1. В общем случае, это давление:
Pz = ρgWg,
где Wg – обьем рассматриваемой призмы.
В частном случае, направления линий действия силы на криволинейную поверхность тела, давления зависят от направляющих косинусов следующего вида:
Сила давления на цилиндрическую поверхность с горизонтальной образующей полностью определена. В рассматриваемом случае ось OY направлена параллельно горизонтальной образующей.
2. Теперь рассмотрим цилиндрическую поверхность с вертикальной образующей и направим ось OZ параллельно этой образующей, что значит ωz = 0.
Поэтому по аналогии, как и в предыдущем случае,
где h'ц.т. – глубина центра тяжести проекции под пьезометрическую плоскость;
h' ц.т. – то же самое, только для ωy.
Аналогично, направление определяется направляющими косинусами
Если рассмотреть цилиндрическую поверхность, точнее, объемный сектор, с радиусом γ и высотой h, с вертикальной образующей, то
ωx = hy,
h'ц.т. = 0,5h.
3. Осталось обобщить полученные формулы для прикладного применения произвольной криволинейной поверхности: