Сноски
1

Синапс – место контакта между двумя нейронами или между нейроном и получающей сигнал другой клеткой (мышечной, эпителиальной), где происходит передача нервного импульса. – Прим. ред.

2

Среднеквадратичное отклонение характеризует разброс значений какого-либо параметра вокруг его среднего значения. Если среднеквадратичное отклонение велико, значит, вариабельность высокая, то есть значения сильно расходятся со средним. При нормальном распределении практически все значения исследуемого параметра попадают в интервал плюс-минус три среднеквадратичных отклонения относительно среднего значения. – Здесь и далее, если не указано иное, прим. автора.

3

Так называемую модель триединого мозга предложил Пол Маклин. Согласно его гипотезе, мозг имеет структуру, обусловленную его эволюционным развитием, и состоит из трех слоев. Самый древний, рептильный, покрыт сверху вторым слоем – лимбической системой. А опоясывает эти два слоя третий, самый новый, – неокортекс. Идея Маклина по своей сути состоит в том, что по мере нашего развития новые слои мозга добавлялись к старым, как прицепляют дополнительный вагон к поезду. Я называю эту модель эволюции теорией поезда.

4

Исследователи определили, что головной мозг взрослого мужчины в среднем состоит из 86 миллиардов нейронов и 85 миллиардов других клеток и что кора мозга, хотя и составляет 82 % его массы, содержит лишь 19 % его нейронов. Большинство нейронов, 72 %, находятся в мозжечке, который составляет 10 % массы мозга.

5

Понятие относительной связности противопоставляется понятию абсолют ной. Сохранение первой предполагает, что каждый новый нейрон оказывается напрямую связан со всеми остальными, при этом общее число аксонов растет экспоненциально с увеличением количества нейронов. А при сохранении абсолютной связности число аксонов на один нейрон остается неизменным, то есть общее количество аксонов растет линейно. Более подробно об эволюционных принципах увеличения размера мозга рассказывается на странице 101. – Прим. ред.

6

Отдельные нейроны в шести слоях неокортекса организованы еще и вертикально – выстроены в столбики (так называемые микроколонки, миниколонки, или уже упоминавшиеся кортикальные модули), расположенные перпендикулярно поверхности мозга.

7

Отсылка к фразе “Роза есть роза есть роза есть роза” из одного произведения американской писательницы Гертруды Стайн. – Прим. ред.

8

Сосудистая структура в основании головного мозга.

9

Хьюлингс Джексон был одним из основателей этого журнала.

10

Гальтон, первооткрыватель во многих областях, также создал систему классификации отпечатков пальцев и вычислил вероятность того, что у двух людей отпечатки совпадут.

11

Позднее ученые пришли к выводу, что у таких детей развивались компенсаторные нервные пути.

12

Информация, поступающая от проприоцепторов – специальных рецепторов, которые воспринимают раздражения в тканях тела, связанные с его движением и мышечной активностью. – Прим. ред.

13

Левое полушарие преимущественно контролирует лицевые мышцы с правой стороны, а правое полушарие – с левой.

Список литературы
1

Hippocrates (400 B. C.) Hippocratic writings (Francis Adams, trans.). In: Adler M. J. (ed.) The great books of the western world (1952 ed., V 10, P 159). Chicago: Encyclopaedia Britannica, Inc. (Издание сочинений Гиппократа на русском языке: Гиппократ. Избранные книги / пер. с греч. Руднева В. И. М.: Издательство биологической и медицинской литературы, 1936. Глава “О священной болезни”. С. 509. – Здесь и далее, если не указано иное, прим. ред.)

2

Doyle A. C. (1892) Silver blaze. In: The complete Sherlock Holmes (1930 ed., V. 1, P. 335). Garden City, NY: Doubleday & Company, Inc. (Перевод рассказа на русский язык см., например, здесь: Дойл А. К. Серебряный / пер. Жуковой Ю. // Записки о Шерлоке Холмсе: Сборник / пер. с англ. Минск: Полымя, 1984. – Прим. перев.)

3

Lashley K. S. (1929) Brain mechanisms and intelligence: a quantitative study of injuries to the brain. Chicago: University of Chicago Press. (Издание на русском языке: Лешли К. С. Мозг и интеллект / пер. с англ. Нусенбаума А. А. М.: Огиз-Соцэкгиз, 1933.)

4

Watson J. B. (1930) Behaviorism (Rev. ed., P. 82). Chicago: University of Chicago Press.

5

Weiss P. A. (1934) In vitro experiments on the factors determining the course of the outgrowing nerve fiber. Journal of Experimental Zoology. 68 (3): 393–448.

6

Sperry R. W. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the National Academy of Sciences of the United States of America. 50 (4): 703-710.

7

Hebb D. O. (1949) The organization of behavior: a neuropsychological theory (P. 62). NY: Wiley.

8

Hebb D. O. (1947) The effects of early experience on problem solving at maturity. American Psychologist. 2: 306-307.

9

Ford F. R., Woodall B. (1938) Phenomena due to misdirection of regenerating fibers of cranial, spinal and autonomic nerves. Archives of Surgery. 36 (3): 480-496.

10

Sperry R. (1939) The functional results of muscle transposition in the hind limb of the rat. The Journal of Comparative Neurology. 73 (3): 379-404.

11

Sperry R. (1943) Functional results of crossing sensory nerves in the rat. The Journal of Comparative Neurology. 78 (1): 59-90.

12

Sperry R. W. (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proceedings of the National Academy of Sciences of the United States of America. 50 (4): 703-710.

13

Pomerat C. M. (1963) Activities associated with neuronal regeneration. The Anatomical Record. 145 (2): 371.

14

Krubitzer L. (2009) In search of a unifying theory of complex brain evolution. Annals of the New York Academy of Science. 1156: 44-67.

15

Marler P., Tamura M. (1964) Culturally transmitted patterns of vocal behavior in sparrows. Science. 146 (3650): 1483-1486.

16

Jerne N. (1967) Antibodies and learning: selection versus instruction. The neurosciences: a study program (P. 200-205). NY: Rockefeller University Press.

17

Boag P. T., Grant P. R. (1981) Intense natural selection in a population of Darwin's finches (Geospizinae) in the Galapagos. Science. 214 (4516): 82-85.

18

Sin W. C. et al. (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature. 419 (6906): 475-480.

19

Rioult-Pedotti M. S. et al. (2007) Plasticity of the synaptic modification range. Journal of Neurophysiology. 98 (6): 3688-3695.

20

Xu T. et al. (2009) Rapid formation and selective stabilization of synapses for enduring motor memories. Nature. 462 (7275): 915919.

21

BAILLARGEON R. E. (1987) Object permanence in 3 1/2- and 4 1/2-month-old infants. Developmental Psychology. 23 (5): 655-664.

22

См.: Spelke E. S. (1991) Physical knowledge in infancy: reflections on Piaget's theory. In: Carey S., Gelman R. (eds.) The epigenesis of mind: essays on biology and cognition (P. 133-169). Hillsdale, NJ: Lawrence Erlbaum Associates; а также Spelke E. S. (1994) Initial knowledge: six suggestions. Cognition. 50: 443-447.

23

Purves D. et al. (2004) Perceiving the intensity of light. Psychological Review. 111 (1): 142-158.

24

Purves D. An empirical explanation: simultaneous brightness contrast. См.: http://purveslab.net/simultaneous-brightness-contrast/

25

Lovejoy C. O. et al. (2009) Combmmgprehension and propulsion: the foot of Ardipithecus ramidus. Science. 326 (5949): 72, 72e1-72e8.

26

Festinger L. (1983) The human legacy (P. 4). NY: Columbia University Press.

27

Lovejoy C. O. (2009) Reexamining human origins in light of Ardipithecus ramidus. Science. 326 (5949): 74, 74e1-74e8.

28

Darwin C. (1871) The descent of man, and selection in relation to sex. London: John Murray (Facsimile ed., 1981, Princeton, NJ: Princeton University Press). (Дарвин Ч. Происхождение человека и половой отбор / пер. с англ. Соч. Т. 5. М., 1953.)

29

Huxley T. H. (1863) Evidence as to man's place in nature. London: Williams and Morgate (Reissued, 1959, Ann Arbor: University of Michigan Press). (Гексли Т. Г. О положении человека в ряду органических существ / пер. с англ. под ред. Бекетова А. СПб., 1864.)

30

Holloway R. L. (1966) Cranial capacity and neuron number: a critique and proposal. American Journal of Physical Anthropology. 25 (3): 305-314.

31

Holloway R. L. (2008) The human brain evolving: a personal retrospective. Annual Review of Anthropology. 37: 1-19.

32

См.: Preuss T. M. et al. (1999) Distinctive compartmental organization of human primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 96 (20): 11601-11606; а также Preuss T. M., Coleman G. Q. (2002) Human-specific organization of primary visual cortex: alternating compartments of dense Cat-301 and calbindin immunoreactivity in layer 4A. Cerebral Cortex. 12 (7): 671-691.

33

De Winter W., Oxnard C. E. (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature. 409: 710-714.

34

Oxnard C. E. (2004) Brain evolution: mammals, primates, chimpanzees, and humans. International Journal of Primatology. 25 (5): 1127-1158.

35

Rakic P. (2005) Vive la difference! Neuron. 47 (3): 323-325.

36

Premack D. (2007) Human and animal cognition: continuity and discontinuity. Proceedings of the National Academy of Sciences of the United States of America. 104 (35): 13861-13867.

37

Azevedo F. A. C. et al. (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology. 513 (5): 532-541.

38

Shariff G. A. (1953) Cell counts in the primate cerebral cortex. Journal of Comparative Neurology. 98 (3): 381-400.

39

Deacon T. W. (1990) Rethinking mammalian brain evolution. American Zoology. 30 (3): 629-705.

40

Ringo J. L. (1991) Neuronal interconnection as a function of brain size. Brain, Behavior and Evolution. 38 (1): 1-6.

41

Petersen S. E. et al. (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature. 331 (6157): 585-589.

42

Preuss T. M. (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D., Gibson K.R. (eds.) Evolutionary anatomy of the primate cerebral cortex (P. 154). Cambridge: Cambridge University Press.

43

Hutsler J. J. et al. (2005) Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Research. 1052: 71-81.

44

См.: Caviness V. S. et al. (1995) Numbers, time and neocortical neurogenesis: a general developmental and evolutionary mo del. Trends in Neuroscience. 18 (9): 379-383; Fuster J. M. (2003) Neurobiology of cortical networks. In: Cortex and mind (P. 17-53). NY: Oxford University Press; а также Jones E. G. (1981) Anatomy of cerebral cortex: columnar input-output organization. In: Schmitt F. O. et al. (eds.) The organization of the cerebral cortex (P. 199-235). Cambridge, MA: The MIT Press.

45

Hutsler J. J., Galuske R. A. W. (2003) Hemispheric asymmetries in cerebral cortical networks. Trends in Neuroscience. 26: 429-435.

46

Elston G. N., Rosa M. G. P. (2000) Pyramidal cells, patches and cortical columns: a comparative study of infragranular neurons in TEO, TE, and the superior temporal polysensory area of the macaque monkey. The Journal of Neuroscience. 20 (24): RC117.

47

Elston G. N. (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cerebral Cortex. 13 (11): 1124-1138.

48

Rilling J. K., Insel T. R. (1999) Differential expansion of neural projection systems in primate brain evolution. Neuroreport. 10 (7): 1453-1459.

49

См.: Buxhoeveden D., Casanova M. (2000) Comparative lateralisation patterns in the language area of human, chimpanzee, and rhesus monkey brains. Laterality. 5 (4): 315-330; а также Gilissen E. (2001) Structural symmetries and asymmetries in human and chimpanzee brains. In: Falk D., Gibson K. R. (eds.) Evolutionary anatomy of the primate cerebral cortex (P. 187-215). Cambridge: Cambridge University Press.

50

Vermeire B., Hamilton C. R. (1998) Inversion effect for faces in split-brain monkeys. Neuropsychologia. 36 (10): 1003-1014.

51

Halpern M. E. et al. (2005) Lateralization of the vertebrate brain: taking the side of model systems. Journal of Neuroscience. 25 (35): 10351-10357.

52

См. обзор: Hutsler J. J., Galuske R. A. W. (2003) Hemispheric asymmetries in cerebral cortical networks. Trends in Neuroscience. 26 (8): 429-435.

53

Black P., Myers R. E. (1964) Visual function of the forebrain commissures in the chimpanzee. Science. 146 (3645): 799-800.

54

Pasik P., Pasik T. (1982) Visual functions in monkeys after total removal of visual cerebral cortex. In: Neff W. D. (ed.) Contributions to sensory physiology (V. 7, P. 147–200). NY: Academic Press.

55

Rilling J. K. et al. (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience. 11 (4): 426-428.

56

Preuss T. M. (2003) What is it like to be a human? In: Gazzaniga M. S. (ed.) The cognitive neurosciences III (P. 14-15). Cambridge, MA: The MIT Press.

57

Elston G. N. (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cerebral Cortex. 13 (11): 1124-1138.

58

Elston G. N. et al. (2006) Specializations of the granular prefrontal cortex of primates: implications for cognitive processing. The Anatomical Record. 288A (1): 26-35.

59

Williamson A. et al. (1993) Comparison between the membrane and synaptic properties of human and rodent dentate granule cells. Brain Research. 622 (1-2): 194-202.

60

Nimchinsky E. A. et al. (1995) Spindle neurons of the human anterior cingulate cortex. Journal of Comparative Neurology. 355 (1): 27-37.

61

Fajardo C. et al. (2008) Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans. Neuroscience Letters. 435 (3): 215-218.

62

Nimchinsky E. A. et al. (1999) A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences of the United States of America. 96 (9): 5268-5273.

63

Allman J. M. et al. (2005) Intuition and autism: a possible role for von Economo neurons. Trends in Cognitive Science. 9 (8): 367-373.

64

Hakeem A. Y. et al. (2009) Von Economo neurons in the elephant brain. The Anatomical Record. 292 (2): 242-248.

65

Hof P. R., van der Gucht E. (2007) Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). The Anatomical Record. 290 (1): 1-31.

66

Butti C. et al. (2009) Total number and volume of von Economo neurons in the cerebral cortex of cetaceans. Journal of Comparative Neurology. 515 (2): 243-259.

67

Bystron I. et al. (2006) The first neurons of the human cerebral cortex. Nature Neuroscience. 9: 880-886.

68

Galton F. (1879) Psychometric experiments. Brain. 2: 149-162.

69

Caramazza A., Shelton J. R. (1998) Domain-specific knowledge systems in the brain: the animate-inanimate distinction. Journal of Cognitive Neuroscience. 10 (1): 1-34.

70

Boyer P., Barrett H. C. (2005) Domain specificity and intuitive ontology. In: Buss D. M. (ed.) The handbook of evolutionary psychology (P. 96-118). NY: Wiley.

71

Barrett H. C. (2005) Adaptations to predators and prey. In: Buss D. M. (ed.) The handbook of evolutionary psychology (P. 200223). NY: Wiley.

72

Coss R. G. et al. (1993) Development of antisnake defenses in California ground squirrels (Spermophilus beecheyi): II. Microevolutionary effects of relaxed selection from rattlesnakes. Behaviour. 124 (1-2): 137-164.

73

См: Stamm J. S., Sperry R. W. (1957) Function of corpus callosum in contralateral transfer of somesthetic discrimination in cats. Journal of Comparative Physiological Psychology. 50 (2): 138-143; а также Glickstein M., Sperry R. W. (1960) Intermanual somesthetic transfer in split-brain rhesus monkeys. Journal of Comparative Physiological Psychology. 53 (4): 322-327.

74

Akelaitis A. J. (1945) Studies on the corpus callosum: IV. Diagnostic dyspraxia in epileptics following partial and complete section of the corpus callosum. American Journal of Psychiatry. 101: 594599.

75

См.: Gazzaniga M. S. et al. (1962) Some functional effects of sectioning the cerebral commissures in man. Proceedings of the National Academy of Sciences of the United States of America. 48 (10): 1765-1769; Gazzaniga M. S. et al. (1963) Laterality effects in somesthesis following cerebral commissurotomy in man. Neuropsychologia. 1: 209-215; Gazzaniga M. S. et al. (1965) Observations on visual perception after disconnection of the cerebral hemispheres in man. Brain. 88: 221-236; а также Gazzaniga M. S., Sperry R. W. (1967) Language after section of the cerebral commissures. Brain. 90: 131-348.

76

Van Wagenen W. P., Herren R. Y. (1940) Surgical division of commissural pathways in the corpus callosum: relation to spread of an epileptic attack. Archives of Neurology and Psychiatry. 44 (4): 740-759.

77

Akelaitis A. J. (1941) Studies on the corpus callosum: II. The higher visual functions in each homonymous field following complete section of the corpus callosum. Archives of Neurology and Psychiatry. 45 (5): 788-796.

78

Sperry R. (1984) Consciousness, personal identity and the divided brain. Neuropsychologia. 22 (6): 661-673.

79

Kutas M. et al. (1990) Late positive event-related potentials after commissural section in humans. Journal of Cognitive Neuroscience. 2 (3): 258-271.

80

Gazzaniga M. S. et al. (1967) Dyspraxia following division of the cerebral commissures. Archives of Neurology. 16 (6): 606-612.

81

См.: Nass R. D., Gazzaniga M. S. (1987) Cerebral lateralization and specialization in human central nervous system. In: Plum F. (ed.) Handbook of physiology (Sec. 1, V. 5, P. 701761). Bethesda, MD: American Physiological Society; а также Zaidel E. (1990) Language functions in the two hemispheres following cerebral commissurotomy and hemispherectomy. In: Boller F., Grafman J. (eds.) Handbook of neuropsychology (V. 4, P. 115–150). Amsterdam: Elsevier.

82

Gazzaniga M. S., Smylie C. S. (1990) Hemispheric mechanisms controlling voluntary and spontaneous facial expressions. Journal of Cognitive Neuroscience. 2 (3): 239-245.

83

Sperry R. W. (1968) Hemisphere deconnection and unity in conscious awareness. American Psychologist. 23 (10): 723-733.

Загрузка...