Должно быть, юная Земля представляла собой весьма неуютное место. Солнце едва пробивалось сквозь толщу ядовитых газов, заволакивающих небо. Извергались вулканы, выбрасывая в океан раскаленную магму из недр земли. Приблизительно 3,7 миллиарда лет назад в гуще этого древнего «супа» возникла жизнь. Как именно она выглядела – точно неизвестно. Вероятнее всего, речь может идти о ранних формах архей, или древних бактерий, как их порой именуют. Взаимодействуя с вирусами, археи дали старт эволюции жизни. Древние бактерии не имели ядра, и потому их стали называть прокариотами – от греческих слов «до» и «ядро». Все высокоразвитые живые организмы – растения, животные, люди – имеют клеточное ядро, вследствие чего их причисляют к эукариотам (от греч. «истинный» и «ядро»). Однако мы, высокоразвитые, вступили в игру гораздо позднее. Более двух миллиардов лет Земля принадлежала исключительно археям и бактериям.
Эти прокариоты заполняли все мыслимые ниши в воде и на суше. Археи оказались весьма экстремальными созданиями: они могли выжить в кислоте, выдерживали ядовитые газы и кипящую воду и даже на дне болот чувствовали себя вполне комфортно. Многие из них едва ли изменились с тех пор и свою простую структуру донесли от самого начала жизни на планете до наших дней.
В течение последующих миллионов лет методом проб и ошибок в ходе взаимодействия с вирусами возникали комплексы биологических механизмов, которые сделали возможными современные формы жизни. Бактерии перерабатывали имеющийся материал и производили из него гумус, от которого пошло все многообразие жизни. Пик их развития был достигнут задолго до того, как образовались континенты.
Мы все знакомы с понятием «генеалогическое древо», которое показывает, как от прародителей ступень за ступенью появляются новые поколения. Если попытаться упорядочить наши представления о земной жизни с точки зрения ее архетипов – прокариотов и эукариотов, то генеалогическое древо жизни выглядит необычно. Оно состоит практически полностью из бактерий и архей.
Подавляющая часть наших «предшественников» по древу жизни – микробы. Нам, эукариотам, отведена всего лишь одна ветвь.
Если, например, два известных вида бактерий – эшерихия коли (кишечная палочка) и клостридии – находятся в близком родстве с представителями разных ветвей древа жизни, то зерно пшеницы – кузен человека. «Человечество – всего лишь крошечное пятнышко в могучем мире бактерий, – считает нью-йоркский микробиолог Мартин Дж. Блейзер, – и нам нужно еще привыкнуть к этому факту».
Первые следы живых организмов с клеточным ядром были найдены в окаменелостях, возраст которых насчитывает 1,5 миллиарда лет. От этих первых эукариотов в течение последующей тысячи миллионов лет развились первые наземные растения, затем – насекомые, рыбы, рептилии, птицы и млекопитающие.
Если представить себе всю историю Земли как одни сутки, состоящие из 24 часов, то жизнь на Земле возникла приблизительно в 4:30 утра, с появлением древних бактерий. Первые отдельные одноклеточные организмы и водоросли с клеточным ядром возникли где-то после обеда, около 16 часов. С 21 часа Землю заселили примитивные животные. Когда появились на свет наши прародители-обезьяны, до окончания суток оставалось где-то около 90 секунд. А наш собственный вид – Homo sapiens – развился за две секунды до полуночи.
Большинство микробов невидимы для нашего глаза – миллионы их могут уместиться на острие иглы. Но, взятые как единое целое, они не только многочисленнее всех других живых существ, но и значительно тяжелее. Суммарная биомасса всех рыб, млекопитающих и птиц, живущих на Земле, а также всех растущих на ней деревьев, прочих растений и мха, не может даже приблизиться к биомассе бактерий.
Если на одну чашу весов положить все микроорганизмы, живущие в Мировом океане, то, чтобы их уравновесить, потребуется 240 миллиардов африканских слонов.
Только в океане «резвится» невообразимое количество видов микробов, среди которых действительно хорошо изучены весьма немногие – по разным подсчетам, где-то от 10 до 30 микробных клеток.
Жизнь возникла, когда кислорода не было. В древней атмосфере Земли кислород содержался в минимальной концентрации. Предположительно, одна из групп цианобактерий научилась посредством солнечной энергии разлагать молекулы воды древнего Мирового океана и отделять водород от кислорода.
Тем самым бактерии добыли энергию и «изобрели» фотосинтез задолго до появления растений.
Последние возникли намного позже – в тот период, когда клетки эукариотов уже научились проглатывать бактерии, освоившие фотосинтез, и интегрировать их в свой организм. Получение кислорода посредством света оказалось превосходным методом добычи энергии, и этой способностью обладало все большее количество видов микробов.
Выделенный из воды кислород сотни миллионов лет вступал в реакции с другими элементами юной Земли. Океаны обогащались кислородом. Соединяясь с ним, самые распространенные элементы – кремний, железо и алюминий – окислялись и откладывались в виде руд. Сейчас кислород присутствует даже на глубине 16 километров в толще земной поверхности. Он составляет 50 % общей массы Земли и встречается чаще любых других элементов.
Позднее, приблизительно 2,4 миллиарда лет назад, когда вода и земля уже успели насытиться кислородом, его переизбыток распространился по всему миру. Это был свободный, несвязанный газообразный кислород. Так возникла наша атмосфера. Для большинства живших тогда видов этот газ был исключительно токсичным, и «великая кислородная катастрофа» означала их конец.
Настало время перемен и для бактерий. С тех давних пор существуют два типа бактерий: те, которым для жизнедеятельности и размножения необходим свободный кислород, – аэробы, и другие, для которых кислород является смертельным ядом, – анаэробы.
Клетки животных и человека чрезвычайно разнообразны. Их величина варьируется от нескольких микронов до нескольких сантиметров (например, некоторые мышечные клетки). Клетки бактерий намного меньше. Лишь один-единственный вид, открытый в Намибии в 1997 г., Thiomargarita namibiensis, виден невооруженным глазом. По величине эта «серная жемчужина Намибии» может достигать 0,5 мм. Обычные бактерии в сотни раз меньше, но зато многочисленнее. В одном миллилитре содержимого нашей толстой кишки насчитывается в сотни раз больше бактерий, чем людей на земном шаре.
Еще на порядок меньше размеры вирусов. На кончике острой иглы может уместиться 500 миллионов вирусов, вызывающих насморк.
Как правило, вирусы не причисляются к живым организмам, поскольку у них отсутствует функция самоорганизации и питания. Упрощенно говоря, это крошечные капсулы, содержащие капельку наследственного вещества. Некоторые вирусы имеют защитную оболочку из жиров или протеинов.
Вопрос о том, как развивались вирусы и насколько давно они существуют, еще не полностью решен. Вполне возможно, что они произошли от первых молекул, способных только к размножению, то есть относятся к самым древним формам жизни. Но в большинстве учебников приводится и другая теория: что вирус – это последовательность генов, которая в процессе наследственной передачи признаков отделяется и дальше развивается самостоятельно, как паразит. В биологии такие вирусы называют «ворами-карманниками».
Вирусы атакуют чужие клетки и проникают в них вместе со всем своим генетическим материалом, используя клетки как своего рода инкубаторы или фабрики для размножения. Некоторые из вирусов ведут эту игру так агрессивно, что атакованные клетки погибают. Вирусы вынуждают захваченные клетки производить свои копии до тех пор, пока «пленники» не выгорят и не умрут.
Примером служит вирус Эбола, который атакует не только клетки организма, но и лимфоузлы и защитные клетки иммунной системы. Большинство жертв этого вируса быстро умирает. С точки зрения опасных вирусов человек является для них неудачным носителем, так как недостаточно долго живет, чтобы передать вирус другим. Как следствие, вспышки лихорадки Эбола чаще всего быстро заканчивались. Но почему в 2014 г. все было иначе, то есть заболевание длилось дольше, еще не выяснено; возможно, мы столкнулись с более «мягкой» разновидностью вируса, которая не убивала сразу.
Очень немногие из вирусов используют тактику «выжженной земли», поскольку таким образом они бы разрушали собственное жизненное пространство, что могло завести их в эволюционный тупик. Дело в том, что наиболее опасные вирусы вызывают особенно сильную защитную реакцию организма-носителя. Иммунная система при таких террористических атаках тоже не миндальничает, а преследует каждого интервента беспощадно.
Вот почему большинство вирусов демонстрирует куда менее радикальный стиль жизни. Например, такие серьезные создания, как вирусы некоторых форм гепатита или папилломы человека предпочитают хронические формы инфекций. Они приносят меньше острых осложнений, довольно легко переносятся, поэтому не воспринимаются иммунной системой как нечто серьезное и даже подкармливаются ею.
Особенно хитро ведут себя риновирусы – возбудители насморка. Они распространяются в слизистой оболочке носа от клетки к клетке. Носоглотка реагирует и выделяет большое количество слизистого секрета. Из носа течет, вместе со слизью из него вытекают новые вирусы, чтобы найти новых носителей и заразить их насморком.
Таким образом, вирусы используют иммунную систему в качестве помощника их собственному размножению.
Вирусы и иммунная система фактически имеют общее прошлое, восходящее к древности, к началу жизни на Земле. Любая реакция вызывает ответную реакцию. Понятно, что ни одно живое существо не могло быть жизнеспособным, оставаясь «фабрикой» для вирусов, то есть влияние вирусов на любой организм с самого начала было ограничено. Для выполнения этой задачи уже первые живые существа имели примитивную систему защиты, которая под натиском вирусов, а позднее – бактерий и других воздействий постоянно развивалась и совершенствовалась. Сегодняшние высокоорганизованные механизмы иммунной системы были бы немыслимы без длительной адаптации и вирусов как спарринг-партнеров.
Существуют тысячи видов вирусов, следы которых передаются нам по наследству. Они спят в нас в виде генетической информации, и никто не знает, проснутся ли они когда-нибудь. Большинство из них никогда не активизируется. Скорее всего, можно говорить о генетических реликтах, существовавших задолго до возникновения человека.
При расшифровке человеческого генома подобные атавизмы рассматривались как генетический запас. Проводившиеся в недавнем прошлом исследования показали, что наследуемые вирусы могут иногда все-таки просыпаться и осуществлять полезную для организма деятельность.
В наследственном аппарате овец, к примеру, найдены 27 копий ретро-вирусов, которые схожи с вирусами, вызывающими у животных тяжелые заболевания легких. В Шотландии было проведено исследование, показавшее, что некоторые из найденных спящих вирусов имеют определенную возможность активизироваться. Эти «сони» могут потрудиться именно в тех случаях, когда инфекция появляется у их диких собратьев. «Они способны блокировать репродуктивный цикл проникших вирусов сразу во многих местах», – поясняет Массимо Пальмарини, руководитель группы исследователей в университете Глазго, которая открыла этот механизм. «Очевидно, в ходе эволюции они активно отбирались таким образом, чтобы защитить овец в случае необходимости».
Однако, судя по всему, это не единственная функция, возложенная на вирусы. Дальнейшие опыты показали, что овцы, у которых наследуемые вирусы были уничтожены, не могли зачать эмбрион в матке. Очевидно, гены определенных вирусов управляли контактом между организмом матери и плодом. В то же время известно, что это относится не только к овцам, а ко всем млекопитающим. Имеющий вирусное происхождение ген совершенно необходим для образования плаценты.
Вирусы – самые недооцененные микроорганизмы. В то время как исследование различных видов бактерий идет полным ходом, наше знание о вирусах больше напоминает черную дыру. Однако только в морях содержание вирусов в десять раз больше, чем клеточных организмов. «Каждый отдельный биологический вид имеет свои, характерные для него вирусы», – объясняет Патрик Фортерр, руководитель отдела микробиологии парижского Института Пастера.
Фортерр принадлежит к меньшинству ученых, которые предпочитают считать вирусы живыми организмами. Он сомневается в достоверности утверждения, что вирусы – это «карманники» биологии, которые воруют у клеток материал, чтобы стать самостоятельными. С точки зрения биологии более вероятен обратный вариант. Свыше 20 % наследственности однозначно имеет вирусное происхождение.
В ходе эволюции тот факт, что паразитирующие микроорганизмы, внедряясь в живые системы, преследуют только свои собственные цели, был бы огромным недостатком. Однако на самом деле такой симбиоз имеет явные преимущества. По крайней мере, те организмы, которые не сумели приспособиться к своим микробам, просто вымерли.
Очевидно, в древнем океане, где протекал процесс эволюции жизни, царил оживленный обмен. Вместо того чтобы изобретать какие-то технологии защиты, древние организмы кооперировались с бактериями или вирусами, которые обладали определенными свойствами. Когда морские одноклеточные начали заглатывать бактерии, освоившие фотосинтез, это стало стартовым сигналом для эволюции мира растений. А способность некоторых бактерий к аккумуляции энергии давала клеткам определенные преимущества. Как показали последние исследования, именно вирусы помогали клеткам в этой интеграции. Из бывших бактерий образовались митохондрии, главной задачей которых было извлечение энергии в процессе клеточного дыхания.
По сей день митохондрии являются на удивление самостоятельными, несмотря на то, что находятся внутри клеток. Они обладают собственной оболочкой, имеют свою наследственность и перемещаются независимо от цикла деления клетки. Когда умирают митохондрии – умирают и клетки. Бактерии, выполняющие определенную работу на клеточном уровне, не могли бы выжить вне организма. В качестве «вознаграждения» за свои заслуги митохондрии получают питание от клеток и являются частью их структуры.
По мнению Фортерра и его исследовательской группы в Институте Пастера, вирусы стояли у истоков жизни. «Конфликт между клеточным организмом и вирусом стал главным двигателем биологической эволюции».
Без участия вирусов не появилось бы человечество.
Вирусы постоянно стимулировали развитие, совершенно не подозревая, к чему это приведет. Но именно это свойство – «подбросить» свою наследственность, как яйцо кукушки, в чужой организм, спровоцировать в этом организме мутации, нарушения размножения и прочие отклонения, – привело путем бесконечных проб и ошибок к развитию «высшей» жизни. При этом не только клетки мутировали под воздействием вирусов, но и сами вирусы постоянно претерпевали изменения своих генов.
Однако с точки зрения эволюции значение имела не только проникающая способность вирусов, но и их структура. Из мира вирусов пришли многие новшества, которые в дальнейшем использовались клетками. Например, именно вирусы смогли так изменить наследственное вещество ДНК, что стало возможным создавать существенно более крупные и длинные биомолекулы.
Известная структура ДНК в виде двойной спирали – это «изобретение» вирусов. И то, что клетки имеют сегодня ядро в качестве «мозга» и переключающего центра, стало возможным благодаря присоединению составных частей вирусов. Такие понятия, как «хорошо» и «плохо», не играли в истории развития жизни ни малейшей роли. Что было пригодным и давало преимущества – использовалось, остальное погибало.
Итак, с точки зрения истории развития жизни мы, люди, – продукты мира микробов.
Наша клетка состоит из прижившихся вирусов и бактерий, наш генотип без их воздействия никогда бы не приблизился к «разумной» жизни. Фортерр подчеркивает: «С эволюционной точки зрения можно с некоторым правом утверждать, что в начальный период движущей силой возникновения жизни были вирусы. Они, в определенном смысле, сыграли роль Бога».
Мы живем в мире микробов. Они чужды нам, потому что мы не можем видеть их невооруженным глазом, но тем не менее мы нюхаем их, пробуем на вкус, принимаем в себя в немыслимом многообразии. Даже в таком крошечном организме, как водяная блоха, живет сотня видов микробов. А в человеке нашли себе прибежище тысячи видов!
Под микроскопом нам открывается завораживающий мир микроорганизмов. В каждом из нас присутствует целый «зоопарк» – пестрая смесь бактерий, вирусов, червей, грибов и клещей. Большинство этих микроорганизмов колонизирует нас с момента нашего рождения, затем к ним все время присоединяются новые или уходят прежние. Когда основные места, где они могут кормиться, заняты, небольшие группы микроорганизмов (по несколько тысяч) прячутся в какие-то ниши и ждут лучших времен. Если ухудшаются обстоятельства у их «соседей» – например, микробов, живущих в кишечнике, после приема курса антибиотиков или вследствие резкого изменения характера питания, то обитатели ниш получают возможность в кратчайший срок увеличить свою популяцию до многих миллионов и распространиться на гораздо большую территорию.
Знание об огромном многообразии нашего микробиома (всей совокупности микроорганизмов, обитающих внутри и снаружи человека) еще очень ново. Каких-то десять лет назад микробы не могли быть достоверно идентифицированы. Вырастить их в искусственной среде, а потом исследовать было сложно, так как основная масса бактерий мгновенно погибает вне привычной среды обитания – или вследствие непереносимости кислорода, или потому, что им требуются определенный уровень рН, определенные «соседи» или особые питательные вещества.
В рамках исследования человеческого генома были разработаны новые технологии. При помощи методики генетического секвенирования (установления последовательности) теперь возможно определить все гены отдельной экосистемы и на основании ее генетической структуры распознавать бактерии.
Генетическое секвенирование показало генное многообразие наших «сожителей», значительно превосходящее наш собственный, человеческий геном. Гены человека и его микробов вместе составляют так называемый метагеном.
В Европе такие исследования проводит научно-исследовательский институт INRA (Национальный институт сельскохозяйственных исследований) в Париже, где группа ученых под руководством микробиолога Душко Эрлиха составила недавно подробную карту «вселенной» кишечника во всем ее необычайном многообразии, обнаружив в том числе много совершенно неизвестных видов бактерий. «В метагеноме мы нашли гены всех живых существ, которые были нами установлены в процессе исследования человеческого тела, – поясняет Эрлих, – и количество этих генов оказалось в 150 раз больше, чем имеется у самого человека».
Новая методика позволяет одновременно исследовать сотни миллионов бактерий. Эрлих убежден, что подобные исследования сравнимы по значимости с раскрытием человеческого генома. «Наш второй геном – это коллектив микробов, которые живут с нами. Знание об этом способно вызвать революцию в медицине».
Микробиом каждого человека так же индивидуален, как его отпечатки пальцев, и сопровождает нас всю жизнь как верный друг. Микробы, с которыми мы завязали дружеские отношения еще во времена возникновения видов, выполняют в организмах своих хозяев, то есть в нас, разнообразные задачи.
Наши знания о структурах, которые сделали возможным биологическое разнообразие жизни, расширяются с каждым новым шагом. Исследования показали, например, что в каждом органе человеческого тела – в ухе, в носу, во рту, в области плеч, в различных отделах кишечника – преобладают именно те бактерии, которые выполняют определенную работу в данной области. В других частях тела эти «специалисты» встречаются очень редко. Наряду с ними есть так называемые «генералисты», которые присутствуют практически в каждом участке организма, но нигде не доминируют, а прячутся в нишах, группируясь по несколько тысяч экземпляров.
Важнейшей средой обитания микробов является кишечник. Именно отсюда микробиом активно сотрудничает с иммунной системой. Некоторые микробы передают сигналы, другие заняты энергоснабжением, третьи терпеливо обучают иммунную систему правильно оценивать опасности. У маленьких детей эта микробная система очень чувствительна к утрате внутреннего равновесия. Поэтому все факторы, нарушающие равновесие, особенно негативно влияют на организм ребенка.
Совершенно ясно, что мы постоянно вторгаемся в микробную среду и изменяем ее, используя средства гигиены, косметику и лекарственные препараты. Причем нет гарантии, что после этих вторжений равновесие будет восстановлено. Как отражается на организме преобладание новых типов бактерий, вытеснивших первоначальные их типы, было пока исследовано только для некоторых заболеваний. Так, например, массовое размножение клостридий в кишечнике может вызывать упорные и опасные для жизни поносы. Тем не менее в вопросах проникновения бактерий и нюансов их взаимодействия с организмом мы находимся только в самом начале исследований.
Не будь этого многообразия микробной жизни, процветающей внутри и снаружи нас, мы никогда бы не смогли переварить наш завтрак. Мы бы немедленно заболели и умерли, так как не способны сами производить жизненно важные витамины. Бесчисленные симбиозы – как, например, с упомянутыми ранее митохондриями – заставляют нас давать клеткам необходимое питание. Толстый кишечник, в котором проживает большинство наших микробов, походит на тропический лес, где живут самые разнообразные организмы. И все они, в соответствии со своими качествами и талантами, выполняют свои функции на благо кишечника.
Кооперация биологических организмов с самого начала встречалась гораздо чаще, чем стремление к изоляционизму. Зачем было примитивному многоклеточному организму самому с трудом вырабатывать какие-то свойства, когда гораздо проще вступить в сотрудничество с бактериями, которые уже обладали необходимыми ему способностями! Так постепенно росло содружество «специалистов» и возникал суперорганизм – такой, как у человека с его мириадами синергий (возможностей, усиливающих друг друга).
Сегодня каждый из нас имеет в своем организме необходимые ему различные бактерии. Они расщепляют те молекулы, которые им особенно подходят, и при этом производят энергию. Один штамм специализируется на аминокислотах, содержащихся в мясе, другой имеет как раз те гены, которые необходимы для расщепления углеводов с длинной цепью (пектинов, клетчатки) в овощах, третий подбирает все молекулы сахара, которые не были переработаны ранее в тонком кишечнике.
Пища, которую мы едим, способствует увеличению количества определенных бактерий. Если вы вегетарианец, то флора вашего кишечника со временем будет существенно отличаться от флоры человека, который с удовольствием ест мясо. Возможен и обратный процесс: бактерии посылают сигнал нашим нервным клеткам, передавая для мозга информацию о том, чего бы им сейчас хотелось, и мы воспринимаем это как жгучий голод или желание съесть что-то определенное.
Каждый из нас – единая система, которая, пока мы здоровы, находится в динамическом равновесии. И чем разнообразнее наш микробный запас, тем устойчивее это равновесие.