Прежде чем начать составлять и преобразовывать формулы. Я хотел бы задать вопрос читателю.
Я хочу продать что-то новое или старое, красивое или безобразное – бриллианты, навоз, идеи, отремонтировать ваш дом. Почему я не могу сосчитать, сколько я смогу продать этого товара в течение месяца дня, года?
Почему возникают кризисы перепроизводства? И при этом, почему столько оптимистов или пессимистов говорят, что всё наладится или рухнет. И я скорее не доверяю им, чем доверяю. Развелось столько пророков в сети Интернет и в газетах. А как прекрасно, если бы все это можно было бы сосчитать рынок. Например, как в механике.
Представьте Вы хотите проехать из Санкт Петербурга в Москву (расстояние 600 км). Вы вспоминаете формулу равномерного движения, рассчитываете, что если вы будете ехать непрерывно и равномерно со скоростью 60 км в час, то это займёт 10 часов.
Давайте будем честными. Вы никогда не будете ехать равномерно и непрерывно. На одном участке Вы будете «лететь», а на другом ехать и никуда не спешить. Вы сделаете на втором часу перерыв в езде. Кроме того, получив этот результат, Вы полетите самолётом. А может, не тронетесь никуда. Так что математика не может за Вас принять решение.
Вывод отсюда парадоксальный, что экономика – это политика. А математика может только сказать, что будет при принятых Вами решениях.
Можно также сказать, что экономика – это психология. Например, известен «очевидный» экономический закон, который широко используется для анализа экономических процессов- это паника при ухудшении каких-то показтелей рынка
Математика не даёт прогнозов. Она только отвечает на Ваши вопросы, что будет в заданных вами обстоятельствах. Один из великих инвесторов 21—22 века Уоррен Баффет, говорил: «Я не делаю прогнозы, я даю оценки. Оценка не то, что прогноз». [3.3., стр.21, стр.23].
Теперь вопрос! Нельзя ли разработать такие математические методы, которые также как в механике говорили, что будет в заданных обстоятельствах. И если эти обстоятельства возникли можно рассчитать своё поведение и поведение среды.
К какой области математики они должны принадлежать?
Очевидно, что к теории вероятностей.
Труды, которые рассматривают основные вопросы экономики (спрос, предложения, цены и прочее), в основном применяют методы детерминированной математики [Альфред Маршалл, Кейнс1].
Экономика широко пользуется методами теории массового обслуживания. Например, для расчета числа кассовых аппаратов, очередей и т. п. При этом наиболее часто используется название «теория очередей».
В этой книге мы покажем, что применение теории случайных потоков к основным процессам на рынке – предложению и потреблению товаров, получению доходов позволяет ответить на большинство вопросов, которые возникают сегодня на практике.
Такой подход позволяет получить очень интересные результаты.
Перечислим эти результаты:
определена универсальная математическая характеристика товара – относительное потребление и потери (доля непроданных товаров);
представлена математическая модель рынка;
на основе этой модели, показано, что расчеты параметров рынка можно проводить по формулам теории массового обслуживания в частности по формулам Эрланга, Энгсета и др;
согласно формуле Эрланга показана зависимость между спросом и предложением, а также величиной потерь (величиной не проданных товаров);
расчеты по формуле Эрланга показывают, что основное влияние на спрос оказывает предложение (величина поставки), при росте предложения увеличиваются потери (доля непроданных товаров), поэтому наращивания предложения становится нецелесообразным. И как следствие, в зависимости от себестоимости падают доходы;
цена товара влияет на спрос только на начальном этапе, а далее на этапе насыщенного рынка, она играет роль, фактора конкурентной борьбы.
Результаты позволяют:
– проводить оценку перспектив различных бизнесов,
– оценивать величину устанавливаемой цены,
– определять возможные моменты кризисов и их периодичность (циклы Кондратьева) [3.7].
В заключение надо сказать, что в книге за основу изложения приняты результаты, полученные моим учителем Борисом Самойловичем Лившицем [2.1] и недавно скончавшимся его лучшим учеником Яковом Владимировичем Фидлиным. [2.2].
Их книга Лившиц Б. С., Фидлин Я. В., Харкевич А. Д. Теория телеграфных и телефонных сообщений. М.: Связь, 1971. до сих пор образец по содержанию и строгости и четкости математических доказательств.
Очень большие трудности вызывал у автора вопрос как подробно приводить математические доказательства. Как показал опыт – математические аспекты теории обслуживания случайных потоков известны далеко не всем. Поэтому в книгу включены сведения, позволяющие читателю получить необходимые сведения, не тратя массу времени на обращения к первоисточникам. Для корректности в книге есть много ссылок к первоисточникам.
Для тех, кто активно заинтересуется вопросам применения теории обслуживания случайных потоков, в приложении приведены отдельно книги по теории массового облуживания на русском и английском языке.
Список литературы составлен по разделам:
Теория вероятностей.
Теория массового обслуживания
Экономика
.Справочные материалы из Интернета