Отличия бактерий от других клеток
1. Бактерии относятся к прокариотам, т. е. не имеют обособленного ядра.
2. В клеточной стенке бактерий содержится особый пептидогликан – муреин.
3. В бактериальной клетке отсутствуют аппарат Гольджи, эндоплазматическая сеть, митохондрии.
4. Роль митохондрий выполняют мезосомы – инвагинации цитоплазматической мембраны.
5. В бактериальной клетке много рибосом.
6. У бактерий могут быть специальные органеллы движения – жгутики.
7. Размеры бактерий колеблются от 0,3–0,5 до 5—10 мкм.
По форме клеток бактерии подразделяются на кокки, палочки и извитые.
В бактериальной клетке различают:
1) основные органеллы:
а) нуклеоид;
б) цитоплазму;
в) рибосомы;
г) цитоплазматическую мембрану;
д) клеточную стенку;
2) дополнительные органеллы:
а) споры;
б) капсулы;
в) ворсинки;
г) жгутики.
Цитоплазма представляет собой сложную коллоидную систему, состоящую из воды (75 %), минеральных соединений, белков, РНК и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.
Нуклеоид – ядерное вещество, распыленное в цитоплазме клетки. Не имеет ядерной мембраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране. Содержит около 60 млн пар оснований. Это чистая ДНК, она не cодержит белков гистонов. Их защитную функцию выполняют метилированные азотистые основания. В нуклеоиде закодирована основная генетическая информация, т. е. геном клетки.
Наряду с нуклеоидом в цитоплазме могут находиться автономные кольцевые молекулы ДНК с меньшей молекулярной массой – плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.
Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц – 30 S и 50 S. Рибосомы отвечают за синтез белка. Перед началом синтеза белка происходит объединение этих субъединиц в одну – 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.
Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.
Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ. К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др.
Клеточная стенка – упругое ригидное образование толщиной 150–200 ангстрем. Выполняет следующие функции:
1) защитную, осуществление фагоцитоза;
2) регуляцию осмотического давления;
3) рецепторную;
4) принимает участие в процессах питания деления клетки;
5) антигенную (определяется продукцией эндотоксина – основного соматического антигена бактерий);
6) стабилизирует форму и размер бактерий;
7) обеспечивает систему коммуникаций с внешней средой;
8) косвенно участвует в регуляции роста и деления клетки.
Клеточная стенка при обычных способах окраски не видна, но если клетку поместить в гипертонический раствор (при опыте плазмолиза), то она становится видимой.
Клеточная стенка вплотную примыкает к цитоплазматической мембране у грамположительных бактерий, у грамотрицательных бактерий клеточная стенка отделена от цитоплазматической мембраны периплазматическим пространством.
Клеточная стенка имеет два слоя:
1) наружный – пластичный;
2) внутренний – ригидный, состоящий из муреина.
В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии (по отношению к окраске по Грамму).
У грамположительных бактерий муреиновый слой составляет 80 % от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновый слой составляет 20 % от массы клеточной стенки, по Грамму, они окрашиваются в красный цвет.
У грамположительных бактерий наружный слой клеточной стенки содержит липопротеиды, гликопротеиды, тейхоевые кислоты, у них отсутствует липополисахаридный слой. Клеточная стенка выглядит аморфной, она не структурирована. Поэтому при разрушении муреинового каркаса бактерии полностью теряют клеточную стенку (становятся протопластами), не способны к размножению.
У грамотрицательных бактерий наружный пластический слой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида (О-антигена). При разрушении грамотрицательных бактерий образуются сферопласты – бактерии с частично сохраненной клеточной стенкой, не способные к размножению.
К клеточной стенке прилегает цитоплазматическая мембрана. Она обладает избирательной проницаемостью, принимает участие в транспорте питательных веществ, выведении экзотоксинов, энергетическом обмене клетки, является осмотическим барьером, участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.
Имеет обычное строение: два слоя фосфолипидов (25–40 %) и белки.
По функции мембранные белки разделяют на:
1) структурные;
2) пермиазы – белки транспортных систем;
3) энзимы – ферменты.
Липидный состав мембран непостоянен. Он может меняться в зависимости от условий культивирования и возраста культуры. Разные виды бактерий отличаются друг от друга по липидному составу своих мембран.
Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они характерны для грамположительных бактерий. Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клетками в процессе конъюгации. Через них идет обмен генетической информацией от донора к реципиенту. Донор – мужская клетка – обладает секс-пили. Женская клетка – реципиент – не имеет секc-пили. Белок секс-пили колируется генами F-плазмиды.
Жгутики – органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок – флагелин. Количество и расположение жгутиков может быть различным.
Различают:
1) монотрихи (имеют один жгутик);
2) лофотрихи (имеют пучок жгутиков на одном конце клетки);
3) амфитрихи (имеют по одному жгутику на каждом конце);
4) перитрихи (имеют несколько жгутиков, расположенных по периметру).
О подвижности бактерий судят, рассматривая живые микроорганизмы, либо косвенно – по характеру роста в среде Пешкова (полужидком агаре). Неподвижные бактерии растут строго по уколу, а подвижные дают диффузный рост.
Капсулы представляют собой дополнительную поверхностную оболочку. Они образуются при попадании микроорганизма в макроорганизм. Функция капсулы – защита от фагоцитоза и антител.
Различают макро– и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула – утолщение верхних слоев клеточной стенки. Обнаружить ее можно только при электронной микроскопии. Микрокапсулы характерны для вирулентных бактерий.
Среди бактерий различают:
1) истиннокапсульные бактерии (род Klebsiella) – сохраняют капсулообразование и при росте на питательных средах, а не только в макроорганизме;
2) ложнокапсульные – образуют капсулу только при попадании в макроорганизм.
Капсулы могут быть полисахаридными и белковыми. Они играют роль антигена, могут быть фактором вирулентности.
Споры – это особые формы существования некоторых бактерий при неблагоприятных условиях внешней среды. Спорообразование присуще грамположительным бактериям. В отличие от вегетативных форм споры более устойчивы к действию химических, термических факторов.
Чаще всего споры образуют бактерии рода Bacillus и Clostridium.
Процесс спорообразования заключается в утолщении всех оболочек клетки. Они пропитываются солями дипикалината кальция, становятся плотными, клетка теряет воду, замедляются все ее пластические процессы. При попадании споры в благоприятные условия она прорастает в вегетативную форму.
У грамотрицательных бактерий также обнаружена способность сохраняться в неблагоприятных условиях в виде некультивируемых форм. При этом нет типичного спорообразования, но в таких клетках замедлены метаболические процессы, невозможно сразу получить рост на питательной среде. Но при попадании в макроорганизм они превращаются в исходные формы.