1.5. Влияние парникового эффекта на климат

. Парниковый эффект – это повышение температуры нижних слоёв атмосферы за счёт того, что некоторые газы препятствуют излучению тепловой энергии с поверхности планеты в космическое пространство. Играет решающую роль в сохранении жизни на Земле – если бы парникового эффекта не было, температура была бы почти на 32-39 градусов ниже, чем сейчас. Земля находится в состоянии теплового равновесия. Средние годовые температуры земной поверхности и атмосферы в любой точке Земли мало меняются от года к году. Это означает, что на верхней границе атмосферы солнечная радиация уравновешивается излучением Земли. Но не всё излучение Земли уходит в космическое пространство. Его значительная часть поглощается находящимися в атмосфере водяным паром и парниковыми газами.

Парниковый эффект имеет место не только на Земле. К примеру, сильный парниковый эффект на соседней планете – Венере. Атмосфера Венеры почти целиком состоит из углекислого газа, и в результате поверхность планеты разогрета до 475°С. Климатологи полагают, что Земля избежала такой участи благодаря наличию на ней океанов. Океаны поглощают атмосферный углерод, и он накапливается в горных породах, таких как известняк. Посредством этого углекислый газ удаляется из атмосферы. На Венере нет океанов, и весь углекислый газ, который выбрасывают в атмосферу вулканы, там и остается. В результате на планете наблюдается неуправляемый парниковый эффект.

Парниковые газы – газообразные составляющие атмосферы природного, или антропогенного происхождения, которые поглощают и переизлучают инфракрасное излучение.

Явление естественного парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой стало возможным возникновение и развитие жизни. Это было обусловлено естественными изменениями климата в последние несколько миллионов лет. Физические процессы, из-за которых парниковые газы могут повысить температуру воздуха, известны с конца XIX в. Но до недавнего времени антропогенным парниковым газам придавалось мало значения. Антропогенное увеличение концентрации парниковых газов приводит к повышению температуры поверхности Земли, изменению климата и негативным геоэкологическим последствиям, рис. 1.7.



Рис. 1.7. Воздействие парникового эффекта на природные процессы и его геоэкологические последствия

Список парниковых газов, подлежащих ограничению, определен в Приложении А к Киотскому протоколу (подписан в Киото (Япония) в декабре 1997г. 159 государствами) и включает двуокись углерода (CO2), метан (CH4), закись азота (N2O), перфторуглероды (ПФУ), гидрофторуглероды (ГФУ) и гексафторид серы (SF6).

Очень обстоятельные исследования парникового эффекта были проведены в Национальном Центре атмосферных исследований (США). Они так оценили удельный вес газов в создании эффекта: водяной пар – 60%, углекислый газ – 26%, озон – 8%, метан – 6%. Дальнейшие исследования показали, что облака (водяного пара) усиливают парниковый эффект в нелинейной пропорции. Тогда доля водяного пара возрастает до 70%, а доля углекислого газа снижается до 22%. Водяной пар оказывает более сильное воздействие потому, что его в атмосфере значительно больше, чем углекислого газа и значимость углекислого газа для парникового эффекта во много раз ниже, чем это признано.

Водяной пар – самый распространенный парниковый газ – исключен из данного рассмотрения, так как нет данных о росте его концентрации в атмосфере (связанная с ним опасность не просматривается). В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Альбедо- характеристика отражательной (рассеивающей) способности поверхности земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы

Двуокись углерода (углекислый газ) (СО2). Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Примерно 65% антропогенных выбросов углекислого газа в атмосферу связано со сжиганием ископаемого топлива (нефти, газа, угля и др.) и 35%– с уменьшением его поглощения, вызванного освоением новых земель и массовой вырубкой лесов. При этом примерно 45% от общего количества выбросов углекислого газа остаётся в атмосфере, 30%– поглощается океаном, а остальная часть усваивается биосферой.

Некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Углекислый газ является "долго живущим" в атмосфере. Круговорот диоксида углерода представлен на рис. 1.8.

Оцениваемый эффективный период пребывания для СО2 колеблется в пределах от 50 до 200 лет.

Метан (СН4) имеет как природное, так и антропогенное происхождение. Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.

Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов).



Рис. 1.8. Круговорот диоксида углерода

В период с 1000 по 1700 годы концентрация метана упала на 40%, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов. Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет.

Закись азота (N2O) – третий по значимости парниковый газ Киотского протокола. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т. д. На него приходится около 6% глобального потепления.

Перфторуглероды – ПФУ (Perfluorocarbons – PFCs). Углеводородные соединения, в которых фтор частично замещает углерод. Основным источником эмиссии этих газов является производство алюминия, электроники и растворителей. При алюминиевой плавке выбросы ПФУ возникают в электрической дуге или при так называемых анодных эффектах.

Гидрофторуглероды (ГФУ) – углеводородные соединения, в которых галогены частично замещают водород.

Гексафторид серы (SF6) – парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Гексафторид серы (элегаз, или шести фтористая сера) – неорганическое вещество, при нормальных условиях тяжелый газ, в 5 раз тяжелее воздуха. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.

Озон– парниковый газ, находящийся как в стратосфере, так и в тропосфере. Но определить его значение в парниковом сложнее по сравнению с другими газами, так как территориальное распределение этого газа очень изменчиво.

В 2000–2010 гг. глобальные выбросы парниковых газов (ПГ) росли быстрее (на 2,2% в год), чем в три предшествующих десятилетия (на 1,3% в год в 1970–2000 гг.), несмотря на глобальный экономический кризис и усилия растущего числа стран реализовать Рамочную конвенцию ООН об изменении климата и Киотский протокол. За последние четыре десятилетия накопленные выбросы углекислого газа увеличились с 900 млрд т СО2 в 1970 г. до 2 000 млрд т в 2010 г. Выбросы ПГ от сжигания топлива в 2013 г. превысили 32 млрд т СО2, и при отсутствии жестких мер политики по их контролю могут вырасти до 50–70 млрд СО2 к 2050 г. и до 90 млрд т СО2 – к 2100 г.

Расчеты показывают, что без существенных дополнительных мер по контролю за выбросами в ближайшие 20 лет будет практически невозможно удерживать концентрацию ПГ в атмосфере в рамках 450–500 ppm. Это означает, что потребуются большие усилия по снижению выбросов в 2030–2050 гг. или широкомасштабное применение технологий удаления ПГ из атмосферы либо ее охлаждения в последующие годы. Хотя смягчение воздействия на климат сопряжено с существенными затратами, они могут быть снижены за счет устранения барьеров для проникновения на рынок низкоуглеродных технологий и возобновляемых источников энергии.

Без сомнения человеческая деятельность в масштабах планеты негативно влияет на окружающую среду. В 2014 году глобальные выбросы по вине человека составили 9,795 гигатонн углерода или 35,9 гигатонн углекислого газа CO2, природными процессами (вулканическая деятельность, дегазация глубинных разломов, выделения мировым океаном, разложение органики, и т. д.) выбросы составили 119 гигатонн углерода или 439 гигатонн CO2. Человеческая деятельность слишком мала по сравнению с природными процессами, чтобы серьезно влиять на выбросы СО2 в атмосферу.

Загрузка...