Теорема Виета, сформулированная французским математиком Франсуа Виетом, дает возможность в отдельных случаях (для целых и, иногда, для дробных значений корней) быстро находить решения квадратных уравнений, не прибегая к вычислениям с использованием дискриминанта. В школьной алгебре теорема Виета (формула Виета) играет такую же ведущую роль, как и теорема Пифагора в геометрии, однако учебно-методических материалов для отработки навыков поиска корней по формуле Виета имеется крайне мало.
Данное пособие призвано хотя бы частично устранить этот дефицит и содержит 600 готовых примеров квадратных уравнений с целыми корнями, а также ответы на эти примеры для проверки и самоконтроля.
При использовании в классно-урочной форме работы учитель может использовать текст пособия в качестве готового раздаточного материала, а после выполнения работы учащимися произвести проверку по имеющимся готовым ответам.
При использовании пособия для самостоятельной подготовки вы можете использовать ответы для самопроверки после решения выбранных примеров.
Ответы записаны в форме разложения квадратного уравнения на множители; если требуется получить значения самих корней, то нужно константные слагаемые в скобках брать с противоположными знаками.
Примечание. При использовании формулы Виета дискриминант квадратного уравнения должен быть неотрицательным. В случае, если дискриминант равен нулю, считается, что данное уравнение имеет два равных друг другу корня.