Нанокомпозитами принято называть композиты, в состав которых входит как минимум одна фаза в нанометровом диапазоне [1]. Нанокомпозитные материалы появились в качестве альтернативы ранее изучаемым и используемым микрокомпозитным и монолитическим материалам, поскольку они позволили преодолеть ряд ограничений, связанных с синтезом и контролем за элементным составом и стехиометрией [2]. Ряд исследователей считает их одним из основных материалов XXI в. с точки зрения сочетания уникальных свойств, ненаблюдаемых в обычных композиционных материалах [3], при том, что первые публикации, посвященные данной проблематике, появились лишь в начале 1992 г. [4]. Столь большой интерес к изучению нанокомпозитов объясняется кардинальным изменением свойства всего композита в целом при уменьшении размера составляющих его наночастиц (табл. 1) [5].
Таблица 1
Взаимосвязь между размерами составляющих нанокомпозит частиц и всей системы в целом
Нанокомпозитные материалы в зависимости от типа образующей их матрицы можно классифицировать по следующим категориям:
1. Металлические нанокомпозиты.
2. Керамические нанокомпозиты.
3. Полимерные нанокомпозиты.
4. Смешанные нанокомпозиты.
С точки зрения применения в сенсорах, катализаторах и суперконденсаторах нанокомпозитные материалы на основе полупроводниковых оксидов переходных металлов являются одними из наиболее перспективных, так как обладают исключительными адсорбционными свойствами, высокой каталитической активностью и электропроводимостью, кроме того, имеют низкую стоимость [6– 8]. Такие свойства проявляют композиты на основе оксидов олова, цинка, индия, вольфрама, титана, кремния, комплексы на основе калия и хрома [9–11], а также биметаллические оксиды.
Важной задачей синтеза газсорбирующих, каталитически активных и электропроводящих нанокомпозитов, решаемой в настоящее время, является создание материалов с варьируемой проводимостью, высокой реактивной способностью и селективностью к газам и жидкостям [12–15]. Один из способов решения подобных задач – введение в матрицу определенного типа металла или оксида металла – наполнителя/допанта. Тип наполнителя влияет на характер взаимодействия составляющих нанокомпозита, наблюдаются изменения их морфологии, атомной и электронной структуры и, как следствие, свойств композита в целом. Электронная и атомная структура, тип химической связи, поверхностная энергия и химическая активность всех составляющих нанокомпозита непосредственно связаны с течением окислительно-восстановительных реакций, определяющих его как каталитическую, так и электрическую активность. Следовательно, определение взаимосвязи между структурными и физическими характеристиками является одним из ключевых моментов в исследовании нанокомпозитных систем и выявлении перспективных направлений их применения в различных областях промышленности, науки и техники.
В нанокомпозитах на основе 3d-металлов или их оксидов роль центров адсорбции часто играют кристаллиты/наночастицы металлсодержащей компоненты, при этом их способность к адсорбции и электропроводимости зависит от размера, формы, структуры и степени окисления металла [16–18]. Морфология и структура металлоксидных активных центров в размерной шкале от нано- до микроуровня являются чрезвычайно важными в регулировании химических и физических свойств материала. Так, одно из направлений мировой науки по синтезу газсорбирующих нанокомпозитов связано с увеличением и развитием поверхности активных адсорбирующих центров [12–15, 19], которые зависят от размера, формы и структуры кристаллитов и наночастиц неорганической составляющей [16–18, 20]. Кристаллиты/наночастицы оксидов металлов в составе нанокомпозита могут формироваться в виде кристаллических агломератов (коралловидные кристаллиты), цветкообразные кристаллиты, наночастицы правильной формы (ромбовидные, кубоктаэдрические, сферические, кубические) с большой плотностью на единице площади и большой площадью покрытия. В ряде работ на основе теоретических расчетов было показано, что в зависимости от формы металлоксидных наночастиц во-первых существуют поверхности стехиометрически стабильные при высоких температурах, во-вторых на поверхностях с различными кристаллографическими плоскостями интенсивность адсорбции различна и может достигать 80 % [21–23]. Так, для металлов, обладающих гранецентрированной кубической (ГЦК) решеткой, равновесная форма наночастиц – это кубооктаэдр, ограненный плоскостями типа (001) и (111) [24]. Однако, как свидетельствуют DFT-расчеты [26] и некоторые экспериментальные исследования, при обработке наночастиц металлов с ГЦК-структурой различными газами их форма может существенно изменяться. Такое изменение формы наночастиц объясняется изменением поверхностной энергии граней растущей наночастицы при адсорбировании на них молекул газа, а следовательно, и степень адсорбирования атомов газа на поверхности также может меняться для наночастицы с правильной (кубоктаэдрической, сферической, кубической) формой. Основное применение такого эффекта в настоящее время – в катализе. Применение в качестве адсорбирующих центров в сенсорах единично и их фундаментальные механизмы образования и взаимодействия с матрицами практически не изучены.
Одними из наиболее интересных и активно синтезируемых в настоящее время материалов являются нанокомпозиты на основе оксидов меди. Добавление в композиты оксидов меди, имеющих р-тип проводимости и химическую стойкость, способствует получению новых свойств газочувствительных материалов и катализаторов, а именно, обеспечивает стабильность газочувствительных и электрофизических характеристик во времени, широкий диапазон рабочих температур, высокую каталитическую активность [26, 27]. Это связано с уникальными свойствами меди. Во-первых, наноструктурированная медь обладает свойствами, отличными от свойств твердого тела [28]. В частности, при переходе от металлической меди к кластерам малого размера ее свойства меняются от металлических до полупроводниковых. Во-вторых, оксиды меди могут формировать наноструктуры с широким разнообразием форм [29, 30]: в форме цветков, нанокубов, нанооктаэдров, полиэдров, микросфер, нанотрубок, наностержней, коралловидные и многие другие [31–35]. Широкий круг теоретических исследований показал способность к адсорбции различных газов, молекул, бактерий кристаллографическими плоскостями (111), (110), (001), (100) оксидов CuO и Cu2O [36–39]. Кроме того, оксиды меди как полупроводники p-типа имеют значительную поверхностную реактивность в окислительно-восстановительных реакциях [40–43]. Оксиды меди являются хорошими каталитическими добавками для создания сенсоров на диоксид азота, аммиак и сероводород.
Еще одним интересным соединением с точки зрения газочувствительных и каталитических свойств являются оксиды олова. SnO2 имеет ограничения при применении его для определения озона [44], но при определении других газов он обеспечивает высокую чувствительность и стабильность параметров. Во многих литературных источниках сообщалось, что двухкомпонентные (в состав которых входят два типа металлов или их оксиды) системы часто обладают лучшими свойствами (т. е. каталитической активностью, электрохимической реактивностью и механической стабильностью), чем однокомпонентные вследствие интеграции в двухкомпонентном композите двух типов функциональных материалов [45– 47]. Так, например, чувствительность нанокомпозитных пленок оксида олова к сероводороду повышается при введении в их структуру атомов металлов, таких как медь, серебро, железо или их оксидов. Морфология и структура нанокомпозитных систем, содержащих кристаллиты оксида меди [48] и оксида олова [49], были предметом многих исследований. Особое внимание привлекают смешанные сплавы Sn-Cu и SnOx:CuOx соединения, так как в зависимости от Cu:Sn-взаимодействия возможно производить материалы с различной морфологией поверхности, а также структурой кристаллитов и, как следствие, электрических и адсорбционных свойств [50–53]. Так, например, толстые пленки CuO, легированные SnO2, обладают необыкновенной чувствительностью к H2S [54]. Микроструктура этих толстых пленок состоит из мелких частиц, диспергированных CuO на поверхности SnO2-частиц.
Среди оксидов 3d-переходных металлов NiO привлекает большое внимание как перспективный материал для суперконденсаторов из-за его высокой теоретической удельной емкости 2573 Fg-1 [55], природного изобилия и экологической безопасности. Однако его низкая электронная проводимость ограничивает практическое применение [56]. Создание нанокомпозитов NiOx/МУНТ позволяет получить перспективные материалы для катализа [57], устройств хранения энергии большой мощности и с высокой скоростью зарядки-разрядки, высокой плотностью тока, длительным циклом жизни и низкими затратами на обслуживание [58]. Кроме того, оксид никеля NiO известен как газочувствительный материал для NOx [59].
Задача формирования металлических и металлоксидных кристаллитов/наночастиц c различной морфологией и структурой в матрицах различного состава не проста и должна решаться правильным сочетанием параметров синтеза и условий обработки (состав реагентов, температура и время термической обработки). Выбор вида матрицы (или прекурсора в исходном растворе) кажется одним из самых простых способов управления структурой, морфологией и распределением наполнителя, так как известно, что тип матрицы влияет на нуклеацию и дальнейшую организацию наночастиц и кристаллитов [60]. В зависимости от методов и параметров синтеза, а также вида матрицы, может кардинально меняться как морфология нанокомпозита, так и структура его составляющих компонент. На рис. 1 приведены примеры нанокомпозитов с различной морфологией, в зависимости от вида образующей матрицы и металлооксидной составляющей. Композиционные материалы на основе металлоксидных нано- и микрокристаллов с органическими, углеродными и кремниевыми матрицами привлекают повышенное внимание благодаря возможности адаптации их химико-физических свойств в зависимости от морфологии и структуры составляющих нанокомпозита [61, 62].
Рис. 1. Примеры нанокомпозитов и наночастиц с различной морфологией синтезированных различными методами: а – наночастицы Cu2O, синтезированные электрохимическим методом; б – нанокомпозит Со/ПАН (полиакрилонитрил), синтезированный методом ИК пиролиза; в – наночастицы Zr в нанокомпозите Zr/ ПАНИ (полианилин), синтезированном золь-гель методом, г – нанокомпозит Сu/ ПАН, синтезированный методом ИК пиролиза; д – нанокомпозит Zr/ПАНИ, синтезированный золь-гель методом и е – нанокомпозит Сu/ПАНИ, синтезированный золь-гель методом
Основная проблема состоит в том, что свойства конечного композиционного материала зависят от природы взаимодействия между его фазами и строением межфазных областей, объемная доля которых чрезвычайно велика. Известно, что при введении неорганических составляющих в образующую матрицу происходят структурные преобразования, изменяется оксидное состояние металлооксидных центров.
Следовательно, состав, морфология, структура, взаимодействие наполнитель-матрица имеют большое влияние на электрические и адсорбционные свойства результирующего композита и пленок на его основе. Поэтому исследованию взаимодействий между различными видами матриц и металлоксидных составляющих в кристаллитах в настоящее время посвящено огромное количество публикаций.
Широкий ряд исследований посвящен роли углеродных трубок, полимеров и кремниевых матриц в формировании нанокомпозитов. Гибридные металлоксидные наноматериалы, с матрицами в виде углеродных нанотрубок и полимеров с полисопряженными системами, показывают превосходные адсорбционные, электрические и электрохимические свойства. Активно ведутся исследования, показывающие изменения атомной, электронной структуры и свойств нанокомпозитов на основе многостенных углеродных нанотрубок и металлоксидных наночастиц CuO, Cu2O, Cu, ZnO, MnO2, Co3O4, NiO и FexOy , синтезированных различными методами и при различных параметрах синтеза. Так, в работе [63] была показана возможность управления компонентным составом и морфологией Cu/УНТ нанокомпозитов при модифицировании многостенных углеродных трубок (МУНТ) наночастицами CuO, Cu2O и Cu в зависимости от параметров синтеза (концентрации прекурсора, температуры и времени термической обработки). Проиллюстрированы эффекты квантовых ограничений в CuO/МУНТ, Cu2O/МУНТ и Cu/МУНТ нанокомпозитах с различной морфологией. При внедрении наночастиц меди и оксида цинка в УНТ малого диаметра было обнаружено, что большая часть площади активной поверхности наночастиц теряется из-за контакта с другими наночастицами, а также стенками УНТ [64]. При создании нанокомпозитов на основе наночастиц Fe2O3 было установлено наличие аморфного углерода на поверхности УНТ в случае расположения наночастицы с внешней стороны трубки, в то время как для наночастиц Fe2O3, расположенных внутри УНТ, наблюдалась чистая поверхность без углеродного покрытия. Дальнейшие эксперименты показали неоднородность распределения поверхностного окисления УНТ при расположении наночастиц Fe2O3 внутри трубки [65]. При синтезе ряда нанокомпозитов на основе оксидов 3d-переходных металлов (MnO2, Co3O4, NiO, CuO, FexOy) и легированных азотом углеродных нанотрубок, оксиды металлов рассеяны на функционализированных УНТ. Комбинирование металлоксидных наночастиц и УНТ в композите позволяет контролировать морфологию функционализированных нанотрубок, их диаметр и площадь поверхности [66].
Обширный круг работ посвящен влиянию полимерной матрицы на форму, структуру и свойства нанокомпозитов [67]. Металлополимерные нанокомпозиты представляют собой равномерно диспергированные наночастицы (100–200 нм) неорганических веществ (металлов) и их соединений в полимерной матрице. Структура металлорганических нанокомпозитов образуется путем связывания металлических центров и органических матриц с помощью сильных ковалентных связей. В зависимости от выбранного металла и органического лиганда, нанокомпозиты с различными формами и размерами активного центра адсорбции могут быть адаптированы к конкретным потребностям процесса адсорбции [68]. Композиционные материалы, образованные сочетанием органических полимеров и неорганических материалов с целью создания материалов с высокой производительностью и функциональностью, называют "органо-неорганическим гибридным материалом", который позволяет преобразование органических ионообменных материалов в гибридные иониты [69]. Электропроводящие полимеры, относящиеся к так называемому классу «синтетических металлов», – это полисопряженные полимеры, которые обладают электрическими, электронными, магнитными и оптическими свойствами металлов, но сохраняют механические свойства обычных полимеров. Некоторые полимерные диэлектрики или полупроводники могут быть переведены в проводящее состояние только в результате кардинального изменения их строения. Для придания полимерному диэлектрику достаточно высокой электропроводности могут быть использованы два варианта: либо создание высокоразвитых областей полисопряжения, либо введение необходимого количества наполнителя/допанта, в роли которых могут выступать наночастицы металлов или их оксидов. Каждый из этих вариантов имеет свои недостатки. Сшивание макромолекул с образованием пространственных сеток может сближать цепи макромолекул на расстояние от 5–10 до 1–1,5 Е (расстояние валентных связей), что облегчает перекрывание орбиталей и обмен электронов, но в результате этих сшивок может нарушиться единая система полисопряжения. С другой стороны, введение в полимер соединений переходных металлов оказывает два взаимоисключающих влияния на его электропроводящие свойства. С одной стороны, допант осуществляет связь между участками полисопряжения полимера как электропроводящий мостик, а с другой стороны, нарушает надмолекулярную структуру полимера. В зависимости от вклада этих двух процессов при формировании структуры полимера получают электропроводящие и непроводящие композиты [70]. Гибридные материалы на основе проводящих полимеров и неорганических полупроводников обладают управляемой электропроводностью и уникальными окислительно-восстановительными свойствами по сравнению с чистыми полимерами. В зависимости от вида вводимого в композит металла и органического лиганда, органические сети с металлическими центрами различной формы, размера и состава могут быть адаптированы к конкретным функциональным свойствам. Структура металлорганических нанокомпозитов может быть получена путем сборки металлических центров и органических линкеров как через сильные ковалентные связи, так и физическое взаимодействие без образования химических связей [71]. Таким образом, структурное упорядочение молекул в полимерах определяет интенсивность межмолекулярных взаимодействий, которое в свою очередь определяет число переносимых электронов в них и, как следствие, электропроводность. Ионы переходных металлов могут быть введены в полимерные нанокомпозиты путем добавления их хлоридов в исходный раствор и полимеризация может происходить как вокруг них [72], так и без включения ионов металла в органическую матрицу. Изучение химических реакций в присутствии хлоридов переходных металлов показало, что эти соединения образуют нитрильный полимер донорно-акцепторных комплексов. Введение солей металлов в органическую матрицу по-разному влияет на проводимость полученного композиционного материала из-за способа, которым металл включен в полимер: либо это образование химической связи с CN-группой, либо это межмолекулярные взаимодействия наночастиц металла (оксида металлов) и независимые от металлических наночастиц цепи полимера. Таким образом, электропроводность металлорганических нанокомпозитов может зависеть от нескольких факторов: степени полисопряженности и концентрации допанта, химического состояния и способа взаимодействия допанта с атомами органической матрицы.
Электрические характеристики полимеров с сопряженными связями имеют широкий диапазон значений: от диэлектрических до полуметаллических; удельная электропроводимость колеблется от 10-19 до единиц Ом-1 см-1[73]. Чувствительностью к NO2 и NH3 обладают пленки МеРс (Рс – фталоцианин). Пленки СuРс, РbРс, TiPc2 и СuТТВРс (тетратрибутилзамещенный фталоцианин меди) обладают чувствительностью к NOx, а пленки на основе дихлорфталоцианина меди обладают чувствительностью к аммиаку [74– 75]. Чувствительностью к монооксиду азота NO обладает кобальт-содержащий металлорганический полимер – 3,4- (диоксиэтилен) тиофен-N,N’– пропиленбис (салицилидендиамин) кобальта [76]. Железо- и алюминийсодержащие плёнки полианилина являются электропроводящими и чувствительными к монооксиду углерода [77]. Металлоорганические пленки с оксидами меди обладают значительными каталитическими свойствами для создания сенсоров на диоксид азота, аммиак и сероводород. Так например, для определения паров ацетона и метанола используется SAW-сенсор (surface acoustic wave) на основе полиина платины ( поли- [1,4-окси-гексадецил-2,5-диэтинилбензил-бис (трифенилфосфин) платины (II)] ) [78]. Высокую газочувствительность при комнатной температуре к водороду обнаруживают пленки на основе полипараксилилена и палладия [79].
Такие полимеры, как полианилин (ПАНИ) и полиакрилонитрил (ПАН), вызывают особый интерес в связи с их экологической устойчивостью, контролируемой электропроводностью и интересными окислительно-восстановительными свойствами [80]. Металлорганические нанокомпозиты, такие как ZnOx, CuOx, ZrOx, NIOx, CoOx/ПАН и ПАНИ и т.д., физически и химически стабильны [81]. Функционализованные металлооксидные наночастицы легко проникают внутрь полимера и полимеризация происходит вокруг них [82], что приводит к образованию мелкодисперсного металлополимерного нанокомпозита.
К достоинствам сенсорных композитов на основе пленок из органических материалов следует отнести возможность определения малых (на уровне ppm) концентраций анализируемых газов, возможность управления свойствами органических полупроводников в широком диапазоне за счет изменения их структуры и состава, а также более низкую, по сравнению с неорганическими полупроводниками, рабочую температуру. В то же время селективность и чувствительность полупроводниковых сенсоров может быть улучшена путем введения в композицию газочувствительного материала добавок, регулированием толщины и размеров полупроводниковых пленок, направленным изменением морфологии поверхности в процессе их технологического изготовления и температурных условий получения.
Кремниевые матрицы активно используются также для создания нанокомпозитов. Так, кремний был использован в смешанных SiO2-МеОх (Ме-металл) системах для обеспечения высокой чувствительности, стабильности и обратимости в сенсорах [83, 84]. Существует три способа применения кремниевых материалов для создания газочувствительных сенсоров. С точки зрения формирования металлических и металлоксидных частиц наиболее изучены и перспективны золь-гель матрицы [85]. С другой стороны, кремний также используется для повышения газочувствительности пленок. В [86] сообщалось, что только одновременное добавление в состав пленки SnO2SiO2 и Pt может повлиять на их газочувствительность. Наконец, кремний добавляется к SnO2 для повышения термической стабильности аморфоного состояния материала, которая необходима для стабилизации и предотвращения образования кристаллитов SnO2 [20].
Таким образом, для создания нанокомпозитов с заданными свойствами необходимо определение физико-химических механизмов взаимодействия матрица – металлсодержащая составляющая, природы химической связи между матрицами и наночастицами оксидов металлов с различным составом и морфологией, влияние матрицы на морфологию, атомную и электронную структуру металлооксидных наночастиц. Ввиду этого изучение подходов к синтезу новых гибридных наноматериалов на основе металлоксидных наноструктур и кремниевых, углеродных и полимерных матриц и систематическое исследование структуры, морфологии и физико-химических свойств полученных наноматериалов в зависимости от условий синтеза имеют важное значение в фундаментальных и прикладных аспектах.