Раздел I Сохранение биосферы как важнейший фактор выживания человечества

1 Проблема устойчивости как объект философского исследования

1.1. Краткий очерк развития проблемы устойчивости в философском и научном познании

Проблема соотношения движения и покоя, изменчивости и устойчивости возникла еще в глубокой древности, причем в ходе ее рассмотрения отчетливо обнаруживается противоположность диалектического и метафизического подходов. Стихийная диалектика заключалась в стремлении выявить единство изменчивости и устойчивости, метафизический подход выражался в их отрыве и противопоставлении друг другу. Так, уже в учении древнеиндийской философии – санкхья единственной реальностью признавалась материя – «пракрити», которая существует изначально и никем не сотворена, а ее внутренними свойствами наряду с движением, пространством, временем считалось сохранение. Древнегреческие философы-ионийцы свое понимание устойчивости связывали с представлением о некоей неизменной по своей сущности первооснове, которая лежит в основе всех изменений природы.

В представлениях первых мыслителей древности отчетливо выражена идея о сохранении материального мира, многообразие которого возможно вследствие изменений и превращений первоэлементов.

Наиболее отчетливо идея всеобщего изменения мира выражена в учении Гераклита. Гераклитовский образ вечного огня, закономерно воспламеняющегося и закономерно угасающего, – лишь одна сторона реальных процессов, другой стороной которых является их устойчивость. Устойчивым является постоянство «мер» изменений и превращений огня, его сохранения как основы во всех фазах превращений. Гераклитовский огонь тесно связан со всеми вещами: своим активным участием во всех процессах огонь-логос определяет меру и постоянство всего происходящего. Правда, в рассуждениях Гераклита еще нет четкой постановки вопроса о соотношении устойчивости и изменчивости (это единство выражается им в качестве противоречивых суждений: «в одну и ту же реку (мы) входим и не входим; существуем и не существуем», парадоксов, афоризмов, аналогий и т. п.), на переднем плане у него выступает все же идея всеобщего изменения. Однако, представив природу как процесс, указав на его противоречивый характер, подчеркнув сохраняемость этого процесса, поняв природу как «самодеятельный процесс»[1], Гераклит далек от тех метафизических представлений, которые допустили в дальнейшем его последователи. Динамика и статика мира рассматриваются им в их единстве, ибо все существующее, «изменяясь», покоится (отдыхает).

Учение Гераклита, открывшее картину всеобщего изменения в мире, было весьма прогрессивным, ибо, как подчеркивал Ф. Энгельс, «этот взгляд верно схватывает общий характер всей картины явлений», хотя и «недостаточен для объяснения тех частностей, из которых она складывается»[2]. Не случайно и в современной науке принцип динамизма, выдвинутый Гераклитом, играет ведущую роль. «Принципы Гераклита, согласно которым “все течет” и “внутренне противоречиво в своем единстве”, – отмечает Л. фон Берталанфи, – суть первое… выражение той картины мира, которую мы сегодня стремимся выразить в ясной форме физического и биологического познания»[3].

В противоположность Гераклиту элеаты за исходный принцип своего учения берут идею неизменного начала и рассматривают лишь устойчивое, сохраняющееся. Они не согласны с ионийцами, объясняющими изменение вещей путем их сведения к первоначальному неизменному веществу. В этом, по их мнению, заключено противоречие: из неизменного не может возникнуть изменяющееся. Поэтому они полагают, что ни сами вещи, ни их свойства не возникают и не уничтожаются. Понятие единого бытия как неизменного, нераздельного одинаково присуще каждому отдельному элементу действительности и легло в основу философии элеатов. Парменид, например, «единое» характеризовал как бытие, вечность и неподвижность, однородность, неделимость и законченность. «Так неподвижно лежит (бытие) в пределах оков величайших, не имея ни начала, ни конца, ибо возникновение и гибель отброшены прочь от него убедительным доказательством»[4]. Он говорит о вечности бытия (подлинно сущего), о его единстве и непрерывности во времени.

Канонизировав принцип неизменного начала, элеаты не только оторвали устойчивость от изменчивости, но и вообще считали истинным неизменное. Стремясь найти нечто устойчивое и неизменное в мире подвижных и изменчивых вещей, они в конечном счете абсолютно противопоставили устойчивое изменчивому, полагая, что изменчивые вещи существуют только во «мнении». В то же время несомненна научная ценность их исканий. Впервые поставив вопрос о возможности выражения в понятиях противоречивого единства устойчивого и изменяющегося, став на путь рационально-логического способа мышления (Парменид по праву считается «отцом» древнегреческого рационализма), элеаты обратили внимание на одну из необходимых предпосылок научного познания. Современная наука, освобожденная от метафизики, ставит перед собой практически ту же задачу: поиск неизменного в беспрерывно изменяющемся мире.

Принимая основное положение элеатов о том, что бытие неизменно, несотворимо и неуничтожимо, древнегреческие атомисты (Левкипп, Демокрит) не согласны, однако, с их тезисом об однородности и непрерывности бытия. Именно в этом, по их мнению, заключено слабое звено концепции элеатов. Напротив, заявляют они, бытие множественно и прерывно. Это обусловливает его движение. Согласно Демокриту, движение – изначальное свойство атомов и существует вечно[5]. Устойчивость представлена атомами и пустотой, изменчивость – беспорядочным механическим движением атомов в пустоте. Единство устойчивости и изменчивости выражено единством атомов и пустоты, полного и пустого, бытия и небытия. Эти противоположности связаны, с одной стороны, с вечностью, сохраняемостью атомов, с другой – с их бесконечным движением в пустоте. В учении атомистов, таким образом, вполне отчетливо выражена мысль о единстве устойчивости и изменчивости.

Атомистическое учение, основываясь на идее сохранения, положило начало теоретическому естествознанию. Дальнейшее развитие его тормозилось господством религиозной идеологии, базировавшейся на креационистских идеях, и потому средневековая схоластика утверждала примат веры над знанием.

Дальнейшее развитие проблема устойчивости получила во второй половине XV в., когда началось обоснование механистической концепции мира, согласно которой природа представляет собой целостный механизм с окончательно заданным количеством движения. Мир как целое становится предметом физики, сменившей метафизику. Однако исторически оправданный отказ от метафизики как философской науки и разрушение ее старой спекулятивной формы не означали преодоления ее коренного порока как концепции вечности и неизменности мира в его основных принципах. Поэтому метафизика не была, по существу, преодолена, а превратилась из первой философии в «…специфическую ограниченность последних столетий – метафизический способ мышления»[6]. Метафизика проявлялась главным образом в абсолютизации устойчивости, изменчивость же трактовалась как временный момент, связанный с механическим перемещением неизменных тел в пространстве.

Несмотря на господство метафизики, философы Нового времени делают ряд открытий, имеющих важное значение для понимания устойчивости. «В учении Р. Декарта впервые предпринята попытка количественно выразить степень устойчивости. На основе количественной оценки движения, выраженной произведением массы на скорость (mv), Декарт сформулировал принцип сохранения количества движения, согласно которому его количество в мире остается неизменным. Изменение у Декарта сводится лишь к механическому движению, но применительно к этому виду движения проблема единства устойчивости и изменчивости получает рациональное решение с естественно-научных позиций.

Вопросу о субстанциональном, единстве устойчивости и изменчивости значительное внимание уделял И. Кант. Он считал, что утверждать об устойчивости субстанции тавтологично. Дело в том, что только эта «устойчивость и служит основанием того, что мы применяем к явлению категорию субстанции; и здесь надо было бы доказать, что во всех явлениях есть нечто устойчивое, для чего все изменяемое служит только определением его существования»[7]. Для И. Канта субстанция – всеобщая устойчивая основа изменений. «Во всех явлениях, – отмечал он, – есть нечто постоянное, в котором все изменчивое есть не что иное, как определение его существования… На этом (понятии) постоянности основывается также и правильное толкование понятия изменения. Возникновение и исчезновение – это не изменение того, что возникает или исчезает. Изменение есть один способ существования, следующий за другим способом существования того же самого предмета. Поэтому то, что изменяется, есть сохраняющееся, и сменяются только его состояния»[8]. Для И. Канта единство устойчивости и изменчивости заключается в единстве субстанции и ее состояний. Сама субстанция имеет активный, деятельный характер, ибо нельзя мыслить ее устойчивость без изменения. Таким образом, И. Кант справедливо отмечает, что нельзя мыслить изменение, не предполагая той устойчивой основы, у которой сменяются лишь состояния. Однако в конечном счете правильная постановка вопроса получает у него идеалистическое решение: понятие «субстанции», с которым он первоначально связывал оба указанных свойства, в дальнейшем «дематериализуется», выступает как интеллигибельная и в целом непознаваемая «вещь в себе».

В идеалистической философии Гегеля диалектика устойчивости и изменчивости, с одной стороны, получает глубокое раскрытие, с другой – выступает в мистифицированной форме. Ряд ценных диалектических догадок высказывает Гегель по поводу единства устойчивости и изменчивости, анализируя категорию становления, которая является одним из важнейших определений идеи развития.

Становление в понимании Гегеля выражает диалектическое единство устойчивого и изменяющегося. Категория наличного бытия, согласно Гегелю, включает в себя понятия качество, нечто, количество и др. Через эти понятия Гегель и выражает указанное единство. В частности, анализируя понятие нечто, он отмечал, что это понятие, во-первых, конечно, во-вторых, изменчиво. Нечто в силу своей качественной природы является устойчивой определенностью и тесно связано с изменением[9]. «Бытие конечных вещей, – подчеркивал Гегель, – как таковое состоит в том, что они носят в себе зародыш прехождения, как свое внутри-себя-бытие, что час их рождения есть час их смерти»[10].

Отрицание развития во времени, сведение изменений в природе к механическому движению, к перемещению тел в пространстве, к росту[11], признание изменений случайными, производными и обратимыми – характерные черты метафизического периода. Характерным для данного периода было «представление об абсолютной неизменяемости природы. Согласно этому взгляду, природа, каким бы путем она сама ни возникла, раз она уже имеется налицо, оставалась всегда неизменной, пока она существует… Виды растений и животных были установлены раз и навсегда при своем возникновении… В природе отрицали всякое изменение, всякое развитие»[12]. Абсолютизация устойчивости, выражаемая представлением о неизменяемости природы, отрицанием развития ее во времени, характеризует сущность метафизического подхода к пониманию природы…

История биологического познания служит наглядным подтверждением такого рода метафизической трактовки устойчивости. Основное внимание в науке этого периода обращалось на пространственное перемещение тел, но не на историю их развития во времени. Если Н. Коперник, подчеркивал Ф. Энгельс, дает отставку теологии, то И. Ньютон, напротив, придерживается идеи божественного первоначала[13].

К. Линней, основатель систематики, впервые подчеркнув мысль о реальности существования видов, тем не менее их устойчивость понимает как полную неизменность: «Видов насчитываем столько, сколько различных форм создано в самом начале»[14]. Это утверждение оказало влияние на последующее отношение к идее развития, хотя сам К. Линней допускал возможность возникновения видов при известных условиях, в частности при явлении гибридизации.

Подобных воззрений придерживались многие биологи того времени. Ш. Бонне считает организмы постоянными и неизменными, основываясь на концепции преформизма. П. Паллас, подчеркивая неизменность видов, указывает на то, что «надо отказаться от мысли о происхождении видов путем их изменений и следует принять для всех тех видов, которые нам известны как обособленные и устойчивые, один способ появления и одно и то же время появления»[15]. Разновидности П. Паллас считает случайными и обратимыми. Виду как необходимому он противопоставляет случайное – разновидность. По замечанию И. И. Мечникова, П. Паллас «больше самого основателя (К. Линнея. – П. В.) настаивает на постоянстве вида, а все случаи изменчивости относит к вариациям»[16].

Согласно воззрениям Ж. Кювье, организм – это закономерно построенная целостная система, структура которой определяется ее функциями. Сформулированные Ж. Кювье принцип корреляций и принцип условий существования дают возможность предсказания неизвестных признаков на основании того, что уже познано, устанавливают зависимость признаков друг от друга и взаимозависимости частей и органов внутри организма в процессах их изменения.

Обосновывая идею неизменности и постоянства видов Ж. Кювье широко оперировал не только теоретическими доводами, но и фактами, по его мнению, опровергавшими идею эволюции. Изучая кости животных, найденные на территории Египта, и сравнивая их с современными формами, Ж. Кювье доказывал, что они мало отличаются друг от друга. Факты несходства видового состава фаун и флор в климатически аналогичных условиях также опровергают идею эволюции. Такие анатомические признаки, как строение зубов, число и особенности строения костей, вообще не обнаруживают ни малейших изменений, и это, по мнению Ж. Кювье, – свидетельство постоянства видов. Отсутствие переходных форм между ископаемыми и современными видами, малая изменчивость видов на протяжении культурной истории человечества, целесообразность строения организмов – все это служило в представлении креационистов аргументом в доказательстве неизменности органических форм. На основании этих и ряда других фактов Ж. Кювье пришел к выводу, что не существует никаких доказательств того, «что все различия, наблюдаемые между организмами, могли быть созданы одними условиями среды. Все, что высказывалось в защиту этого мнения, гипотетично. Опыт приводит, по-видимому, к противоположному заключению: при современном состоянии Земли разновидности заключены в определенных довольно тесных границах, и как бы далеко ни проникали мы в глубину древности, мы видим эти границы теми же, что и ныне»[17]. Это свидетельствует о том, насколько сильна убежденность Ж. Кювье в неизменности органических форм, которую он возводил в ранг теоретических представлений.

Для преодоления противоречия между фактами в пользу постоянства видов и палеонтологическими данными, свидетельствующими о резком отличии ныне живущих видов от вымерших, Ж. Кювье выдвинул свою теорию катастроф, в которой учел объективно существующие дискретность и устойчивость видов, но они абсолютизировались им. Объективно существующая устойчивость органических форм сводилась к идее о их полной неизменности. В то же время в воззрениях Ж. Кювье содержится рациональное зерно: без наличия стойкой организации живых существ невозможна сама эволюция.

Сравнительно-анатомические исследования Ж. Кювье и установленные на их основе морфологические обобщения сыграли огромную роль в истории биологии. На основании этих закономерностей стало возможным воссоздавать исчезнувшие формы. Кювье показал, что многие животные минувших геологических эпох резко отличаются от нынешних обитателей земли, что одни из них исчезли и на смену им пришли другие, новые формы, среди которых были и более сложные, чем их предшественники. Ж. Кювье установил факт изменения флор и фаун вместе со сменой геологических эпох. Вот почему его исследования являлись доказательством эволюционной идеи, хотя сам он с упорством отстаивал неизменность и постоянство видов.

Таким образом, в широком теоретическом плане проблема устойчивости, отражающая реальное существование устойчивости в живой природе, была поставлена Ж. Кювье. Однако, проблема соотношения между устойчивостью и изменяемостью в метафизический период решалась в пользу признания их неизменности. Идея изменяемости, проходящая красной нитью через всю историю науки в метафизический период, оказалась бездоказательной, так как противопоставлялась идее «реального неизменного вида».

Наиболее видный представитель раннего эволюционизма Ж.-Б. Ламарк утверждал, что вид есть понятие не реальное и в лучшем случае понятие с текучим, изменчивым содержанием. «Итак, природа, – отмечал он, – дает нам, строго говоря, только особей, происходящих одни от других; что же касается видов, их постоянство относительно, и неизменяемость их носит исключительно временной характер. Тем не менее с целью облегчить изучение и познание огромного числа разных тел небесполезно прибегнуть к названию вида как к обозначению всякой группы сходных особей, сохраняющих из поколения в поколение неизменным свое состояние, пока условия их положения не изменятся настолько, чтобы вызвать перемену в их привычках, характере и форме»[18]. Наряду с правильным утверждением о том, что устойчивость вида не абсолютна, а временна и относительна, Ламарк указывает на условность этого понятия. Отрицание реальности вида послужило препятствием в обосновании идеи эволюции.

Ч. Дарвин, синтезировав идею реальности вида с идеей его изменяемости, дал впервые научное доказательство эволюции органического мира, доказав причины, обеспечивающие устойчивость вида (сохранение прежних условий существования и отсутствие сильной конкуренции), и указал на возможность длительного сохранения видов. «Многие виды после своего образования не подвергаются дальнейшему изменению»[19]. Ч. Дарвин подчеркивал значение отбора для сохранения ранее сложившейся адаптивной организации. Наряду с этим вид предстал как развивающийся объект, обладающий относительной устойчивостью и способностью к эволюционным преобразованиям. «Его становление, расцвет, дальнейшая дивергенция или вымирание оказались этапами постепенно идущего процесса приспособительной эволюции. На основе теории естественного отбора эволюционная идея впервые объединилась с учением о реальности вида»[20]. Дальнейшее развитие идея о последующем неизменном существовании видов во времени получила в теории Т. Геккеля. Он ввел понятие персистирования, т. е. стабилизации того или иного комплекса признаков, что послужило уточнением эволюции как единства устойчивости и изменяемости.

Однако с победой эволюционного учения и с последующими его доказательствами многие ученые пытались полностью дискредитировать проблему устойчивости. В частности, некоторые неоламаркисты полностью отрицали устойчивость и покой органических форм, переоценивая степень изменяемости органических форм, игнорируя факт их относительной устойчивости. Отдельные из них указывали на объективную реальность вида, толкуя его как остановку роста (генэпистаз). Генэпистаз как этап стабильного состояния вида, согласно Т. Эймеру[21], может длиться геологическое время, сменяясь периодами лабильных состояний, в течение которых вид представляет какое-то «переходное состояние». Отрицание момента устойчивости в развитии качественных изменений, вульгарно-эволюционистское сведение развития к росту – таковы наиболее характерные недостатки, свойственные в той или иной степени различным течениям неоламаркизма.

Метафизическое понимание связи устойчивости и изменяемости характерно также для различных концепций макросальтоционизма (мутационизма и неокатастрофизма).

Мутационисты (В. Вааген, С. Майварт) рассматривали эволюцию как чередование геологически продолжительных периодов стабильного состояния видов с кратковременными периодами возникновения новых видов. Фундаментальные открытия в области генетики, такие, как доказательство корпускулярной природы наследственности, обоснование понятия о гене как носителе вещества наследственности, установление законов доминирования и расщепления признаков (Г. Мендель, Т. Морган), стали рассматриваться некоторыми учеными как опровержение дарвиновской концепции эволюции. Абсолютизация устойчивости гена привела к формированию концепции его неизменности и абсолютной независимости генетических структур от внешней среды.

Один из представителей мутационизма Гуго де Фриз считал, что виды в природе появляются не постепенно, путем отбора или под прямым влиянием внешней среды, а всегда внезапно и независимо от окружающей среды, под воздействием некой «созидательной силы»[22]. Возникшие виды длительное время остаются постоянными, т. е. в состоянии покоя, до тех пор, пока не наступит время нового мутационного периода. В течение тысячелетий виды пребывают в покое, а мутационные периоды охватывают лишь краткие мгновения. Появление новых видов обусловлено не теми причинами, о которых говорил Ч. Дарвин, а мутациями. «Естественный отбор не создает, как это часто ошибочно считают, а только уничтожает, являясь ситом. Он только сохраняет то, что создается наследственной, т. е. мутационной, изменчивостью»[23].

Противопоставление генетики дарвинизму проводилось мутационизмом с метафизических позиций путем абсолютизации устойчивости при недооценке изменчивости. В течение больших периодов геологического времени мутационисты признавали «вид абсолютно покоящимся, и это состояние якобы внезапно прерывается перечеканкой его формы, имеющей взрывной характер. Вслед за этим скачком (сальтацией) вид якобы снова закостеневает и т. д. Полный покой и чистое движение здесь просто соседствуют, так как эта доктрина механически сочетает покой и движение. Метафизический характер катастрофизма – мутационизма проявляется также и в том, что движение выводится из покоя»[24].

Для всех форм антидарвинизма характерна абсолютизация одного или нескольких факторов эволюции при недооценке взаимодействия многих факторов. На этой методологической основе осуществляется дискредитация идеи эволюции и в настоящее время. Открытия в области молекулярной биологии, по мнению Ж. Моно, устраняют с авансцены эволюционное учение как теоретическую основу биологии, а таковой является теория генетического кода[25]. Абсолютизируя устойчивость генетического кода, отрицая эволюцию генетических структур, Ж. Моно признает лишь «деформацию инвариантности» как следствие «ошибок транскрипции». Поэтому прогрессивная эволюция в принципе невозможна, а возможно лишь упрощение, дегенерация генетических структур. Приняв в качестве методологического основания тезис об абсолютной неизменности генетических структур, Ж. Моно приходит к выводу о неизменности законов функционирования генетических систем, клетки, организма и т. д. Он пишет: «Эта система (т. е. генетическая система. – П. В.) со всеми ее свойствами, включая функционирование микроскопического часового механизма, существующего как между ДНК и белками, так и между организмом и средой… полностью не поддается диалектическому описанию. Она является, в сущности, картезианской, а не гегелевской; клетка – это машина»[26].

Механицизм в истолковании природы биологических явлений неизбежно приводит к абсолютизации устойчивости как простой неизменности генетических структур. Факт устойчивости этих структур входит в содержание теоретической биологии как один из ее важнейших принципов, однако его абсолютизация неизбежно ведет к метафизическому противопоставлению устойчивости развитию, т. е. к отрицанию последнего.

При метафизическом подходе не рассматривается источник самодвижения, его движущие силы, напротив, диалектическая концепция уделяет главное внимание познанию источника самодвижения как единства и борьбы противоположностей.

В XX в. стало ясно, что преодоление концепций плоского эволюционизма и мутационизма (катастрофизма) возможно на основе диалектического понимания связи устойчивости и изменяемости, выяснения механизмов обеспечения устойчивости органических форм. Вновь возродилась идея устойчивости, основой которой служила, однако, эволюционная концепция. Признавая, что виды организмов резко изменяются в течение геологического времени, В. И. Вернадский писал: «В геологическом аспекте, входя как часть в мало изменяющуюся, колеблющуюся около неизменного среднего состояния биосферу, жизнь, взятая как целое, представляется устойчивой и неизменной в геологическом времени. Входя как неразрывная часть в постоянно повторяющиеся в одни и те же геохимические циклы, жизнь не может оказываться резко меняющейся в своих учитываемых в геохимии проявлениях»[27]. Однако эта неизменность, присущая всем космическим процессам, находится в резком противоречии с изменением форм жизни, но «в сложной организованности биосферы происходили в пределах живого вещества только перегруппировки химических элементов, а не коренные изменения их состава и количества – перегруппировки, не отражавшиеся на постоянстве и неизменности геологических – в данном случае геохимических – процессов, в которых эти живые вещества принимали участие. Это новый факт огромной научной значимости, вносимый в биологию геохимическим изучением жизни»[28]. Указав на факты исключительной консервативности некоторых видов, остающихся неизменными сотни миллионов лет, В. И. Вернадский подчеркивает: «И эта устойчивость видовых форм в течение миллионов лет, миллионов поколений, может быть, даже составляет самую характерную черту живых форм, заслуживающую глубокого внимания биолога. Вероятно, мы видим в этих чисто биологических явлениях проявление той же неизменности жизни в основном своем бытии на всем протяжении геологической истории, какую в другой форме вскрывает нам ее положение в структуре биосферы. Мне кажется, эти явления устойчивости видов заслуживают более серьезного внимания биолога, чем это сейчас имеет место»[29]. На уровне биосферы в целом В. И. Вернадский сумел доказать взаимодействие устойчивости и изменяемости органических форм.

Однако в рамках самой биологии концепции стабильности и историзма были разобщены вплоть до работ И. И. Шмальгаузена, который показал, что историческая устойчивость покоится на изменяемости, вводимой всегда в определенное русло. Устойчивость организмов проявляется также не в их неизменности, а в непрерывных изменениях химического состава, структуры, функций и даже самой внешней формы. «Органические формы стойки, но и текучи в то же самое время. Форма поддерживается организацией потоков, их введением в определенное русло, строгой направленностью основных жизненных процессов. При прекращении этих потоков, движений, изменений форма разрушается»[30]. Разработанная И. И. Шмальгаузеном теория стабилизирующего отбора явилась общим принципом объяснения относительной независимости и устойчивости органических форм в эволюции. Созданием этой теории осуществлен синтез эволюционной концепции и идеи устойчивости. Это стало возможным благодаря проникновению в биологию идей материалистической диалектики, сознательное использование которых позволило выявить единство устойчивости и изменчивости в явлениях живой природы.

Устойчивость и изменчивость – важнейшие стороны процесса развития, единство которых составляет основу всякого реального взаимодействия. Абсолютно неизменная неподвижная вещь не могла бы взаимодействовать с другими телами и вообще не обладала бы никакими свойствами, равным образом как и наличие изменчивости, исключающей всякую устойчивость, также лишало бы любое тело взаимодействия. Поэтому абсолютизация одной из сторон процесса развития неизбежно приводит к возрождению метафизических представлений.

Таким образом, краткий исторический анализ проблемы устойчивости свидетельствует о том, что как в философии, так и в биологии выявление устойчивого в беспрерывно изменяющемся мире всегда стояло в центре внимания создателей самых разнообразных концепций. Уже в учениях древнегреческих мыслителей была подмечена диалектическая взаимосвязь устойчивости и изменчивости, отчетливо выражена идея о сохранении материального мира, что явилось исходной предпосылкой становления теоретического естествознания. В последующих философских и естественно-научных концепциях дается качественная оценка устойчивости, формулируется принцип сохранения материи и движения, наметивший пути перехода от изучения отдельных вещей к исследованию процессов их возникновения и развития. Это означало утверждение диалектического подхода к анализу окружающего мира, в основе которого лежит сложное противоречивое единство изменчивости и устойчивости, своеобразно проявляющееся в различных формах движения материи.

1.2. Содержательный анализ понятия устойчивости в научном познании

Проблема устойчивости материальных систем и процессов принадлежит к числу фундаментальных философских и естественно-научных проблем, поскольку научное познание неразрывно связано с поиском закономерностей, отражающих наличие устойчивого, сохраняющегося в окружающем мире. В науке важны не сами по себе изменения, а зафиксированные, инвариантные характеристики явлений и процессов развития.

Любая вещь или процесс в одних отношениях тождественны самим себе, в других – непрерывно изменяются. И «если вещи присуща противоположность, то эта вещь находится в противоречии с самой собой; то же относится и к выражению этой вещи в мысли. Например, в том, что вещь остается той же самой и в то же время непрерывно изменяется, что она содержит в себе противоположность между “пребыванием одной и той же” и “изменением”, заключается противоречие»[31]. Любое изменение характеризуется определенными сохраняющимися величинами равным образом, как и всякая устойчивость имеет место лишь при наличии какого-либо процесса изменения. Как изменчивость, так и устойчивость носит всеобщий характер. «Положение о всеобщности устойчивости уже выводится из принципа всеобщности изменения. Поскольку все существует и не существует, постольку изменение также не существует в определенных отношениях (множества). И, следовательно, любой объект (все) обладает устойчивостью»[32].

Наличие относительного покоя, устойчивости, сохранения – необходимая предпосылка усложнения материи, ее дифференциации, – появления новых структурных образований. При этом покой выступает как сохранение определенного состояния движения. До тех пор, пока любая система сохраняет свою качественную определенность, устойчивость, она находится в состоянии относительного покоя, т. е. существует как таковая в течение определенного времени. «Возможность относительного покоя тел, возможность временных состояний равновесия является существенным условием дифференциации материи и тем самым существенным условием жизни»[33].

Единство устойчивости и изменчивости присуще всем формам движения материи, хотя и имеет свою специфику в пределах каждой из них. Поэтому само изменение органически входит в понятие устойчивости, дополняя его содержание. Наряду с этим близкими по значению понятию устойчивости являются категории равновесия, равнодействия, меры, сохранения.

Равновесное состояние системы представляет одну из сторон ее устойчивости. Структура систем, находящихся в равновесии, заключает в себе противоположные процессы, взаимно нейтрализующиеся на определенном уровне. Наличие равновесной устойчивости характерно для весьма широкого класса материальных систем. Устойчивость этого типа может быть статической или динамической. Первая представляет собой равновесие сил, вторая – равновесие процессов.

В современной науке равновесие уточняется через понятие симметрии. По мнению Г. Вейля, «состояние равновесия должно быть, по-видимому, симметричным. Точнее говоря, при наличии условий, которые определяют единственное в своем роде состояние – равновесие, к этому состоянию должна приводить симметрия условий»[34].

Наличие равновесной устойчивости не означает, однако, полного совпадения устойчивости и равновесия. Так, в понятии равновесия могут быть отражены моменты как устойчивости, так и неустойчивости. В механике, математике и других науках рассматриваются случаи устойчивого и неустойчивого равновесия. В свою очередь устойчивость может характеризовать как равновесные, так и неравновесные состояния.

Понятие равновесия занимает важное место в современном научном познании, в частности в сфере системно-структурного подхода, поскольку одним их характерных свойств любой системы является ее способность сохранять состояние равновесия. Это состояние связано с поддержанием системой существенных переменных в пределах нормы. Понятие нормы охватывает область количественных характеристик системы, способной сохранять минимально или максимально возможное значение при данных условиях. Так, для живых организмов поддержание существенных переменных в физиологически допустимых границах выражает равновесие данной системы. Понятие гомеостаза, описывающее данное явление, отражает два основных свойства живого: самообновление и самосохранение.

Поддержание состояния подвижного равновесия служит выражением устойчивости системы, означающей допустимую меру отклонения заданных свойств системы от нормы, вызванной возмущающими внешними воздействиями. В данном случае устойчивость есть отклонение от нормы заданных свойств, обусловленных внешними воздействиями. Сопоставление оценок, выражающих меру возмущающих воздействий и меру отклонений свойств от нормы, – условие определения степени устойчивости системы. В математике изменение системы выражается траекториями переменных состояний, пересекающихся в пространстве состояний, т. е. в «мерном пространстве возможного расположения переменных. При этом возможны три основных случая поведения системы:

– асимптотически устойчивое, если все траектории достаточно близки к данной траектории в области t = t° (при t → ∞);

– нейтрально устойчивое, если все траектории достаточно близки к данной траектории области t = 0;

– неустойчивое, если все траектории приближаются к данной траектории в области t = 0, но не сохраняют этой близости при t → ∞[35].

Каждому из названных случаев соответствуют состояния, независимые от времени. Первый случай выражает устойчивое равновесие, второй – периодические изменения, третий – дивергентные изменения (неустойчивое равновесие). Иначе говоря, равновесное состояние стабильно, если незначительные отклонения от него возвращают систему к первоначальному состоянию равновесия. Если же отклонение от равновесия имеет тенденцию увеличения, то такое равновесное состояние неустойчиво (нестабильно).

В сложных динамических системах равновесные состояния определяются состоянием их подсистем. Для приведения системы в целом в равновесие необходимо, чтобы каждая подсистема находилась в равновесии при условиях, заданных ей другими подсистемами Эти условия характеризуются самыми разнообразными связями, которые влияют на стабильность системы. Особенно высока устойчивость самоорганизующихся систем, способных даже изменять свою структуру и связи между подсистемами под влиянием возмущающих воздействий внешней среды и в то же время сохранять неизменным свое состояние. Устойчивость самоорганизующихся систем обеспечивается постоянством их самовоспроизведения, благодаря чему у них вырабатывается гибкость реагирования на внешние воздействия.

Сохранение равновесных состояний зависит от количества связей в системе. Если их количество невелико, система при заданных условиях за незначительное время сравнительно быстро достигает состояния равновесия. При большом количестве связей система постепенно приближается к равновесию путем накопления состояний равновесия в отдельных ее частях[36]. Многообразие форм связей определяет устойчивость системы в целом, несмотря на изменения, происходящие в отдельных ее подсистемах. Так, многообразие форм связей между организмами – условие обеспечения устойчивости органического мира как целого, возможностей приспособления организмов к внешним условиям.

Чем больше связей в пищевых сетях данного сообщества, тем выше вероятность включения компенсаторных механизмов, вступающих в действие при увеличении или уменьшении численности особей. Иными словами, большая сложность структуры пищевых связей обычно ведет к увеличению стабильности сообщества. Возможность совершенствования приспособительных реакций живых систем – результат того, что органический мир как целое оказывается способным выдерживать крупные, подчас катастрофические, изменения земной поверхности, а также значительные влияния человеческой деятельности[37]. Общая тенденция эволюции органического мира связана с повышением устойчивости, с возрастанием его гомеостатических свойств.

Понятия устойчивости и равновесия хотя и близки, однако не совпадают по своему значению. Равновесие означает равенство протекания процессов в противоположных направлениях. Понятие устойчивости шире понятия равновесия; последнее – частный случай устойчивости. В философской литературе устойчивость выражается и через понятие меры, которая «обусловливает присущее ей единство количественных и качественных характеристик, не позволяет ей переходить при своих количественных изменениях границ, ведущих к изменениям ее качеств»[38]. В аспекте устойчивости качество характеризует относительное постоянство в изменении, т. е. выражает неизменное в изменчивом. Устойчивость, отражая качественную определенность явлений и процессов, может характеризовать и переход в иное качество при сохранении системы.

Понятие сохранения близко по своему значению понятию устойчивости. Любое вещество обладает «сохраняющимися реакциями», которые позволяют ему внутренне реагировать на внешние воздействия таким образом, чтобы сохранить свое состояние[39].

В широком значении сохранение выражает несотворимость и неуничтожимость материи и ее важнейших атрибутов (движения, пространства, времени и т. д.). Сохранение связано с самодвижением материи: оно выражает нечто изменяющееся и остающееся само собой и выступает как момент самодвижения, т. е. как самоподдержание, самосохранение, самовосстановление. В этом смысле оно по своему содержанию является более широким понятием, чем устойчивость. Однако в отличие от сохранения устойчивость имеет активный характер, т. е. отражает момент сопротивления, которое оказывает данная система по отношению к внешним воздействиям.

Понятие устойчивости уточняется в современной науке при его выражении через понятия системно-структурного подхода. Само понятие системы, по мнению многих исследователей, предполагает наличие критерия устойчивости как способности системы сохранять себя в условиях изменяющейся среды. «Системой является такое целостное образование, подчиняющееся единым законам развития, в котором связь между элементами является более существенной, прочной и устойчивой, чем связь каждого элемента с окружающей средой»[40]. Система есть совокупность любого рода элементов, между которыми имеют место устойчивые связи. Понятие устойчивости несет важную смысловую нагрузку в определении системы. Неустойчивая система не способна к длительному существованию. Свойство устойчивости, стабильности – это наиболее общее свойство всяких систем, так как оно определяет большинство других их свойств. Система устойчива в том случае, когда ее основные параметры поддерживаются на определенном уровне, либо же происходит переход из одного состояния в другое, однако сохраняются некоторые характерные свойства, определяющие систему как таковую. «Через все значение слова “устойчивость”, – подчеркивает У. Р. Эшби, – проходит основная идея “инвариантности”. Эта идея состоит в том, что, хотя система в целом претерпевает последовательные изменения, некоторые ее свойства (“инварианты”) сохраняются неизменными. Таким образом, некоторое высказывание о системе, несмотря на беспрерывное изменение, будет неизменно истинным»[41]. Инвариантность – свойство сохраняемости некоторых структур по отношению к определенным изменениям. Поскольку любой процесс изменения имеет в своей основе сохраняющееся, то устойчивость выступает как инвариант изменений. Понятие инвариантности служит конкретизацией единства изменчивости и устойчивости.

Первоначально понятие инвариантности применялось в математике для обозначения выражения, остающегося неизменным при определенных преобразованиях переменных, связанных с ним. В ходе развития научного познания данное понятие получило широкое применение и в других науках: физике, кибернетике и т. д. «Я убежден, – писал М. Борн, – что идея инвариантов является ключом к рациональному понятию реальности, и не только в физике, но и в каждом аспекте мира»[42]. Основное содержание понятия инвариантности сводится к утверждению о наличии постоянных, устойчивых свойств, отношений, величин, параметров в системе при определенных изменениях. Обычно принимается, что если система не изменяется, то данный конкретный признак системы является инвариантным по отношению к определенным изменениям.

Выяснение закономерностей любой системы неразрывно связано с поиском ее сохраняющихся величин. «Изучение общих структурных основ живого, биохимической универсальности организмов, направлено на выделение инвариантов в живых системах, устойчивых образований, сохраняющих свои характеристики в процессе индивидуального и родового развития»[43]. Выявление инвариантного в развитии – это определение величин, остающихся неизменными в ходе преобразования системы.

Инвариантность отражает то, что остается неизменным и устойчивым в результате преобразований и изменений в системе, выражая единое взаимодействие между устойчивостью и изменчивостью, происходящими в процессе перехода от одного состояния к другому, и тесно связана со структурой, которая обозначает такой способ связи элементов, тип их отношений, при котором система как целое оказывается устойчивой.

Вместе с тем для выявления закономерностей функционирования системы недостаточно определить способ связи элементов, поскольку элементы находятся между собой в некоторых отношениях и связях, обусловливающих ее строение и состав. Поэтому только знание элементов, способа их связи между собой и целостности структуры позволяет установить наиболее существенные характеристики той или иной системы.

Начальный этап познания системы – исследование ее элементарного состава. Древнегреческие атомисты первыми поставили вопрос о существовании неделимых частиц всего существующего, простых элементарных, неделимых частиц. Эта неделимость всегда относительна и зависит от элементов, составляющих систему.

Элементы системы находятся в определенных связях и отношениях между собой. Разнообразные связи в системе определяют ее устойчивость не только как целого, но и отдельных ее компонентов. Каждый из компонентов, вступая во взаимодействие с другими компонентами, повышает степень своей устойчивости. Уже с момента зарождения жизни взаимодействие различно организованных коацерватов между собой и окружающей средой вело к повышению устойчивости всей системы, которая эволюционировала в сторону независимости от колебаний внешних факторов[44]. Устойчивые связи в свою очередь образуют структуру системы, т. е. совокупность существенных связей между элементами, определяют ее упорядоченность.

Определение структуры как инвариантного аспекта системы выражает лишь устойчивость состояний, что неизбежно приводит к упущению временного аспекта: структура понимается как «законченная», «устойчивая». Р. Фейнман, Р. Лейтон, М. Сэндс справедливо отмечают, что с помощью инвариантов происходит описание «концевых» результатов процесса, а не самого механизма процесса[45].

Подобная трактовка структуры (и связанной с ней устойчивости) встречается в различных отраслях естествознания. В частности, в биологии при характеристике структуры зачастую главное внимание обращается на пространственное расположение элементов системы, при этом недооценивается или даже вовсе игнорируется временной аспект структуры, а, следовательно, и устойчивость особого рода. Временная характеристика структуры (и вообще системы) – необходимое условие ее определения. Даже на уровне явлений неорганической природы представление о структуре материальных частиц связано «со структурой процессов и является динамическим. Именно это обстоятельство и избавляет нас от тех затруднений, которые были характерны для старых представлений о частице как о некотором неизменном объекте»[46]. Более четко обнаруживается данный аспект на уровне органической и социальной форм движения материи, где иногда может происходить преобразование структуры при сохранении системы. Выражение устойчивости через структуру лишь как инвариантный аспект системы не охватывает всех ее проявлений в материальных системах, отражая, как правило, лишь устойчивость определенных состояний. В частности, главными отличительными особенностями живых систем являются развитие и изменение вследствие чего они носят преимущественно процессивный характер. Именно поэтому для биологии важное значение имеет изучение устойчивости жизненных процессов, которая не может быть выражена через статически понимаемую структуру. Как подчеркивал Э. Бауэр, работа живых систем осуществляется за счет непрерывной перестройки самой структуры живых тел[47].

Взаимосвязь элементов и структуры предполагает единство устойчивости и изменчивости, относительную самостоятельность элементов и их взаимосвязь. Совокупность устойчивых связей образует структуру системы, причем устойчивость отдельных элементов не является обязательным условием устойчивости системы в целом. Система может быть устойчивой, хотя и состоит из неустойчивых элементов, которые благодаря особому способу взаимодействия образуют устойчивую структуру. Поэтому структурной устойчивостью может обладать и такая система, элементы которой претерпевают постоянные преобразования, переходят из одного состояния в другое. Применительно к подобного рода системам понятие элемента следует расширить и переосмыслить, а именно наряду с вещественными, корпускулярными элементами выделить элементарные процессы (действия, акты, изменения)[48], складывающиеся в интегральную структуру целостного процесса, который обладает структурной устойчивостью в той мере, в какой элементарные процессы упорядочиваются, координируются во времени, получая определенную направленность.

Любая система состоит из множества подсистем. По всей вероятности, существует столько Д-множеств данной М-системы, сколько имеется способов ее расчленения. Исходя из этих соображений, М. Тода и Э. Шурфорд пишут: «При данном Д-множестве М-системы ее структура определяется как вся совокупность отношений между подсистемами, принадлежащими данному Д-множеству»[49]. Подобное определение структуры указывает на ее иерархический характер, однако, как подчеркивают сами авторы, невозможно осмысленно говорить о структуре, пока не указано и не осознано Д-множество, с помощью которого определяются отношения.

Следовательно, структура системы зависит от того, какое из возможных Д-множеств системы выбрано для описания структуры[50]. Структура системы устойчива до тех пор, пока остаются неизменными отношения между ее подсистемами.

Математическое описание структурной устойчивости можно представить следующим образом. Пусть дана некоторая «форма», геометрически определяемая, например, графиком функции F (x); нужно выяснить, обладает ли эта функция «структурной устойчивостью», т. е. сохраняет ли эта функция ту же топологическую форму, если первоначальная функция F переводится малым возмущением в Q = F + oF. Процесс Р можно считать структурно устойчивым, если незначительные изменения начальных условий переводят его в процесс Р1, изоморфный процессу Р, т. е. малая деформация пространства-времени переводит процесс Р1 снова в процесс Р[51]. Данной математической модели соответствует введенное К. X. Уоддингтоном понятие креода, которое определяется как некоторая центральная траектория морфогенеза в совокупности возможных траекторий процесса, от которой в условиях нормального развития допустимы отклонения лишь в ограниченном диапазоне[52]. Понятие структурной устойчивости означает канализирование процессов индивидуального развития организмов.

Идеи и методы системно-структурного подхода имеют специфику своего проявления в биологическом познании, и прежде всего в том, что они должны учитывать не только экстенсивные, но и интенсивные, интегрированные в пространстве и во времени структуры. Понятие структуры в данном случае охватывает не только строение системы, но и ее изменения, взаимодействия и поведение в целом. «Структура есть относительная выделенность, дискретность частей (в отличие от “бесструктурных” образований), и фаз или стадий изменения и развития, а вместе с тем определенная упорядоченность, определенный строй всей совокупности отношений, связей и взаимодействий между этими частями, фазами или стадиями, объединяющимися в единое целое»[53]. Выявление дискретности в биологических процессах – характерная черта определения их специфики, выражающей единство устойчивости структур целого и лабильности их функций. При этом в области живой природы наблюдается своеобразное проявление данного единства. На уровне простейших происходят значительные структурные изменения целого при относительной неизменности прежних функций. Напротив, на уровне высших организмов приспособление в основном происходит за счет лабильности функций при сохранении структуры. На основании данного положения М. И. Сетров сделал вывод о том, что «высота организации систем в общем виде определяется тем, в какой степени актуализация функций осуществляется за счет изменения структуры (возникновение нового свойства и новой функции) и в какой степени – за счет увеличения у одной структуры множества функций, которые при изменении условий могут сменять друг друга. Чем более устойчива структура и более подвижна ее функция, тем выше организована система»[54].

Выявление структуры системы означает и познание ее частей, способов взаимодействия между ними, их отношения друг к другу. Поэтому структура включает дискретность частей, совокупность связей, отношений и взаимодействий между ними. Отсюда становится понятным, что структура живого является выражением пространственно-временной организации целостных систем, обусловленных закономерными связями структурных и функциональных элементов. При этом сами элементы процесса имеют не только вещественно-корпускулярную, но и динамическую, функциональную природу и включают элементарные акты, действия, изменения.

В последнее время широкое распространение получило понятие «функциональной структуры», состоящей из отдельных единиц. Элементарными единицами биологических систем зачастую выступают фундаментальные единицы, которые далеко не равнозначны элементам физического объекта[55]. Примерами таких функциональных структур могут служить различные акты поведения, такие, как убегание, поиск пищи и т. п. В итоге оказывается возможным на основании функции как некоторого заданного поведения биологической системы исследовать соответствующие структуры. Любая функция выражает роль элементов, процессов в сохранении и развитии той системы, частью которой она является. Она отражает такое отношение части к целому, при котором сохранение части обеспечивает существование целого. Любая структура целостного процесса, таким образом, состоит из элементарных актов, действий, изменений функциональных единиц и т. д., основанных на определенном их сочетании, упорядочивании во времени. Изучение различного рода структур – необходимое условие нахождения сохраняющихся величин. «Поиск сохраняющихся величин при изучении молекулярных структур живого составляет важнейшую сторону единого познавательного процесса, направленного на овладение функциональными основами жизни. Благодаря нахождению инвариантов становится возможным изучение вариабельности и, наоборот, через определение вариабельности, видоспецифичности обнаруживается сохранение таких существенных свойств, которые позволяют сформулировать некоторые устойчивые закономерности существования и развития молекулярных структур»[56].

Структура в широком смысле означает устойчивые характеристики явлений и процессов материального мира. Сохранение качественной определенности системы обусловлено устойчивостью ее структуры, не выходящей за пределы меры. Структура оказывается тождественной самой себе, если наиболее существенные параметры остаются неизменными. Она есть устойчивая выделенность, дискретность. Структура живых систем выражает аспект устойчивости, характеризующий пространственную упорядоченность элементов и процессов. Устойчивость, определяемая структурой, выступает как одно из атрибутивных свойств живого. На это обращал внимание еще Дж. Холдейн: «Активное поддержание нормальной, и притом специфической, структуры и есть то, что мы называем жизнью, понять сущность этого процесса – значит понять, что такое жизнь. Существование жизни как таковой предстает, таким образом, в виде аксиомы, на которой основывается научная биология»[57]. Эту же точку зрения разделяют и современные авторы, представляющие жизнь в виде некоторой глобальной структуры, обладающей подсистемами и характеризующейся целостной и устойчивой пространственной и биологической конфигурацией (эта конфигурация обладает структурной устойчивостью)[58].

Понятие структуры тесно связано с упорядоченностью процессов и явлений материального мира. «Порядок и структура суть материальные факты. Они внутренне присущи самой материи и имеют место… во всех формах движения материи… В то же время способ организации, структуры, порядок, закономерность в отдельных формах движения материи качественно различны. Но, так или иначе, они существуют повсюду. Хаотическая материя, лишенная всякой закономерности, была бы недоступна для познания»[59]. Упорядоченность характеризует систему с качественной стороны (со стороны отношения элементов и связей). Она является основой сохранения структуры системы. Порядок выражает соотношение процессов в некоторой повторяющейся последовательности. В частности, определяя причинность через упорядоченность, Д. И. Блохинцев отмечает, что причинность – определенная форма упорядочения событий в пространстве и времени и эта упорядоченность накладывает ограничения даже на самые хаотические события[60]. Определяя упорядоченность как строго согласованную последовательность протекания процессов, необходимо учитывать, что она сочетается с некоторой степенью неупорядоченности, т. е. включает в себя единство системной упорядоченности и частичной неупорядоченности, оптимальной для данного структурного уровня.

Проявления упорядоченности весьма специфичны для каждого уровня организации материи, а сам мир, как отмечал Н. Винер, «представляет собой некий организм, закрепленный не настолько жестко, чтобы незначительное изменение в какой-либо его части сразу же лишало его присущих ему особенностей, и не настолько свободный, чтобы всякое событие могло произойти столь же легко и просто, как и любое другое»[61]. Единство упорядоченности и неупорядоченности есть проявление единства устойчивости и изменчивости явлений и процессов материального мира. Во всех упорядоченных структурах в той или иной форме обнаруживаются элементы неупорядоченности, равным образом, как и хаос, беспорядок в одном отношении выражают упорядоченность в другом отношении. Выявление различных типов упорядоченности способствует определению различных форм сохранения, устойчивости. В мире обычно выделяют вещи, свойства и отношения. Отношения, складывающиеся в системе, выражают ее упорядоченность. При этом область отношений порядка весьма многообразна и проявляется в различных формах эквивалентности, моментах тождества, отношениях пространственной и временной последовательности и т. д. Повторяемость элементов и связей данной последовательности фиксирует упорядоченность системы. Чем выше степень единообразия (повторяемости), тем соответственно выше и порядок. Вероятность порядка тем больше, чем меньше разнообразие элементов системы. Упорядоченность отражает качественную определенность отношений элементов и связей системы, фиксируя в ней моменты устойчивости, сохранения.

Понятие упорядоченности тесно связано с понятием организации, представляющей особый вид упорядоченности, связанный с сохранением системы. Понятие организации обычно используется как для характеристики сформировавшихся систем, так и для обозначения упорядоченности процесса их исторического становления и развития. В плане соотношения организации и структуры, фиксирующей момент стабильности в системе, первое предстает как структура в действии, как структура, находящаяся в функционировании. Организация представляет собой динамическое единство структуры и функции. «Организация системы (или систем) есть способ связи, изменяющийся в общем случае во времени, обратимо протекающий в двух взаимно противоположных направлениях (понижения и повышения) и рассматриваемый по отношению к любой системе (или ко всем системам вообще) и безотносительно какой-либо определенной системы»[62].

Характерной чертой организации является соответствующий тип связей, определяющий специфику той или иной системы и ее сохранение. Организованность системы зависит от устойчивости структуры ее элементов и лабильности их функций, направленных на сохранение целостности системы. Организованность выражает структурно-функциональную целостность системы, обусловленной характером взаимодействий элементов. Структура является организованной, если ее существование либо необходимо для поддержания некой функциональной организации, либо зависит от деятельности такой организации[63].

Однако структура, будучи важнейшей характеристикой организации, определяющей ее существенные функции и свойства, не тождественна последней, ибо изменение структуры не всегда влечет изменение организации. Организация может оставаться постоянной и при изменении структуры, хотя такая зависимость неоднозначна. Если изменение структуры происходит как в пространстве, так и во времени, то изменение осуществляется лишь во времени. Понятие организации обычно используется для обозначения оформленности, упорядоченности объекта, включая в себя не только геометрическое строение того или иного объекта, т. е. расположение его элементов и частей в пространстве, но и характер взаимодействия элементов и частей, внутренней динамики объекта (т. е. временное строение объекта, диахроническую его структуру, характер его функци-онирования)[64]. Организованность системы – важнейший способ, свойство, обеспечивающее ее сохранение, основа ее существования и развития. Поэтому понятия организации и высоты организации определяются через категорию сохранения: «Организацией является такая совокупность явлений, в которой свойства последних проявляются как функции сохранения и развития этой совокупности»[65].

Тесно связано с понятием устойчивости понятие симметрии. Проявление симметрии обнаруживается на различных уровнях организации материи: атомном, молекулярном, организменном и представляет собой одно из самых распространенных явлений в природе. Понятие симметрии в общем виде характеризует существующий в окружающем мире порядок, пропорциональность и соразмерность между составными частями целого, определенное равновесие состояния, относительную устойчивость[66]. Обычно система тем более устойчива, чем более уравновешены и согласованы ее элементы. В то же время понятие симметрии не тождественно понятию сохранения: оно выражает единство сохранения и изменения. «Движение и сохранение представляются в понятии симметрии как взаимодополняемые, взаимоопределяемые моменты. Не только сохранение невозможно понять без движения, но и движение невозможно понять вне сохранения. Симметрия есть та целостность жизни объекта, в которой сохранение и изменение образуют взаимно противоположные основания этой целостности»[67]. В понятии симметрии отражены моменты сохранения, устойчивости материальных систем, которые характерны для окружающего нас мира.

Понятие устойчивости обычно связывается с неизменностью явлений и процессов окружающего мира, с сохраняемостью определенных состояний. Такое понимание устойчивости, будучи справедливым при рассмотрении сравнительно простых систем, оказывается недостаточным при переходе познания на более сложные уровни (биологический и социальный), и прежде всего потому, что в данном случае упускается другой, не менее важный аспект устойчивости, выражающий сохраняемость процессов. В реальных объектах устойчивость выступает одновременно и как состояние, и как процесс, и как результат, и как изменение.

Устойчивость процесса связана с изменением состояний, их переходом друг в друга во времени. Время выступает в основном в двух аспектах: в процессах функционирования и в процессах развития материальных систем. При этом при функциональном подходе исследователя интересуют в первую очередь те наиболее существенные переменные системы, которые обеспечивают ее устойчивость в относительно изменчивых условиях, т. е. те переменные, которые обеспечивают сохранение определенных состояний. Исторический подход базируется на выявлении параметров системы, которые ведут к ее изменению при одновременном сохранении основных свойств и качеств, позволяющих рассматривать ее тождественной самой себе.

Рассмотрение устойчивости системы в масштабах времени функционирования и развития позволяет показать недостаточность ее сведения к сохраняемости определенных состояний. Исследование устойчивости процесса предполагает помимо выявления структурных характеристик объекта (элементов и частей) определение их места и роли в процессах функционирования целого.

На основе анализа связи понятия устойчивости с другими понятиями можно заключить, что устойчивость как философское понятие является отражением общего свойства материальных систем, выражающего как сохранение структурной организации за счет поддержания наиболее существенных параметров системы, а в более общем плане как способ сохранения любого конкретного состояния материи, так и сохранение направленности процесса, его определенной упорядоченности, путей и тенденций развития.

1.3. Устойчивость и типология связей системных объектов

Одно из самых существенных свойств объективного мира – всеобщая связь предметов и процессов. «Вся доступная нам природа образует некую систему, некую совокупную связь тел, причем мы понимаем здесь под словом тело все материальные реальности, начиная от звезды и кончая атомом и даже частицей эфира, поскольку признается реальность последнего. В том обстоятельстве, что эти тела находятся во взаимной связи, уже заключено то, что они воздействуют друг на друга, и это их взаимное воздействие друг на друга и есть именно движение»[68]. Взаимодействие тел, явлений и процессов окружающего мира представляет собой сложную сеть различных взаимных воздействий как в пределах различных структурных уровней (галактика, звезды, макроскопические тела, молекулы, атомы, элементарные частицы), так и в рамках одного и того же структурного уровня материи. Связи существуют не только в рамках данной системы, но и принадлежат всему окружающему миру.

Наличие определенных связей, способ их взаимодействия – условие существования системы как целого. Представление о ее целостности, являющееся исходным пунктом системных исследований вообще, конкретизируется понятием связи как особого случая отношений между явлениями.

В настоящее время установлены наиболее существенные особенности различного рода связей. К их числу следует отнести объективность связей между явлениями, их многообразие, признание их существенности для самих вещей, понимание связей как взаимосвязей, признание их универсальности и относительного характера взаимосвязи явлений.

Объективность связей между явлениями выражает их независимость от сознания, их принадлежность самим материальным вещам. Во многих философских концепциях объективность связей нередко подменялась признанием их субъективности. При этом вещи сводились к отношениям, а последние считались чисто субъективными, зависящими от человека. Такой подход является односторонним, поскольку понятие материальности относится не только к вещам, но и к их свойствам и отношениям. Существование идеальных объектов предполагает наличие у них субъективных связей. Однако такие системы являются вторичными, производными от объективных.

При системном анализе механизмов функционирования сложных динамических систем исследуются не только субстратные элементы системы, но и характер связей и отношений между ними. Любой сложный объект выступает как иерархическое, многоуровневое образование и характеризуется наличием многообразных связей между составными частями. Так, на уровне анализа живых систем можно выделить такие связи, как пространственные, временные, функциональные (биохимические, физиологические и т. п.), которые определяют соответствующий тип системной организации. Это свидетельствует о том, что характеристика функционирования организма как целостной системы многоаспектна и ограничиться выделением одного типа связей невозможно.

Специфика и характер связей определяют соответствующий класс систем. К первому классу относятся неорганизованные сочетания любых элементов (груда камней, случайное скопление людей на улице), связи между которыми носят внешний, несущественный, случайный характер. Такого рода совокупности представляют собой конгломерат частей низкоорганизованных, и потому вряд ли целесообразно называть их системой. Ко второму – неорганичные и органичные системы, характеризующиеся наличием определенных связей между составными частями (или элементами), определяющими целостность системы и ее относительную устойчивость. Вместе с тем оба названных типа систем существенно отличаются друг от друга.

В настоящее время установлены следующие особенности органичных систем: наличие не только структурных, но и генетических связей; не только взаимодействия элементов в системе, но и связей, порождающих новые элементы и новые связи; возможность самостоятельного существования частей неорганичного целого и полная невозможность самостоятельного существования частей в органичной системе; наличие особых управляющих механизмов, через которые структура целого влияет на функционирование и развитие частей; способность к преобразованию частей вместе с целым; если устойчивость неорганичных систем обусловлена стабильностью их элементов, то устойчивость органичных является результатом постоянного обновления их элементов[69]. Указанные особенности органичных систем свидетельствуют о том, что существующие связи между элементами системы играют важную роль в ее существовании. Главная задача системных исследований – выявление наиболее существенных переменных, описывающих функционирование той или иной системы и установление связей между ними.

Характерная особенность диалектико-материалистического понимания связей – признание взаимной обусловленности связей – наиболее характерное их свойство, поскольку наличие всеобщего взаимодействия означает, что любая вещь так или иначе связана с другими и что она испытывает обратное воздействие со стороны последних. Все явления, вещи и процессы взаимосвязаны между собой и объединены в единую систему.

Данные современной экологии свидетельствуют о том, что в окружающем мире не существует изолированных явлений, что все включено в те или иные цепи событий, которые в свою очередь представляют собой лишь звенья в системе явлений других уровней. Известно, например, что некоторые хлорсодержащие вещества были обнаружены у пингвинов, обитающих в Арктике, несмотря на значительное расстояние, отделяющее данный вид от источников применения этих веществ. Можно обоснованно утверждать, что в окружающем мире все явления живой и неорганической природы теснейшим образом взаимосвязаны между собой, образуя единое целое.

Таким образом, при исследовании того или иного объекта как системы главное внимание должно быть направлено на выявление способа связи частей, элементов, подсистем объекта, определяющих функционирование единого целого, на установление функций, которые выполняет каждый элемент в этом целом, на исследование механизмов развития объектов как целостных, устойчивых систем, на выявление законов их функционирования.

В самой общей форме связь есть отношение, в котором те или иные изменения одного явления сопровождаются теми или иными изменениями другого явления (или группы явлений).

Понятие связи отражает различные способы воздействия объектов, их свойств, состояний и явлений. Основными составляющими всякой связи выступают элементы, находящиеся во взаимодействии, их пространственные и временные характеристики, качественные и количественные показатели. При этом связь может характеризовать взаимодействие между системами, между системой и ее элементами, между системой и окружающей средой, между свойствами, состояниями, явлениями, событиями одной или разных систем. Вместе с тем до сих пор не существует достаточно четкой классификации основных типов связей.

На основе анализа основных значений связей можно выделить следующую схему подобной классификации: связи взаимодействия, генетические, связи преобразования, структурные, функциональные, связи развития и управления[70].

Связи взаимодействия – это наиболее общая характеристика взаимосвязи свойств, явлений, процессов, объектов, различных систем материального мира. Само взаимодействие выступает как процесс, одновременно связывающий события, происходящие в разных системах как взаимообусловленные, т. е. таким образом, что изменение одной системы сопровождается изменением другой. В законах науки, как правило, находят выражение связи взаимодействия. Так, формулой Е = 2 выражена зависимость между энергией, массой тела и скоростью его движения. В биологических объектах различного рода химические, физиологические, гуморальные и т. п. связи также выступают как связи взаимодействия. В обществе такого рода связями являются отношения между отдельными людьми, коллективами и социальными системами. Связи взаимодействия в силу их предельной общности конкретизируются другими типами связей.

Генетические связи отражают процесс становления той или иной системы, процесс ее возникновения в определенный промежуток времени. Данные связи выделяются в ходе исторического рассмотрения интересующего объекта с точки зрения его внутренней структуры как тесно связанного и функционирующего целого, как совокупности исторических связей его внутренних составляющих, следующих друг за другом во времени.

Такие науки, как эволюционная теория, палеонтология, палеобиология и др., буквально пронизаны методом историзма, который объясняет явления с точки зрения их генезиса. Поэтому представляется не совсем обоснованным утверждение о том, что «современное эволюционное учение хотя и называют обычно “синтетическим”, является отнюдь не полным синтезом биологических знаний, вышедшим далеко за пределы организма и вида, с которыми “синтетическая” теория имеет дело. Она не дает полного объяснения даже всем основным проблемам генезиса организмов и видов…»[71].Подобные высказывания о недостаточности объяснения происхождения организмов теорией эволюции основываются на известной абсолютизации системно-структурного подхода в духе классического структурализма, противопоставляющего статику динамике, игнорирующего временной аспект развития систем. Изучение биологических структур немыслимо вне анализа их генезиса. «Любой организм, особь или вид является продуктом длительной истории, истории, насчитывающей более двух миллиардов лет. Как отмечал М. Дельбрюк, «зрелого физика, впервые сталкивающегося с проблемами биологии, ставит в тупик то обстоятельство, что в биологии нет “абсолютных явлений”. Каждое явление представляется иным в разных местах и в разное время. Любое животное, растение или микроорганизм, которое изучает биолог, – лишь одно звено в эволюционной цепи изменяющихся форм, ни одна из которых не остается сколько-нибудь постоянной. Едва ли можно до конца понять какую-нибудь структуру или функцию в организме, не изучив ее становления в ходе эволюции»[72].

Генетические связи конкретизируются в биологическом познании понятием координации, означающим наличие взаимозависимостей в процессах исторического преобразования органических форм. Возникновение координаций обусловлено наследственным изменением частей, объединенных системой связей. В процессе эволюции происходит изменение организации живых существ, что предполагает соответствующее изменение отдельных частей и органов. По характеру связи между координированно меняющимися частями в процессе эволюции, согласно И. И. Шмальгаузену, можно выделить следующие координации: биологические, динамические (морфофизиологические) и топографические. Биологические координации представляют собой закономерное изменение в соотношениях между органами, не связанными корреляциями в онтогенезе. Эти преобразования возникают в процессе естественного отбора и имеют приспособительный характер. Динамические координации есть следствие изменений морфологических и функциональных соотношений между органами, наследственно обусловленных изменением корреляций. Топографические координации определяются закономерным изменением в процессе эволюции конкретных корреляций, ведущих к изменению соотношений между органами. «В процессе эволюции происходит координированное изменение соотношений органов, и это, собственно, вполне понятно, так как в эволюирующем организме при всех изменениях его частей должно поддерживаться соответствие между пространственно и функционально связанными частями, а также соответствие отдельных изменений требованиям окружающей среды»[73].

Биологические координации – результат изменения органов и частей, под влиянием изменившихся внешних условий носят характер приспособлений. Такого рода координации являются адаптивными. Изменения образа жизни, способа передвижения по суше, климатических условий и т. п., ведущие к перестройке соответствующих органов, – типичные примеры биологических координаций.

Динамические координации имеют характер взаимного приспособления органов и выражаются в зависимых изменениях формы, величины и соотношений двух или более связанных частей или органов в процессе эволюции[74].

Топографические (или организационные) координации обозначают изменение граничащих органов, закономерное соотношение между органами, не связанными функциональными зависимостями. Такого рода координации весьма близки динамическим, и потому они выступают особым случаем динамических координаций[75].

Названные типы координаций выражают филогенетические связи, складывающиеся в процессе эволюции живых организмов на основе изменений частей, объединенных корреляциями. Конкретизация генетических связей через соответствующие типы координаций способствует определению их специфики, что имеет особое значение для разработки системно-структурного подхода. Более того, анализ такого рода связей позволяет вскрыть механизмы поддержания устойчивости живых организмов, становление их как строго согласованного целого в процессе филогенетического развития.

Тесно связанными с генетическими связями оказываются связи развития, определяющие смену состояний развивающегося объекта, конкретизация которых выражается положительными и отрицательными связями. Положительные обратные связи влияют на систему в том же направлении, в котором она изменяется сама, в результате чего происходит непрерывное самоусиление (нарастание) процесса. Отрицательные обратные связи, напротив, ограничивают самоусиление процесса, поддерживают его течение на определенном уровне. Отрицательная обратная связь ограничивает изменения, способные привести к разрушению системы. По этой причине процессы развития и характеризуются единством указанных типов связей.

Процессы регулирования с обратной связью могут быть сравнительно простыми в рамках данной подсистемы, однако могут достигать и большой сложности во многих взаимодействующих системах. Обычно выделяют несколько типов регулирования развития: простое регулирование, осуществляющееся в соответствии с определенной программой; прямое регулирование, построенное на корригировании факторов, вызывающих отклонение от программы, и регулирование на основе взаимозависимостей с обратной связью, сравнения фактических и заданных результатов системы, т. е. базирующееся на проверке результатов по сравнению с заданной программой. Применительно к процессам индивидуального развития живых систем можно выделить те же типы регулирования: программное, обусловленное наследственными факторами; развитие в зависимости от факторов внешней среды и развитие на основе обратных связей, т. е. выправление уклонений и восстановление «нормальных» соотношений при их нарушениях[76]. Сложность взаимозависимостей, складывающихся в ходе индивидуального развития, обеспечивает нормальное протекание жизненных процессов, устойчивость органических форм.

В процессе развития образуются взаимосвязанные циклы на уровне клеток, систем органов, которые подчиняются регуляторным механизмам всего организма в целом. Эти взаимозависимости обусловлены наследственными факторами через внутриклеточные биохимические процессы, взаимодействием развивающихся зачатков путем переноса вещества от одной части к другой, соотношениями между различными частями и органами в процессах функциональной зависимости между ними. Связи развития выступают, следовательно, как особая форма функциональных связей, однако в отличие от последних выражают процесс смены качественно различных состояний. Функциональные связи обеспечивают нормальное протекание определенных процессов в системе. Любая система обладает множеством функций, выражающих разнообразие соответствующих связей.

Как правило, в сложных системах имеется главная функция, которой подчиняются все остальные. На уровне высших организмов роль такой функции выполняет центральная нервная система. При этом достижение полезного результата системой возможно благодаря наличию специфических механизмов, принадлежащих системе как интегральному целому. «Ни одна организация, сколь бы обширной она ни была по количеству составляющих ее элементов, не может быть названа “самоуправляемой”, “саморегулируемой” системой, если ее функционирование, т. е. взаимодействие частей этой организации, не заканчивается каким-либо полезным для системы результатом, и если отсутствует обратная информация в управляющий центр о степени полезности этого результата. Только при данном условии все части системы вступают в консолидацию, взаимную координацию и субординацию. Благодаря этому вступление в действие каждого компонента происходит в точно определенный момент, иначе говоря, взаимодействие между ними имеет организованный и направленный характер»[77].

Понятие полезного результата выражает интегральную, главную функциональную связь живой системы, цель которой – самосохранение. Данное обобщение явилось новым достижением в разработке вопроса о функциональных связях, поскольку все функциональные системы предстали независимо от уровня своей организации и от количества составляющих их компонентов как системы, имеющие одну и ту же функциональную архитектуру, в которой полезный результат является доминирующим фактором, стабилизирующим организацию систем[78].

Функциональная связь выступает как определенная форма взаимодействия между элементами системы, которая обеспечивает их упорядоченное поведение. Так, на уровне развивающегося организма функциональная связь представляется как программа, созданная на основе взаимодействия элементов формирующейся системы. Поэтому функциональная связь выражает такой способ поведения системы, который способствует ее сохранению, т. е. она отражает определенное отношение частей и целого, элемента и системы, определяющее устойчивость данного процесса. Функциональные связи иерархически соподчинены друг другу. Рассматривая произвольные движения животных, Л. Берталанфи выделяет следующие уровни функциональной зависимости: физико-химические реакции в мышцах; мышечное сокращение как таковое; простые и сложные рефлексы; тропотактические реакции; реакции тела в целом, управляемые высшими центрами нервной системы, и, наконец, «общественные реакции», зависящие от сверхиндивидуальных единиц, как, например, деятельность особей колоний[79]. Такая иерархия взаимоотношений функций направлена в конечном счете на поддержание жизни.

На уровне клетки также можно выделить функциональные зависимости, связанные с движением веществ, метаболической полярностью отдельных участков протоплазмы, обеспечивающих это движение, процессы обмена веществ.

Рассматривая вопрос о становлении организации, М. И. Сетров анализирует некоторые принципы функциональной зависимости данного процесса: принцип совместимости, отражающий необходимость для возникновения системы однородных элементов и их взаимодействие как самого факта их совмещения; принцип актуализации функций, отражающий необходимость разнообразия свойств и их функционирования для сохранения системы в сложных условиях существования; принцип сосредоточения функций, отражающий надобность согласования самих функций, их подчиненности действию главной функции, направленной на сохранение и развитие системы[80]. Достаточно подробное описание этих принципов позволяет конкретизировать функциональные связи, проанализировать становление их в ходе исторического развития.

В общем виде функциональные связи выражают либо связь состояний, либо связь процессов. В первом случае речь идет о том, что каждое последующее состояние является функцией предыдущего, во втором – элементы системы связаны единством реализуемой функции.

Структурные связи – это связи элементов, определяющие свойства последних, т. е. такие взаимодействия элементов, которые придают целостность системе. Помимо этого, структурные связи выражают и разнообразные межэлементные взаимодействия. Примером такого рода связей могут служить разнообразные химические связи, определяющие устойчивость того или иного химического вещества. Устойчивость молекулы есть результат взаимодействия атомов, входящих в ее состав, носящих упорядоченный характер, выражающийся во взаимовлиянии всех составных частей.

Структурные связи являются пространственно-временными, поскольку их действие определяется, с одной стороны, на основе континуальных сил, т. е. различных полей, существующих в пространстве, с другой – это функциональные взаимодействия элементов между собой как дискретных образований.

Структурные связи – основа существования системы, ее стабильности как результата взаимодействия структурных элементов. Взаимодействие элементов, входящих в систему, является не только основой ее сохранения, но и условием дальнейшего развития. Поэтому наряду со структурными связями можно выделить и связи преобразования, определяющие переход системы из одного состояния в другое. Связи преобразования существуют как в самой системе, так и между системой и ее окружением. Примером первого типа связей могут служить различного рода химические катализаторы, замедляющие или ускоряющие течение данного процесса.

Связи между системой и ее окружением могут выражаться во взаимном влиянии на систему других систем (или объектов), приводящем к преобразованию системы. Примером могут служить связи между организмом и средой. Во взаимодействии организма с внешней средой отражается сложный, противоречивый процесс взаимного влияния данных систем. В ходе эволюционного процесса наряду с возникновением приспособительных модификаций (непосредственных изменений), возникающих под влиянием внешней среды (путем физиологических перестроек), в онтогенезе накапливаются одновременно и постепенно подобные же изменения генетического характера (генокопии), которые впоследствии приобретают решающее эволюционное значение, приводящие к перестройке организации живых систем. Участвующие в данном процессе связи также имеют весьма сложный характер, выражающийся в противоречивом единстве устойчивой наследственности с изменчивостью, которая нарушает сложившуюся организацию, ведет на основе отбора к возникновению новых форм жизни.

Загрузка...