы рудного вещества – скопления полиметаллических сульфидных руд богатых разными металлами (включая медь, золото, свинец). По мнению многих ученых, гидротермальные подводные источники «черные курильщики» и/или «белые курильщики» являются местами синтеза первых живых организмов.

Там, где одна литосферная плита сталкивается со смежной, формируются зоны субдукции, т. е. участки поддвигания древней коры под соседний блок. В зонах субдукции старая кора постепенно погружается (поглощается) в мантию, где расплавляется и смешивается с веществом мантии. Затем вещество из этой подземной лаборатории вновь извергается на поверхность планеты в зонах раздвижения плит (зонах спрединга). В этом круговороте вещества проявляется созданный природой естественный конвейер, который прокручивает через недра огромный объем горных пород. Этот механизм постоянной переработки земного материала обеспечил образование океанической и континентальной коры (см. Континентальная развилка), а также реализацию бесчисленного количества химических экспериментов, в результате которых в один, прекрасный для человечества, момент появились условия для генерации сложных соединений, способных создавать свои копии. Наиболее благоприятным местом для появления новых выдающихся природных изобретений должны быть, как отмечено выше, зоны спрединга, зоны срединно-океанических хребтов.

Постоянное обновление океанической коры привело к тому, что в настоящее время кора всех нынешних океанов является относительно молодой. Самые старые её участки образовались уже в позднеюрское время (около 150 млн. л.н.). Правда, в восточной части Средиземного моря (в бассейне Геродота) выявили остаток коры древнего океана Панталасса, омывавшего берега суперконтинента Пангеи. Возраст этой океанической коры составляет около 340 млн. лет (каменноугольный период). Кроме того, в горных хребтах могли сохраниться обломки древнейшей океанической коры. Например, в Гренландии обнаружен кусок коры возрастом не менее 3,8 млрд. лет. Образцы старой океанической коры встречаются весьма редко потому, что океаническая, более тяжелая кора при столкновении обычно погружается под континентальную кору. В редких случаях кусок океанической коры, срезаясь, выдавливается на часть континентальной коры и тем самым спасается от погружения в раскаленную мантию. Такой остаток океанической коры называют офиолитом, химический состав которого уже отличается от бывшей коры. В целом океаническая литосфера, с учетом твердой мантии (волновода), наращивает толщину по мере увеличения возраста, т. е. от зон срединно-океанических хребтов и рифтов (50 км и менее) к зонам субдукции (до 400 км). Движение тектонических плит с первичным базальтовым и океаническим типами литосферы привело к усложнению подводного рельефа планеты. Появились глубоководные впадины, хребты.

Поворот эволюции Земли на Океанической развилке создал условия не только для зарождения, но и для развития жизни. Становление человеческой цивилизации невозможно представить без таких полезных ископаемых, как: углеводороды, угли, поваренная и другие соли, железо, марганец, бром, кальций, золото, алмазы, янтарь, титан, олово, песок, гравий, вода для опреснения. Образование месторождений всех этих веществ связано с нынешними и исчезнувшими океанами и морями. Поверхностные воды превратились в среду обитания ценных продуктов: рыбы, морских млекопитающих, ракообразных, моллюсков, губки, водорослей.

2.4.3. Гидрожен сменил тучу на океан, Оксижен оказался под океанической корой

Проливные дожди, начавшиеся после свершения поворота эволюции Земли на Океанической развилке, увлекли Гидрожена с небес на горячую земную поверхность. Молекула Гидроженной воды стала микроскопической частичкой в формирующемся Мировом океане. Ей предстоит стать свидетелем и участником дальнейшего развития водной оболочки и твердой земной коры. Гидрожену повезет включиться в процесс зарождения первых живых организмов на Предклеточной развилке 4,1 млрд. л. н.

Оксижен, в крупном кристалле форстерита продолжил дрейфовать в Протоафриканском литосферном блоке. После Океанической развилки Оксиженный форстерит оказался перекрытым океанической корой. Значительно изменится его положение только после Континентальной развилки, когда тектонические силы переместят Оксиженный форстерит из океана на сушу. В будущем (3,6 млрд. л.н.) континент с Оксиженом столкнется с несколькими блоками суши, что приведет к формированию первого суперконтинента Ваальбара.

Другие гиды после Океанической развилки продолжали кружить вокруг Солнца в Карбомалном, Нитроженном и Ферумном астероидах. Вспомним, что наши элементы пребывали в составе сложных соединений: Карбомалного гликольальдегида, Карбожен-Нитроженного урацила и Флюор-Ферумного шрейберзита. На протяжении последующих около 170 млн. лет эти астероиды, подчиняясь гравитационному притяжению гигантского Юпитера, всё более вытягивали свои орбиты. Такие продолжающиеся корректировки их путей вокруг Солнца, в конечном счете, могли привести к падению на какую-либо планету из земной группы: Меркурий, Венеру, Землю, Марс.

Земная водная оболочка и океаническая кора представляют собой Катархейский океанический элемент эволюции Земли на пути к жизни. Совокупность многих характеристик земного шара, включая появление базальтовой литосферы и океанов, постепенно направляли эволюцию твердой оболочки в сторону формирования континентальной литосферы, т. е. к Континентальной развилке, а через нее к Биотическому этапу эволюции Земли.

2.5. Континентальная развилка эволюции Земли. 4,2 миллиарда лет назад

После Океанической развилки большая часть поверхности планеты была покрыта водами Мирового океана, в пределах которого формировалась двухслойная (базальтово-осадочная) океаническая кора. Но какая-то часть планеты не была охвачена процессом океанизации первичной базальтовой коры. Потому, что существовали отдельные участки литосферных плит, приподнятые над уровнем океана благодаря надвиганию их на смежные тектонические блоки. Возможно, эти доконтинентальные участки суши стали первыми «зародышами» будущих материков. В этих местах базальтовая пластина земной коры погрузилась в мантию под смежный блок коры на несколько десятков километров, не сразу меняя состав и структуру. Вместе с горными породами в мантию попало огромное количество воды.

Горные породы погружающегося блока расплавлялись в раскаленных недрах мантии и в форме крупных капель опускались к ядру планеты. Во время этих геологических событий реализовались два интересных процесса: 1-какая-то часть пористого базальта океанической коры превращалась в плотнейший эклогит[36], который продолжал путь в глубины планеты, 2- другая доля коры в виде относительно легкой базальтовой магмы, устремлялась вверх. По мере подъема расплавленные базальтовые породы основного состава (богатые магнием, содержащие кремний – SiO2 – в объеме от 40 до 52 %) взаимодействовали с проникшими в недра массами океанической воды. В результате происходило образование магмы среднего (содержание кварца – SiO2 от 52 до 65 %) и кислого (SiO2 от 65 до 75 %) состава. Возникал новый тип твердых горных пород – сначала «серые гнейсы» – гранитоиды, а позже – «нормальные» граниты. Расплавы более легких гранитов растекались на более тяжелом базальтовом слое, создавая второй, гранитный слой континентальной коры. Формировался базальтово-гранитный тип коры, который служил основой континентальной коры, отличающейся от океанической коры повышенным содержанием оксида кремния (SiO2) и трехслойным строением. Сначала возникли первые крупные участки новой двухслойной континентальной коры (гранитно-базальтовой, еще без третьего – осадочного слоя) – кратоны, которые в виде первых островов возвышалась над еще очень мелководным океаном.

Гранитный состав делает континентальную кору более легкой, что позволяет её блокам всплывать в астеносфере выше, чем базальтовое океаническое дно, и подобно айсбергам возвышаться над уровнем океана. Новая, гранитная кора оказалась не только легкой, но и прочной. Высокая прочность гранитов позволяла первым островам противостоять разрушительной мощи стометровых океанических волн. На поверхности всего океана стали появляться гранитные острова, которые впоследствии объединялись в огромные массивы суши. Континентальная развилка эволюции Земли прекратила глобальное господство водяной стихии и начала эпоху материков. Размываемые горные породы этих выступов суши выносились речными потоками или ветрами в водные бассейны, на дне которых накапливались в форме древнейших пластов обломочных пород[37] континентального происхождения.

После появления плит с континентальной корой, в зонах их столкновения с океаническими плитами, последние погружаются под материковую кору. В этих местах происходило наращивание материковой коры за счет гранитизации базальтов океанической коры. Здесь широко проявлялась вулканическая деятельность, формировались складчатые области, осадочных пород превращались в метаморфические.

2.5.1. Континентальная кора – необходимое условие для наземной жизни

Земной эволюции потребовалось, по разным оценкам, от 100 до 180 млн. лет после начала тектоники океанических плит (4,38 – 4,3 млрд. л.н.) для того, чтобы приблизительно к рубежу 4,2 млрд. л.н. создать первые участки континентальной коры и затем сформировать древнейшие континенты – блоки суши над водами Мирового океана. На континентах сформировались первые материковые воды, которые первое время практически не отличались от морской воды. Эти воды были того же химического типа, что и морские – хлоридные кальциево-магниевые или магниево-кальциевые воды. Впоследствии континентальные воды эволюционировали в результате контактирования с выветриваемыми основными и ультраосновными породами на суше, а также с обновляемой атмосферой.

Не осталось свидетельств о количестве и размерах этих пионерных континентов, но не приходится сомневаться в их существовании. Первым островам материкового типа пришлось еще около 600 млн. лет перемещаться под воздействием циркулирующих потоков вещества горячих недр планеты (дрейфовать) вместе со своими литосферными плитами по таким траекториям, которые вели их к всеобщей встрече. Столкновение континентов произошло около 3,6 млрд. л.н. В результате появился среди океанических вод первый суперконтинент[38] – Ваальбара[39], который просуществовал около 500 млн. лет и затем (около 3,1 млрд. л.н.) раскололся на отдельные континенты. Вновь образованные осколки-континенты отправились в новый цикл путешествия по астеносфере, наращивая по пути свои размеры, соединяясь с подобными небольшими материками, подготавливаясь к пришествию живых организмов.

Начало образования континентальной коры и появление первых блоков суши означало удачный поворот в развитии нашей планеты 4,2 млрд. л.н. на Континентальную эволюционную развилку. Эта развилка является таким возможным поворотом в эволюции планет и крупных спутников, который в полной мере реализовался в Солнечной системе только на Земле. Лишь на Земле существовали условия, позволившие Литосферной и Океанической развилкам ориентировать эволюцию на реализацию череды важнейших событий для появления жизни. Речь идет о таких явлениях, как: 1- формирование базальтовой литосферы, 2- раскол её на множество плит, 3- постоянное перемещение этих литосферных блоков на протяжении уже более 4 млрд. лет, 4- формирование Мирового океана с его особой океанической корой и его существование более 4 млрд. лет, 5- реализация циркуляции энергии и вещества между всеми оболочками Земли (ядром, мантией, литосферой, гидросферой и атмосферой), 6- направление развития планеты на формирование континентальной коры и материков.

Важной особенностью нашей планеты является не только сама реализация эволюции по Континентальному направлению, но формирование такого удивительного соотношения объема океанов и материков, которое всегда обеспечивало широчайшие возможности для эволюции живой природы. Наличие континентов предоставило возможность живым организмам выйти из океанов на сушу, где среди огромного разнообразия микроорганизмов, грибов, растений и животных появились современные люди. Кроме того, эта развилка направила геологические процессы в сторону концентрации в континентальной коре ресурсов самых разных твердых, жидких и газообразных полезных ископаемых. Без огромного числа месторождений нефти, газа, угля, урана, металлов и многих других полезных веществ в недрах всех континентов невозможно представить развитие человеческого общества.

Рельеф земной поверхности подвергся значительному усложнению после начала действия тектоники плит, особенно после появления континентальной коры. Значительно увеличились глубины океанических впадин. Важным этапом в формировании Мирового океана явилось образование континентов, гор, больших впадин и других форм рельефа земной коры. Заглядывая вперед, отметим, что в течение двух миллиардов лет (от 4,2 до 2,2 млрд. л.н.) сформировалось, по разным оценкам, от 50 до 80 % площади современной континентальной коры. Эта кора была представлена множеством материков, которые за указанный срок успели столкнуться в три суперконтинента (Ваальбара, Ур, Кенорленд) и затем расколоться на новый набор отдельных блоков суши. Образование и распад суперконтинентов имеет циклический характер, который зависит от изменения в режимах конвекции вещества планеты. Понятно, что изменения в конвекции происходили так же циклически. Продолжительность периода от одного суперконтинента до другого в среднем составляет 600–700 миллионов лет. Всего за историю Земли дрейф континентов привел к образованию семи суперконтинентов. Человечество распространилось на обломках седьмого суперматерика – Пангеи, которые представлены шестью нынешними материками.

Венера, Марс, Луна и некоторые спутники газовых планет-гигантов, подобно Земле, в своем развитии прошли через Литосферную развилку эволюции планет, а некоторые из них даже через Океаническую эволюционную развилку. Однако для каждого из этих космических тел повороты на эти направления имели свои неповторимые последствия. На этих планетах и спутниках, кроме Марса, поворот эволюции на Литосферное направление также обеспечил образование базальтовой литосферы и даже некоторые проявления плюмовой тектоники, но дальше развитие не пошло. По современным данным, на Венере, Луне и спутниках Юпитера и Сатурна не было плитной тектоники, которая создала бы условия для появления континентальной коры – носителя всей сушу, без которой не возможно зарождение и развитие животных, обитающих на суше. Конечно, имеет смысл рассуждать о вероятности появления наземных обитателях только в том случае, если на этих космических телах были океаны, населенные водными живыми организмами. На соседнем Марсе выявлена гравитационная аномалия размером с земную Европу, в пределах которой толщина коры составляет около 50 км. По мнению ученых, эта аномалия соответствует континенту среди марсианской океанической коры, который сформировался в начальный период существования этой планеты. Возможно, в этот период на Марсе происходило движение глобальных литосферных плит, т. е. имела место тектоника плит и появились первые блоки континентальной коры. К сожалению, эволюция марсианской коры по направлению к жизни происходила только на протяжении первых приблизительно 350 миллионов лет начальной истории Марса, а затем ядро остыло, отвердело, геологические процессы прекратились. Дальнейшая эволюция этой планеты свернула на специфическую марсианскую Криосферную развилку эволюции планет, не ориентирующую на развитие живых организмов, если таковые и были в марсианском океане до его исчезновения.

Поверхность Земли после формирования первых блоков континентальной коры разделилась на две основные части – океаническую и континентальную. Названия этих частей отражают планетарный рельеф, который тесно связан с разным строением и составом земной коры. Океаны простираются над океанической корой толщиной, как правило, 3 – 12 км (в среднем 4–6 км). Материки являются частью континентальной коры. В результате перехода эволюции Земли через Континентальную развилку литосфера в глобальном плане приобрела ассиметричное строение: полушарие с континентальной корой имеет более дифференцированное строение, чем противоположное океаническое полушарие. Литосфера на континентах и в океанах имеет разное строение. Под континентами литосфера отличается обоими своими компонентами – верхней мантией (волноводом) и корой. Со временем общий объем земной коры постепенно увеличивается за счет наращивания толщины и, в том числе, прирастает континентальная кора. В настоящее время масса всей земной коры составляет около 0,5 % общей массы планеты. Масса материковой коры достигает 79 % массы земной коры, на долю океанической коры приходится 21 %. В то же время, континентальная кора покрывает только 40 % поверхности земного шара, формируя континенты и крупные острова, а также мелководные зоны морей и шельфов океанов. Большой объем континентальной коры обусловлен её значительной толщиной в сравнении с таковой океанической верхней твердой оболочки.

Характеризуя континентальную кору в нынешнем её виде, отметим, что она обладает резкой неоднородностью, как по структуре, так и по составу. Её толщина составляет 20 км в рифтовых зонах растяжения, 80 км в условиях сжатия, достигая 90 км в горно-складчатых поясах – например, в Тибете. Химический состав значительно варьирует даже на коротком расстоянии. В общем виде континентальная кора состоит из трёх частей: нижнего – базальтового слоя (по новой терминологии – из нижней коры), среднего – гранитного слоя (верхней коры) и верхнего – осадочного слоя. Континентальная кора в целом имеет значительно более древний возраст, чем океаническая: около 7 % горных пород континентов имеют возраст старше 2,5 млрд. лет. Сохранившаяся структура континентов представлена блоками (зонами) самого разного возраста. Установленный возраст древнейших пород соответствует 3,5 млрд. лет, но, возможно, существуют даже породы возрастом 4,0–4,2 млрд. лет. Наиболее молодые зоны континентов сформировались в Альпийско-Гималайском складчатом поясе. Этот тектонический пояс появился в альпийскую эпоху складчатости[40], максимальная активность которой была около 35 миллионов л.н. Эта новая кора возникла, когда Индийская плита дрейфовала из Антарктики на север и врезалась в Евразийскую плиту. Поскольку столкнулись две континентальные плиты с приблизительно одинаковой плотностью, то они вздыбились вверх, сформировав высоченные Гималаи.

Нижняя кора (по старой терминологии – базальтовый слой) континентов практически не изучена прямыми методами – все представления о её составе базируются на геофизических (в основном сейсмических) данных. Нижняя кора состоит из излившихся базальтовых пород основного состава. Она содержит кварца – SiO2 от 40 до 52 %, много алюминия, кальция, железа, магния и немного натрия и калия, которые выплавились из верхней мантии. Кроме того, здесь присутствуют древние метаморфические породы, переработанные внедрениями магмы основного состава. Среди метаморфических пород, вероятно, преобладают различные сланцы и гнейсы основного состава, с большим содержанием железа. Средняя плотность нижней коры 2,75 – 3 г/см3.

Верхняя кора (по прежней терминологии – гранитный, гранитно-гнейсовый, гранитно-метаморфический слой) материков сложена гранитами – бедными магнием легкими породами, гнейсами и другими метаморфическими и изверженными породами. Средняя плотность верхней коры (2,7 г/см3) – меньше, чем нижней коры. Гранит является магматической горной породой, наиболее распространенной в земной коре континентов. В его состав входят в основном кварц (SiO2), калиевый полевой шпат (K[AlSi3O8]), кислый плагиоклаз и слюды. Мощность гранитного слоя весьма изменчива. На материках она достигает 30–35 км, выклиниваясь в океанах. Люди издревле используют граниты в качестве красивого, крепкого, долговечного строительного материала. Порода гранит является визитной карточкой Земли, поскольку нигде больше в Солнечной системе такое химическое соединение не выявлено.

Осадочные отложения, залегающие на континентальной коре, образуют осадочный слой материков. Этот слой неравномерно распределен в пределах континентов. Так, на кристаллических щитах осадочные отложения отсутствуют, например, на Балтийском щите, а в осадочных бассейнах и в складчатых сооружениях они достигают толщины в несколько десятков километров. Отложения осадочного слоя образованы в поверхностных условиях путем переотложения разнообразных пород, разрушенных физическими или химическими процессами. Они образуются также в результате химического или механического выпадения осадка из воды, жизнедеятельности организмов или совокупности всех этих факторов. Таким образом, породы разделяются на обломочные, химические и биогенные (органогенные). Преобладают глинистые породы (около 50 %), песчаные и карбонатные породы в сумме составляют около 45 %. Осадочный слой на некоторых участках пронизан внедрениями магматических пород. Плотность осадочных пород (2,6–2,65 г/см3) меньше гранитов и, тем более, базальтов. Поэтому они и располагаются в верхней части коры.

Практически весь осадочный слой является комплексом полезных ископаемых для людей. В нем сосредоточены необходимые людям образования неживой природы, а также скопления продуктов жизнедеятельности организмов. Так, производными погибшего планктона древних морей являются углеводородные газы, нефти, горючие сланцы и другие углеводородные образования – огромнейшее разнообразие соединений, главным образом, из углерода и водорода. Из отмерших растений древних болот и озер образовались торфы и угли разной степени преобразованности (бурые, каменные, антрациты, графит) – концентраты углерода. Во многих месторождениях этих горючих ископаемых сохранилась энергия Солнца, накопленная живыми организмами за последние более 2 млрд. лет. Живые организмы в данном аспекте представляются естественными формами материи, которые обеспечивают исключение из круговорота и концентрацию вещества-энергии.

Захоронения в недрах осадочного комплекса Земли этих твердых, жидких и газообразных соединений обеспечили изъятие из круговорота достаточно больших объемов углерода, водорода, кислорода, азота и ряда других химических элементов. Природа, как бы специально подготовила запасы энергии для того, чтобы в будущем использовать их в своей эволюции. В углеводородах содержится энергии больше, чем в другом веществе Земли. Необходимо было появиться человеку, который использовал данные горючие полезные ископаемые для своего благополучия, чтобы включить их снова в круговорот химических элементов. Кроме горючих веществ осадочный слой содержит многие другие важнейшие металлические и неметаллические полезные ископаемые (скопления минералов в коре, которые могут быть использованы человечеством для своих нужд). Группа металлических ископаемых включает самородные металлы (золото, платина, серебро и другие); руды черных, цветных, редких, редкоземельных металлов и редкоземельных элементов. К неметаллическим ископаемым относится горнохимическое сырье: различные соли, гипс, барит, сера, фосфориты, апатиты. Кроме того: огнеупорное, электротехническое, пьезооптическое, тепло- и звукоизоляционное, кислото – и щелочноупорное сырье. А также: строительные материалы; драгоценные, поделочные и технические камни.

2.5.2. Гидрожен и Оксижен – в раскаленной мантии Земли

Многие события, вызванные поворотом эволюции Земли на Континентальную развилку, происходили при участии гидов-водородов. Так, после Океанической развилки Гидроженная водяная молекула перемещалась океаническими течениями по первичному океану на протяжении более 100 млн. лет. Уже эволюция планеты прошла через Континентальную развилку, когда в зоне спрединга, в процессе растяжения океанической коры и формирования нового базальтового слоя, Гидрожен вместе с огромными массами океанической коры провалился по глубинным разломам в раскаленные недра Земли. Какая-то часть этой воды пошла на образование особых минералов – серпентинов из раскаленных пород мантии, но Гидроженная молекула воды не попала в эти химические реакции. Гидроженная молекула присоединилась к тем потокам океанической воды, которые взаимодействовали с горячей мантией, обогатились многими химическими элементами, сильно нагрелись, отчего стали легкими. Поэтому эти – уже гидротермальные воды вместе с Гидроженом устремились к местам, где они могли через многокилометровые толщи земной коры проникнуть в верхние слои планеты – на дно океанов. Такими местами были трубообразные минеральные сооружения высотой в несколько десятков метров, напоминающие подводный «Потерянный город», ныне существующий в районе срединно-океанического хребта Атлантического океана. Конечно, в те времена, о которых речь идет в данном разделе, не было Атлантического и других, современных нам, океанов. Однако в том, древнейшем Палеоокеане, несомненно, существовали зоны субдукции, в которых были подводные термальные источники, подобные нынешним, с такими же карбонатными столбами высотой с 18-этажный дом на океаническом дне. Гидроженная молекула гидротермальной воды в восходящем потоке горячих вод проникла в поры (в пустоты коллектора) гидротермальной постройки около 4,1 млрд. л.н., где благодаря удивительной случайности встретила молекулу Карбомалного гликольальдегида. О результатах химической реакции между этими носителями атомных гидов узнаем попозже, когда астероид с Карбомалом прибудет на Землю.

Дрейфующая океаническая плита с кристаллом Оксиженого форстерита после Континентальной развилки, около 4,15 млрд. л.н., столкнулась с Протоафриканской океанической плитой. В этой зоне субдукции часть океанической плиты с Оксиженым форстеритом оказалась поддвинутой под будущую Африканскую плиту и постепенно погрузилась в пекло верхней мантии. Породы перидотитового и базальтового слоев Протоафриканской плиты расплавились. Часть расплава продолжила погружение вплоть до ядра, а другая, с более легкими соединениями, устремилась вверх к поверхности планеты. Хорошо, что температура магмы была немного ниже точки плавления кристалла форстерита с Оксиженом при том высоком давлении, которому был подвергнут этот минерал в месте его нахождения. Поэтому этот кристалл не расплавился, а устремился с базальтовой магмой вверх. Конечно, Оксижен не пропал бы даже в случае расплавления кристалла, но судьба у него была бы не той, которая свершится в случае союза с форстеритом. Дальнейший путь Оксижена показал, насколько определяющими для будущего являются свойства объекта и его попадание в благоприятные условиях.

Расплавленные базальтовые породы с кристаллом Оксиженого форстерита в процессе всплывания к океаническому дну вступили в химическую реакцию с проникшей вниз океанической водой. В результате сформировалась новая магма кислого состава – гранитная, которая проникла на поверхность южной части Протоафриканской океанической плиты. Эта, более легкая кислая магма растеклась гранитным слоем на базальтовой толще, преобразовав эту часть океанической коры в континентальную кору. Постепенно накопилась такая большая масса гранитов, что возник первый остров – материк c Оксиженым форстеритом. С тех пор Оксижену было суждено еще более 500 млн. лет дрейфовать в составе блока континентальной коры, впаянного в океаническую кору Протоафриканской плиты. Движение этого блока продолжалось вокруг земного шара по астеносфере до образования первого суперконтинента Ваальбара 3,6–2,8 млрд. л.н. Затем Оксиженый форстерит участвовал в других интересных приключениях, о которых речь пойдет выше.

Карбомалный, Нитроженный и Ферумный астероидыпосле Континентальной развилки продолжали кружить вокруг Солнца в Поясе астероидов. Их движение происходило по орбитам вокруг Солнца в том же направлении, что и планеты. Пояс астероидов – совокупность множества движущихся объектов разных размеров, как правило, неправильной формы, расположенных на больших расстояниях друг от друга. Поэтому астероидов не сталкивались прежде и сейчас их встречи – маловероятны. Период обращения астероидов вокруг Солнца к рубежу около 4,15 млрд. л.н. изменился приблизительно от 3,5 до 6 лет благодаря увеличению большой полуоси орбиты. Такое вытягивание орбит многих астероидов, включая траектории космических объектов с нашими гидами, происходило благодаря постепенному гравитационному воздействию Юпитера. В результате, к периоду 4,1–3,8 млрд. л.н. орбиты многих астероидов пролегали через внутреннюю область Солнечной системы, где расположена земная группа планет.

Глобальные процессы в глубинных недрах Земли обеспечили не только поворот эволюции литосферы на формирование континентов – на Континентальную развилку, но одновременно направили общую эволюции Земли на образование магнитного поля – на Раннюю геомагнитную развилку. Появление магнитного поля у нашей планеты стало одним из важнейших условий продолжения антропного маршрута эволюции природы по пути к человечеству.

2.6. Ранняя магнитная развилка эволюции Земли. 4,2 миллиарда лет назад

Земля всегда – от момента своего формирования до нынешних дней – находится под постоянной атакой космических излучений всей Галактики, среди которых максимальная доля приходится на потоки энергии от Солнца. Наша звезда распространяет вокруг себя энергию в виде электромагнитного излучения, а также беспрестанно поставляет в космос и на Землю поток частиц – корпускул. Корпускулярное излучение (солнечный ветер) – постоянный поток солнечного материала, распространяющийся далеко за пределы орбиты Плутона. Солнечный ветер содержит многие элементы звездного вещества: нейтрино, электроны (бета-излучение), протоны (ядра водорода), альфа-частицы (альфа-излучение, ядра гелия), а также в малой доле тяжелые атомные ядра.

При этом следует учитывать, что сила солнечного ветра в те времена приблизительно в 100 раз превышала нынешнее излучение. Непрерывное воздействие «стерилизующей» космической радиации, возможно, задержало начало биогенеза на несколько десятков миллионов лет. Солнечный ветер разрушал и постепенно уносил газовую оболочку планеты. Первые атмосферы – Ранняя гелиево-водородная и Вторая углекисло-водяная смогли удержаться у Земли только по 30 млн. лет, с 4,51 млрд. до 4,45 млрд. л.н. Третья водно-азотно-углекислая атмосфера просуществовала значительно дольше – 350 млн. лет (от 4,45 до 4,1 млрд. л.н.), благодаря тому, что в состав атмосферы стали входить более плотные газы, которые надежнее удерживались силой тяжести Земли.

Кроме того, фактором, продлявшим существование третьей и последующих атмосфер, стало появившееся магнитное поле, окружившее Землю около 4,2 млрд. л.н. Конечно, это, Раннее геомагнитное поле не было настольно надежным, каким стало последующее – Позднее геомагнитное поле (см. Поздняя магнитная развилка эволюции Земли – 550 млн. л.н.). Раннее магнитное поле Земли, скорее всего, не очень хорошо защищало атмосферу от уносящего воду мощного потока молодого Солнца потому, что было слабым, напряженностью по разным оценкам от 10 % до 50 % нынешнего. Так, сила магнитного поля на поверхности Земли в то время составляла около 0,6 микротесла (мкТл), а ныне колеблется в среднем от 25 до 65 мкТл. Появление магнитного поля означало следование эволюции Земли через Раннюю магнитную развилку, что обеспечило формирование необходимых, но, конечно, далеко недостаточных условий для формирования сознательных существ. Человечеству повезло, что эволюция нашей планеты прошла через эту развилку. Ведь не все планеты Солнечной системы и тем более Галактики сформировали свои магнитные поля. Даже среди обладавших магнетизмом планет не многие смогли генерировать магнитное поле достаточно продолжительное время, необходимое для изобретения живых существ и их развития до чрезвычайно сложных форм.

Возникшее геомагнитное поле заставляло основной поток губительных частиц обтекать Землю и следовать дальше в космос. Та часть солнечного ветра, которой удалось проникнуть к планете, отклонялась геомагнитным полем в сторону южного и северного полюсов. Эти заряженные частицы, перемещаясь к магнитным полюсам по спиралеобразным траекториям, теряют почти всю свою смертоносную энергию. Лишь малая их доля прибывает в нижние слои атмосферы в полярных областях, вызывая полярные сияния. Так что, магнитное поле Земли защищает атмосферу, гидросферу и все живое от губительного воздействия космических частиц, прежде всего от солнечного ветра. Радиационное облучение и бомбардировка высокоэнергетическими частицами всей поверхности планеты во время существования Раннего магнитного поля, как и в последующие периоды ослабления магнитного поля, были более мощными по сравнению с Поздним магнитным полем (см. Поздняя магнитная развилка). То есть, излучения в такие эпохи сильнее воздействовали на все земные оболочки и тем более на живые организмы, если они уже появились.

2.6.1. Магнитное поле – фактор стабильности жизни

Что такое геомагнитное поле и как оно появилось? Упрощено говоря, магнитное поле Земли – это пространство с действующими магнитными силами вокруг внутриземного магнита. Геомагнитное поле распространяется из земных недр в космос, где подвергается воздействию солнечного ветра и космического излучения. Раннее магнитное поле генерировалось электрическими токами, которые вызывались турбулентной конвекцией в верхней, жидкой части мантии, покрывавшей уже отвердевшую нижнюю часть мантии. В тот период жидкая часть мантии была достаточно электропроводна, чтобы поддерживать образование магнитного поля. Кроме того, жидкая часть мантии отличалась пониженными значениями температуры и давления по сравнению с аналогичными параметрами в нижней твердой мантии, что обеспечивало успешную реализацию электромагнитного процесса. Такой естественный механизм образования магнитного поля называют геодинамо. Можно сказать, что Ранее магнитное поле во многом обязано своим происхождением благоприятному сочетанию объема, состава и структуры мантии тех времен.

Земное ядро тогда было очень горячим и еще полностью жидким. Гораздо позже – около 550 млн. л.н. – после кристаллизации внутреннего ядра возникло Позднее магнитное поле, которое стало генерироваться во внешнем, расплавленном, металлическом, электропроводящем ядре благодаря его взаимодействию с внутренним твердым ядром. В этом случае главным источником энергии является тепло, исходящее от внутреннего ядра. Циркуляция тепла обеспечивает постоянное перемешивание металлического расплава внешнего ядра. Происходит теплообмен, возникают конвективные потоки и, как следствие, электричество. Но сейчас вернемся к Ранней магнитной развилке.

Структура Раннего магнитного поля в чем-то отличалась от современного магнитного поля, но об этом имеется очень мало фактических сведений. Поэтому ознакомимся со строением современного геомагнитного поля, которое включает три составляющие части: главное поле, поля мировых аномалий и внешнее магнитное поле. Главное поле имеет своим источником внешнее жидкое ядро Земли (а до этого источником была внешняя жидкая оболочка мантии) и вблизи поверхности представляет собой полосовой магнит с осью, направленной приблизительно с севера на юг. Центр этого магнитного диполя смещен относительно центра Земли, а ось наклонена к оси вращения планеты на угол около 10°. Поля мировых аномалий созданы мощными массами намагниченных горных пород, расположенных в земной коре, вблизи поверхности. В качестве примера магнитной аномалии уместно привести Курскую магнитную аномалию, сформированную под воздействием огромных запасов железных руд. Параметры этих локальных полей – магнитных аномалий сильно отличаются от значений в смежных районах. С точки зрения защиты Земли от космических частиц нас интересует, прежде всего, внешнее магнитное поле – магнитосфера. Нижняя граница магнитосферы расположена в верхней части атмосферы (100 км и выше), где молекулы воздуха ионизированы и образуют плотную холодную плазму, которая удерживается магнитным полем Земли. Магнитосфера имеет сложную форму: в направлении Солнца распространяется на расстояние в среднем до 10 земных радиусов (радиус Земли составляет 6371 км), а с ночной стороны формируется магнитный шлейф длиной две сотни земных радиусов. Средняя скорость солнечного ветра (протонов, электронов и др.) в районе земной орбиты – огромная, около 400 километров в секунду, плотность потока – довольно высокая, несколько десятков частиц в 1 см3. Магнитосфера Земли играет роль особого экрана (щита), защищающего планету от разрушающего влияния солнечного ветра и космических излучений. Частицы солнечного ветра и космические излучения, отклоненные геомагнитным полем, концентрируются в радиационных поясах Земли (поясах Ван Аллена).

Земля теряла гораздо меньше своего газообразного и жидкого вещества по сравнению с теми объектами Солнечной системы, у которых отсутствует магнитное поле[41]. Раннее магнитное поле, пронизывая литосферу, гидросферу и атмосферу, оказывало влияние на климат и погоду, создало условия, благоприятные для зарождения жизни, а также для развития живых организмов на первых этапах биотической истории Земли. Вспомним также о воздействии характеристик магнитного поля на такие важные факторы эволюции живых организмов, как наследственность и изменчивость. Посредником влияния магнитного напряжения на организм выступают молекулы воды. Магнитное поле вмешивается в ход физико-химических и биологических процессов организма через жидкокристаллические структуры воды в белках и других соединениях. Квант энергии магнитных полей изменяет метаболические процессы[42] в клетке и проницаемость мембран. Нынешний облик Земли был бы совсем иным, если бы в её эволюции не случились геомагнитные Ранняя (4,2 млрд. л.н.) и затем Поздняя (550 млн. л.н.) развилки.

Поворот эволюции Земли на Ранней магнитной развилке завершил подготовку планеты к образованию живых существ из неживой материи. Земля по мере своей эволюции приобретала к отметке около 4,1 млрд. л.н. те характеристики и условия, которые были необходимы для зарождения жизни и для её эволюционного усложнения.

Загрузка...