Формулировка теоремы Виета:
Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.
Таким образом, если уравнение x2 + bx + c = 0 имеет два корня: x1 и x2, то справедливы следующие два равенства:
Согласно этим равенствам, для получения решения квадратного уравнения необходимо подбором найти два числа, сумма которых равна коэффициенту при x, взятому с обратным знаком, а произведение равно свободному члену. Следует заметить, что при этом исходное квадратное уравнение должно быть приведено к виду, когда коэффициент a при x2 равен единице.
Докажем теорему Виета.
Формулы для вычисления корней квадратного уравнения (рассматривается ситуация, когда дискриминант D положителен; уравнение с нулевым дискриминантом можно считать частным случаем):
Вычислим сумму этих корней:
Раскрыв скобки и сократив слагаемые, получаем:
.
Вычислим произведение корней:
Применив в числителе формулу разности квадратов, получаем:
Подставляем известную нам формулу для вычисления дискриминанта:
Получаем:
Таким образом, оба равенства теоремы Виета доказаны.
Формулировка обратной теоремы Виета:
Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа являются корнями x2 + bx + c = 0.
Доказательство обратной теоремы Виета читатели могут произвести самостоятельно.