Глава 2. Органическое топливо и особенности его использования на тепловых электростанциях

2.1. Состав и основные характеристики органического топлива

Первичным источником энергии, который используется на тепловых электростанциях, является ископаемое топливо органического происхождения. Горючие вещества, входящие в состав топлива, – углерод С, водород Н и сера S (за исключением небольшой части серы, содержащейся в минеральной массе топлива – сульфатная сера). Кроме горючих веществ, в состав топлива входят кислород О (поддерживает горение, но теплоты не выделяет) и азот N (не участвующий в реакциях горения инертный газ). Кислород и азот иногда называют внутренним балластом топлива, в отличие от внешнего балласта, к которому относят золу и влагу.

Зола (обозначается буквой «А») – это минеральная часть топлива, включающая оксиды кремния, железа, алюминия, а также соли щелочных и щелочноземельных металлов.

Влага топлива (W) подразделяется на внешнюю и гигроскопическую. При длительном хранении твердого топлива в сухом месте оно теряет внешнюю влагу и становится «воздушно-сухим».

Таким образом, если какое-то количество топлива принять за 100 %, то можно записать:


Cr + Hr + Or + Nr + Sлr + Ar + Wr = 100 %. (2.1)


Индекс «r» в этом уравнении обозначает, что речь идет о рабочей массе топлива, полученного на электростанции (за рубежом обычно говорят не «рабочее», a «as receive», то есть «полученное» топливо).

Исключая из рабочего состава всю влагу, можно получить:


Cd + Hd + Od + Nd + Sлd + Ad = 100 %. (2.2)


Индекс «d» в этом уравнении обозначает «dry», то есть «на сухую массу».

Если пойти еще дальше и исключить золу (точнее – минеральную массу), то можно получить состав горючей массы топлива:


Cdaf + Hdaf + Ndaf + Odaf + Sлdaf = 100 %. (2.3)


Индекс «daf» в этом уравнении обозначает топливо – «dry ash free», то есть «сухое и свободное от золы».

Сера со значком «л», входящая в вышеприведенные уравнения, во-первых, не включает серу, входящую в состав золы, и, во-вторых, состоит из двух частей: серы органической и серы колчеданной (Fe2S), которая присутствует в некоторых марках углей в заметном количестве.

Следовательно, можно рассматривать еще и органическую массу топлива, которая не содержит серы колчеданной:


Co + Ho + Oo + No + So = 100 %. (2.4)


Для пересчета состава топлива, величины выхода летучих и теплоты сгорания с одной массы топлива на другую необходимо воспользоваться коэффициентами пересчета, приведенными в табл. 2.1.

Некоторые особенности при пересчете характеристик топлива возникают при использовании сланцев, имеющих повышенное содержание карбонатов. Если для обычных видов топлива горючая масса – это разница 100 – Wr – Аr, то при содержании карбонатов больше 2 % необходимо считать горючую массу по другой формуле:

100−Wr−Aиспрr −(СО2)K,

где Аиспр – зольность без учета сульфатов, образовавшихся при разложении карбонатов и с поправкой на сгорание серы колчеданной, то есть


Aиспрr = Ar−[2,5(Sa−Sст)d + 0,375 Sкd]·(1−Wr/100),


где S, Sст и Sк – содержание серы в лабораторной золе, сульфатной серы в топливе и колчеданной серы соответственно.

Горючими элементами топлива, как уже отмечалось, являются углерод, водород и сера. При полном сгорании с теоретически необходимым количеством окислителя эти компоненты выделяют разное количество теплоты:

С + О2 = CO2 − 8130 ккал/кг (34,04 МДж/кг);

2 + O2 = 2Н2O − 29 100 ккал/кг (121,8 МДж/кг);

S + O2 = SO2 − 2600 ккал/кг (10,88 МДж/кг).

Следует учитывать, что углерод составляет большую часть рабочей массы топлива: в твердом топливе его доля равна 50–75 % (в зависимости от возраста углей), а в мазутах – 83–85 %. Водорода в топливе меньше, но он отличается очень высокой теплотой сгорания. Если продукты его сгорания сконденсировать (то есть учитывать не низшую, а высшую теплоту сгорания), выделенная теплота составит даже не 121,8, а 144,4 МДж/кг.

Серу отличает невысокая теплота сгорания, да и количество её, как правило, невелико. Следовательно, сера не представляет существенной ценности как горючий элемент, а вот проблемы, связанные с наличием SO2 в продуктах сгорания, – весьма существенны.


Таблица 2.1 Коэффициенты пересчета характеристик топлива


Всё вышесказанное относится в основном к твердому и жидкому топливам. Газ, в отличие от них, – механическая смесь нескольких компонентов. В природном газе большинства месторождений основной составляющей является метан – СН4, количество которого колеблется от 85 до 96 %. Кроме метана, в составе природного газа обычно имеются более тяжелые углеводороды: этан С2Н6, пропан С3Н8, бутан С4Н10 и др. Газ некоторых месторождений, кроме углеводородов, содержит и другие горючие компоненты: водород Н2 и оксид углерода СО. Из негорючих компонентов в состав газа входят азот N2 и диоксид углерода CO2.

Основной характеристикой любого вида органического топлива является его теплота сгорания, то есть количество теплоты, выделяющейся при полном сгорании единицы массы (для твердого и жидкого топлива) или единицы объема (для газа). В расчетах чаще всего используют низшую теплоту сгорания (Qir) – количество теплоты, образовавшейся при сжигании 1 кг угля или мазута, а при сжигании газообразного топлива – 1 м3 этого газа. При этом предполагается, что продукты сжигания остались в газообразном состоянии. Иногда используют другую теплотехническую характеристику – высшую теплоту сгорания (Qsr), но при этом в тексте обязательно уточняют, что речь идет именно о Qsr (или HHV – higher heating value, в отличие от LНV – lower heating value — низшей теплоты сгорания). Высшая теплота сгорания всегда больше, чем низшая, так как она учитывает дополнительное количество теплоты, выделяющейся при конденсации водяных паров и охлаждении всех продуктов сгорания до исходной температуры.

Пересчет низшей теплоты сгорания на высшую (и наоборот) выполняется по следующей зависимости:


Qir = Qsr − 6(Wr + 9Нr), ккал/кг (2.5)

или

Qir = Qsr − 25,12 (Wr + 9Нr), кДж/кг. (2.5 а)


Другие характеристики топлив, отличающихся своим агрегатным состоянием, удобнее рассматривать отдельно для твердого, жидкого и газообразного топлива.

2.2. Твердое топливо

Твердое топливо включает в себя прежде всего различные угли (антрацит, каменные и бурые угли), а также торф, сланцы и некоторые виды отходов (как промышленных, так и твердых бытовых отходов – ТБО). К этому же виду топлива относится один из возобновляемых источников энергии – биотопливо, то есть древесина, отходы лесозаготовки, деревопереработки, целлюлозно-бумажного и сельскохозяйственного производства.

Преобладающим видом топлива для тепловых электростанций являются различные марки угля. В России прочно установилось деление углей на бурые (самые молодые), каменные и антрациты (старые угли с максимальной степенью углефикации).

Бурые угли делятся по максимальной влагоемкости (в расчете на беззольную массу Wafmax) на 3 группы: 1Б (Wafmax > 50 %), 2Б (30 ≤ Wafmax ≤ 50) и ЗБ (Wafmax < 30 %). Бурые угли отличают высокий выход летучих (Vdaf > 40 %), неспекшийся коксовый остаток и высокая гигроскопичность. В этих углях меньше (по сравнению с каменными углями) углерода и больше кислорода. При сушке на воздухе бурые угли теряют механическую прочность и растрескиваются. Их недостатком является и повышенная склонность к самовозгоранию при хранении на складе.

Классификация каменных углей основана на величине выхода летучих на горючую массу, то есть Vdaf, %. Если оставить в стороне коксующиеся угли, используемые, главным образом, в металлургическом производстве, то все энергетические угли можно расположить по степени снижения Vdaf: Д – длиннопламенные; ДГ – длиннопламенные-газовые; Г – газовые (группы 1Г и 2Г); слабоспекающиеся (группы 1CC, 2СС и ЗСС); тощие (группы 1T и 2Т). Тощий уголь 1-й группы имеет Vdaf больше 12 %, а 2Т – от 8 до 12 %. Замыкают этот ряд антрациты (группы 1А, 2А и ЗА). Все они имеют выход летучих на горючую массу менее 8 %, но группы 1–3 отличаются разной величиной объемного выхода летучих веществ.

Приведенная выше классификация не учитывает каменные угли, подвергшиеся окислению в природных условиях, в период формирования угольных месторождений. Окисленные угли отличают пониженная высшая теплота сгорания на сухую и беззольную массу (Qsdaf), а также потеря спекаемости. Различают I группу окисленности (снижение Qsdaf на 10 %) и II группу (снижение Qsdaf нa 25 %). Так, например, длиннопламенный уголь Таллинского месторождения (Кузбасс) имеет высшую теплоту сгорания Qsdaf = 31,82 МДж/кг. Окисленный уголь того же месторождения ДРОК-I (длиннопламенный, рядовой, окисленный I группы) – до 27,42 МДж/кг, а еще более окисленный – ДРОК-II – только 25,04 МДж/кг.

Еще одна важная характеристика каменных углей – размер кусков. Поступивший на электростанцию уголь по этому показателю делится на следующие классы:

плита (П – от 100 до 200 или 300 мм);

крупный (К – 50–100 мм);

орех (О – 25–50 мм);

мелкий (М – 13–25 мм);

семечко (С – 6–13 мм);

штыб (Ш – 0–6 мм);

рядовой (Р – 0–200 или 300 мм).

Верхний предел 300 мм распространяется только на угольные разрезы, то есть на предприятия с открытым способом добычи.

Иногда на тепловые электростанции поступает уголь не прямо от добывающего предприятия, а после обогатительных фабрик. При обогащении углей мокрым и сухим способами различают следующие продукты обогащения: малозольный концентрат, высокозольный промпродукт, отсевы мелких классов, шлам, а также породу и «хвосты», удаляемые в отвал. С учетом этого можно по маркировке поступающего на ТЭС угля представить некоторые характеристики топлива, весьма важные как для надежности топливоподачи в пределах ТЭС, так и для сжигания в котельном цехе. Например, ГСШ – газовый уголь с размерами «семечко» и «штыб», а ГРОКII – это тоже газовый уголь, но «рядовой», 2-й группы окисленности.

Заметную роль в организации топочного процесса играют характеристики минеральной части. Условно можно минеральную часть угля разделить на три группы:

– минералы, занесенные в пласт топлива в результате геологических преобразований в процессе его образования;

– минералы прилегающих к пласту топлива горных пород, занесенные в топливо при его добыче;

– минералы, связанные с органической частью топлива или образующиеся при ее разложении в процессе углеобразования.

Последняя группа минералов называется внутренней золой; она равномерно распределена по органической массе топлива. Первая группа минералов, в зависимости от равномерности их распределения по топливу, может быть источником как внутренней, так и внешней золы. Вторая группа минералов относится к внешней золе.

Еще одна важная деталь: количество золы, получаемой при полном сжигании угля, не равно количеству содержащихся в угле минеральных примесей. Дело в том, что в состав минеральной части входят глинистые минералы, слюды, карбонаты, сульфаты и ряд других веществ. При нагревании глинистых минералов и слюд в топке сначала происходит потеря кристаллизационной воды (до 500–600 °С), затем разрушается первоначальная кристаллическая решетка и образуются вторичные минералы (муллит, шпинель и др.). При дальнейшем повышении температуры (сверх 1100 °С) начинается плавление. Еще раньше, в диапазоне температур 400–900 °С, разлагаются карбонаты и образуются весьма тугоплавкие оксиды. При температурах 700–800 °С в окислительной среде полностью выгорает пирит. Все эти процессы при горении топлива приводят к значительному изменению состава и массы минеральных примесей. Таким образом, правильнее считать, что зола – твердый продукт реакций минеральной части топлива, образующийся при сжигании этого топлива.

Многочисленные исследования показали, что при сжигании каменных углей минеральная масса обычно оказывается больше, чем зольность, а для малозольных бурых углей – меньше.

Для общей оценки химических свойств золы введены понятия «кислого» и «основного» состава шлака. Поведение золы в топке в значительной степени определяет величина отношения оксидов кислотного характера к основным:


. (2.6)


С учетом этого выражение золы углей Донбасса, большей части Кузнецкого, Подмосковного, Экибастузского и некоторых других бассейнов относят к кислым. Угли Канско-Ачинского бассейна, торф, сланцы имеют золу, которая относится к основным (К<1,0). Состав золы оказывает большое влияние на шлакующие свойства твердых видов топлива.

2.3. Газообразное топливо

В условиях Российской Федерации газообразное топливо – это прежде всего природный газ, так как на долю России приходится почти треть всех разведанных запасов природного газа. Как уже отмечалось, газообразное топливо – смесь горючих и негорючих газов, содержащих небольшое количество примесей в виде водяного пара и пыли. Кроме природного газа, на электростанции могут поставляться попутные и промышленные газы: доменный, коксовый, синтез-газ.

Теплота сгорания отдельных газов и их массовая плотность приведены в табл. 2.2.


Таблица 2.2. Теплота сгорания и плотность газов

*Значения плотности даны при 0° С и 101,3 кПа.


Основная часть природного газа – метан, доля которого в разных месторождениях составляет от 84 до 98 %. Значительно меньше в природном газе более тяжелых предельных и непредельных углеводородов. Имеются месторождения с заметным содержанием токсичного и коррозионно-активного сероводорода H2S. В России к их числу относятся, например, Оренбургское и Астраханское месторождения. Использование такого газа на электростанциях возможно только после его очистки на газоперерабатывающих заводах.

Попутные (нефтепромысловые) газы состоят из метана и других составляющих. В этих газах значительно меньше СН4, но зато количество тяжелых углеводородов составляет уже десятки процентов. Количество и качество попутного газа зависят от состава сырой нефти и ее стабилизации на месте добычи (только стабилизированная нефть считается подготовленной для дальнейшей транспортировки по трубопроводам или в танкерах).

Средние характеристики попутных газов некоторых месторождений Российской Федерации приведены в табл. 2.3.


Таблица 2.3. Состав и плотность попутных газов


Таблица 2.4. Состав и плотность промышленных газов


Кроме природных и попутных газов, в промышленности иногда используют различные искусственные газы. На предприятиях металлургической промышленности (доменное производство и коксовые печи) образуется большое количество низкокалорийного доменного газа (Qir = 4,0÷5,0 МДж/м3) и среднекалорийного коксового газа (Qir = 17÷19 МДж/м3), содержащего Н2, СН4, СО и другие горючие газообразные компоненты (табл. 2.4). Перед использованием в котлах доменный и коксовый газ должны быть очищены от пыли.

В некоторых странах, не столь богатых природным газом, как Россия, существует целая отрасль промышленности, занятая производством генераторных газов, часто называемых синтез-газами. Разработаны методы и создано оборудование для получения удобного при использовании в быту топлива путем газификации твердых органических топлив: угля, сланцев, торфа, древесины. При использовании в качестве окислителя обычного воздуха получают низкокалорийный газ (3÷5 МДж/м3), а газификация на кислородном дутье позволяет получить среднекалорийный газ с Qir = 16÷17 МДж/м3. Такой газ, в отличие от низкокалорийного, можно использовать не только на месте получения, но и транспортировать на некоторое расстояние. Состав генераторного газа определяется исходным топливом и технологией его газификации.

Однако в условиях российской действительности, при сравнительно низких ценах на природный газ, все виды генераторного газа оказываются неконкурентоспособны по сравнению с природным газом. Тем не менее в некоторых случаях (при отсутствии вблизи объекта газовых магистралей или необходимости утилизировать содержащие органические вещества отходы производства), практикуют установку газификаторов с воздушным или паровоздушным дутьем для получения газовой смеси, содержащей Н2, СО и небольшое количество углеводородов, что позволяет обеспечить газообразным топливом отопительные котлы с автоматизированными горелками и высоким КПД.

Во второй половине прошлого века в промышленном масштабе было налажено производство СПГ – сжиженного природного газа. Это фактически новый вид топлива, который на первой и последней стадиях своего существования является газом, но при транспортировке и хранении ведет себя как жидкое топливо (обеспечивая тем самым широкий рынок для реализации на огромных территориях, куда невозможно или нецелесообразно тянуть газовую магистраль). Получается СПГ путем сжижения природного газа за счет охлаждения его до температуры ниже – 160 °С. После регазификации на месте потребления СПГ не теряет свойств, характерных для обычного природного газа. При давлении 0,6 МПа, которое является рабочим при транспортировке и хранении СПГ, его плотность составляет 385 кг/м3. Понятно, что при такой температуре хранить и перевозить СПГ приходится в специальных (криогенных) емкостях. Стоимость таких установок достаточно высока, однако цена сжиженного природного газа существенно ниже стоимости аналогичного продукта – сжиженного углеводородного газа, более известного под названием пропан-бутановой смеси.

Сырьем для получения пропан-бутановых смесей, широко используемых пока что только в жилищно-бытовом секторе, является, главным образом, попутный газ нефтедобычи. Другой источник сжиженного газа – нефтеперерабатывающие заводы (НПЗ), на которые поступает сырая нефть, содержащая сжиженные нефтяные газы. В процессе дистилляции они улавливаются, причем их выход составляет 2–3 % объема перерабатываемой нефти. Теплота сгорания этого топлива и другие его характеристики зависят от соотношения между содержанием бутана и пропана.

2.4. Жидкое топливо

Жидкое топливо – это, как правило, продукт переработки сырой нефти (хотя в некоторых странах освоена технология получения жидкого топлива из угля, сланцев или других органических веществ). Сырая нефть является смесью органических соединений, а также некоторого количества сернистых и азотных соединений, парафинов и смол. После переработки сырой нефти на НПЗ получаются легкие сорта топлива: бензин, керосин и дизельное топливо. Эти виды топлива используются, главным образом, на транспорте, в коммунально-бытовом секторе и в двигателях внутреннего сгорания различных промышленных предприятий.

Затем на НПЗ получают топочные мазуты, которые являются тяжелыми крекинг-остатками или смесями крекинг-остатков с мазутами прямой перегонки. Помимо высокой вязкости и плюсовой температуры застывания, в топочных мазутах допускается более высокое содержание механических примесей, серы и воды. Топочные мазуты поступают на тепловые электростанции и крупные котлы промышленных котельных. При этом бо́льшая часть минеральных примесей, содержащихся в исходной нефти, концентрируется именно в мазуте.

В соответствии с Российскими стандартами на электростанции поставляются мазуты марок 40 и 100. Марка в данном случае определяется предельной вязкостью мазута при температуре 80 °С. Для мазута марки 40 она не должна превышать 8,0 градусов условной вязкости (°ВУ), а для мазута марки 100 – 15,5 °ВУ При подогреве мазута вязкость снижается до уровня, который обеспечивает устойчивый транспорт мазута по трубопроводам и тонкое распыливание в механических форсунках (рис. 2.1).


Рис. 2.1. Диаграмма «Вязкость – температура» для жидкого топлива


По содержанию серы мазуты разделяются на малосернистые (Sr≤0,5 %), сернистые (до 2,0 % серы) и высокосернистые (до 3,5 % серы). Уровень сернистости зависит, главным образом, от содержания серы в исходной нефти: при ее переработке от 70 до 90 % сернистых соединений переходит в мазут, создавая тем самым серьезные трудности для эксплуатационного персонала ТЭС.

Загрузка...