Примечания

1

Kassirer J, Angell M. Losing weight – an ill-fated New Year’s resolution. N Engl J Med. 1998;338(1):52–4. https://pubmed.ncbi.nlm.nih.gov/9414332/

2

Nelson TD. Promoting healthy aging by confronting ageism. Am Psychol. 2016;71(4):276–82. https://pubmed.ncbi.nlm.nih.gov/27159434/

3

Binstock RH. Anti-aging medicine and research: a realm of conflict and profound societal implications. J Gerontol A Biol Sci Med Sci. 2004;59(6):B523–33. https://pubmed.ncbi.nlm.nih.gov/15215257/

4

Reddy SSK, Chaiban JT. The endocrinology of aging: a key to longevity “great expectations.” Endocr Pract. 2017;23(9):1110–9. https://pubmed.ncbi.nlm.nih.gov/28704100/

5

Kristjuhan Ü. Real aging retardation in humans through diminishing risks to health. Ann N Y Acad Sci. 2007;1119:122–8. https://pubmed.ncbi.nlm.nih.gov/18056961/

6

Roe DA. Health foods and supplements for the elderly. Who can say no? N Y State J Med. 1993;93(2):109–12. https://pubmed.ncbi.nlm.nih.gov/8455823/

7

Perls TT. Anti-aging quackery: human growth hormone and tricks of the trade – more dangerous than ever. J Gerontol A Biol Sci Med Sci. 2004;59(7):682–91. https://pubmed.ncbi.nlm.nih.gov/15304532/

8

United States Senate, Special Committee on Aging. Senate hearing 107–190. Swindlers, hucksters and snake oil salesmen: hype and hope of marketing anti-aging products to seniors. U.S. Government Printing Office. September 10, 2001.; https://www.govinfo.gov/content/pkg/CHRG-107shrg76011/html/CHRG-107shrg76011.htm

9

United States Congress House of Representatives, Select Committee on Aging. Quackery: a $10 billion scandal. U.S. Government Printing Office. May 31, 1984.; https://centerforinquiry.org/wp-content/uploads/sites/33/quackwatch/pepper-report.pdf

10

Newton JP. Anti-ageing – fact, fiction or faction? Gerodontology. 2011;28(3):163–4. https://pubmed.ncbi.nlm.nih.gov/21843158/

11

Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/

12

McConnel C, Turner L. Medicine, ageing and human longevity: the economics and ethics of anti-ageing interventions. EMBO Rep. 2005;6(S1):S59–62. https://pubmed.ncbi.nlm.nih.gov/15995665/

13

Anti-aging treatment claims: the promises vs. the science. Consum Rep. 2015;80(8):15–7. https://pubmed.ncbi.nlm.nih.gov/26159004/

14

Wick G. “Anti-aging” medicine: does it exist? A critical discussion of “anti-aging health products.” Exp Gerontol. 2002;37(8–9):1137–40. https://pubmed.ncbi.nlm.nih.gov/12213565/

15

Caulfield T. Blinded by science. The Walrus. https://thewalrus.ca/blinded-by-science/. Published September 12, 2011. Updated April 19, 2020. Accessed January 22, 2023.; https://thewalrus.ca/blinded-by-science/

16

Winslow R. The radium water worked fine until his jaw fell off. Wall Street Journal. August 1, 1990:A1.; https://web.archive.org/web/20170216124222/ https://case.edu/affil/MeMA/MCA/11-20/1991-Nov.pdf

17

Turner L. The US direct-to-consumer marketplace for autologous stem cell interventions. Perspect Biol Med. 2018;61(1):7–24. https://pubmed.ncbi.nlm.nih.gov/29805145/

18

Murray IR, Chahla J, Frank RM, et al. Rogue stem cell clinics. Bone Joint J. 2020;102-B(2):148–54. https://pubmed.ncbi.nlm.nih.gov/32009438/

19

Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2002;286(6):92–5. https://pubmed.ncbi.nlm.nih.gov/12030096/

20

Epstein D. Anti-aging doctors sue professors. Inside Higher Ed. https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors. Published June 21, 2005. Accessed January 22, 2023.; https://www.insidehighered.com/news/2005/06/21/anti-aging-doctors-sue-professors

21

MacGregor C, Petersen A, Parker C. Hyping the market for ‘anti-ageing’ in the news: from medical failure to success in self-transformation. BioSocieties. 2018;13(1):64–80. https://link.springer.com/article/10.1057/s41292-017-0052-5

22

The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf

23

Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/

24

Find an anti-aging product or service. World Health Network. https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi. Accessed January 31, 2023.; https://web.archive.org/web/20020402011937/http://www.worldhealth.net/cgi-local/DB_Search/db_search.cgi?setup_file=whn_productsa.setup.cgi

25

Zs-Nagy I. Is consensus in anti-aging medical intervention an elusive expectation or a realistic goal? Arch Gerontol Geriatr. 2009;48(3):271–5. https://pubmed.ncbi.nlm.nih.gov/19269702/

26

Binstock RH. The war on “anti-aging medicine.” Gerontologist. 2003;43(1):4–14. https://pubmed.ncbi.nlm.nih.gov/12604740/

27

The American Academy of Anti-Aging Medicine’s official position statement on the truth about human aging intervention. American Academy of Anti-Aging Medicine. https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf. Published June 2002. Accessed September 26, 2022.; https://mail.anme.com.mx/modulacion/extra/official_position_statement.pdf

28

Walker RF. On the evolution of anti-aging medicine. Clin Interv Aging. 2006;1(3):201–3. https://pubmed.ncbi.nlm.nih.gov/18046871/

29

Rattan SIS. Anti-ageing strategies: prevention or therapy? EMBO Rep. 2005;6(Suppl 1):S25–9. https://pubmed.ncbi.nlm.nih.gov/15995657/

30

Rae MJ. All hype, no hope? Excessive pessimism in the “anti-aging medicine” special sections. J Gerontol A Biol Sci Med Sci. 2005;60(2):139–40. https://academic.oup.com/biomedgerontology/article/60/2/139/563273

31

Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Retraction: cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. DOI: 10.1056/nejmoa2007621. N Engl J Med. 2020;382(26):2582. https://pubmed.ncbi.nlm.nih.gov/32501665/

32

Mehra MR, Ruschitzka F, Patel AN. Retraction – Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet. 2020;395(10240):1820. https://pubmed.ncbi.nlm.nih.gov/32450107/

33

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

34

Berzlanovich AM, Keil W, Waldhoer T, Sim E, Fasching P, Fazeny-DBerzl B. Do centenarians die healthy? An autopsy study. J Gerontol A Biol Sci Med Sci. 2005;60(7):862–5. https://pubmed.ncbi.nlm.nih.gov/16079208/

35

Gessert CE, Elliott BA, Haller IV. Dying of old age: an examination of death certificates of Minnesota centenarians. J Am Geriatr Soc. 2002;50(9):1561–5. https://pubmed.ncbi.nlm.nih.gov/12383155/

36

Wilson DM, Cohen J, Birch S, et al. “No one dies of old age”: implications for research, practice, and policy. J Palliat Care. 2011;27(2):148–56. https://journals.sagepub.com/doi/10.1177/082585971102700211

37

Berzlanovich AM, Missliwetz J, Sim E, et al. Unexpected out-of-hospital deaths in persons aged 85 years or older: an autopsy study of 1886 patients. Am J Med. 2003;114(5):365–9. https://pubmed.ncbi.nlm.nih.gov/12714125/

38

John SM, Koelmeyer TD. The forensic pathology of nonagenarians and centenarians: do they die of old age? (The Auckland experience). Am J Forensic Med Pathol. 2001;22(2):150–4. https://pubmed.ncbi.nlm.nih.gov/11394748/

39

Blagosklonny MV. Answering the ultimate question “what is the proximal cause of aging?” Aging (Albany NY). 2012;4(12):861–77. https://pubmed.ncbi.nlm.nih.gov/23425777/

40

Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/

41

Writing Group Members, Roger VL, Go AS, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1): e2-e220. https://pubmed.ncbi.nlm.nih.gov/22179539/

42

Murphy SL, Kochanek KD, Xu J, Arias E. Mortality in the United States, 2020. NCHS Data Brief. 2021;(427):1–8. https://pubmed.ncbi.nlm.nih.gov/34978528/

43

Murray CJL, Barber RM, Foreman KJ, et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet. 2015;386(10009):2145–91. https://pubmed.ncbi.nlm.nih.gov/26321261/

44

Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392(10159):2052–90. https://pubmed.ncbi.nlm.nih.gov/30340847/

45

Kaeberlein M. The biology of aging: citizen scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol. 2016;53(2):291–8. https://pubmed.ncbi.nlm.nih.gov/26077786/

46

Zainabadi K. A brief history of modern aging research. Exp Gerontol. 2018;104:35–42. https://pubmed.ncbi.nlm.nih.gov/29355705/

47

Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/

48

Iyen B, Qureshi N, Weng S, et al. Sex differences in cardiovascular morbidity associated with familial hypercholesterolaemia: a retrospective cohort study of the UK Simon Broome register linked to national hospital records. Atherosclerosis. 2020;315:131–7. https://pubmed.ncbi.nlm.nih.gov/33187671/

49

Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics—2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639. https://pubmed.ncbi.nlm.nih.gov/35078371/

50

Jortveit J, Pripp AH, Langørgen J, Halvorsen S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart. 2020;106(18):1420–6. https://pubmed.ncbi.nlm.nih.gov/32111640/

51

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

52

Wahl D, Cogger VC, Solon-Biet SM, et al. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev. 2016;31:80–92. https://pubmed.ncbi.nlm.nih.gov/27355990/

53

Olshansky SJ, Carnes BA, Cassel C. In search of Methuselah: estimating the upper limits to human longevity. Science. 1990;250(4981):634–40. https://pubmed.ncbi.nlm.nih.gov/2237414/

54

Vaiserman A, Koliada A, Lushchak O, Castillo MJ. Repurposing drugs to fight aging: the difficult path from bench to bedside. Med Res Rev. 2021;41(3):1676–700. https://pubmed.ncbi.nlm.nih.gov/33314257/

55

Olshansky SJ, Perry D, Miller RA, Butler RN. In pursuit of the longevity dividend. Scientist (Philadelphia, Pa). 2006;20(3):28–36. https://pubmed.ncbi.nlm.nih.gov/17986572/

56

Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY). 2018;10(11):3067–78. https://pubmed.ncbi.nlm.nih.gov/30448823/

57

De Winter G. Aging as disease. Med Health Care Philos. 2015;18(2):237–43. https://pubmed.ncbi.nlm.nih.gov/25240472/

58

Zhavoronkov A, Bhullar B. Classifying aging as a disease in the context of ICD-11. Front Genet. 2015;6:326. https://pubmed.ncbi.nlm.nih.gov/26583032/

59

Hodgson J. Consumer, drug firms vie in vitamins. Wall Street Journal. https://www.wsj.com/articles/SB10001424127887323401904578155050445302398. Published December 2, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10001424127887323401904578155050445302398

60

Davis B. The link between Big Pharma and the supplement industry. Elsevier: Pharma R&D Today. https://web.archive.org/web/20220930062808/ https:/pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/. Published July 28th, 2017. Accessed February 10, 2023.; https://web.archive.org/web/20220930062808/ https://pharma.elsevier.com/pharma-rd/link-big-pharma-supplement-industry/

61

Направление, сформированное на стыке косметологии и фармакологии. – Примеч. ред.

62

Martin KI, Glaser DA. Cosmeceuticals: the new medicine of beauty. Mo Med. 2011;108(1):60–3. https://pubmed.ncbi.nlm.nih.gov/21462614/

63

Exuviance. Johnson & Johnson. https://www.jnj.com/exuviance. Accessed January 22, 2023.; https://www.jnj.com/exuviance

64

Spencer M. Coca-Cola, Sanofi in beauty venture. Wall Street Journal. https://www.wsj.com/articles/SB10000872396390443854204578060662301872612. Published October 16, 2012. Accessed January 24, 2023.; https://www.wsj.com/articles/SB10000872396390443854204578060662301872612

65

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

66

Donner Y, Fortney K, Calimport SRG, Pfleger K, Shah M, Betts-LaCroix J. Great desire for extended life and health amongst the American public. Front Genet. 2016;6:353. https://pubmed.ncbi.nlm.nih.gov/26834780/

67

Eissenberg JC. Hungering for immortality. Mo Med. 2018;115(1):12–7. https://pubmed.ncbi.nlm.nih.gov/30228670/

68

Hall WJ. Centenarians: metaphor becomes reality. Arch Intern Med. 2008;168(3):262–3. https://pubmed.ncbi.nlm.nih.gov/18268165/

69

Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/

70

Marengoni A, Angleman S, Melis R, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10(4):430–9. https://pubmed.ncbi.nlm.nih.gov/21402176/

71

Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012;380(9836):37–43. https://pubmed.ncbi.nlm.nih.gov/22579043/

72

Smith-Uffen MES, Johnson SB, Martin AJ, et al. Estimating survival in advanced cancer: a comparison of estimates made by oncologists and patients. Support Care Cancer. 2020;28(7):3399–407. https://pubmed.ncbi.nlm.nih.gov/31781946/

73

Hole B, Salem J. How long do patients with chronic disease expect to live? A systematic review of the literature. BMJ Open. 2016;6(12):e012248. https://pubmed.ncbi.nlm.nih.gov/28039288/

74

Kaeberlein M. How healthy is the healthspan concept? GeroScience. 2018;40(4):361–4. https://pubmed.ncbi.nlm.nih.gov/30084059/

75

Около 400 метров. – Примеч. ред.

76

Crimmins EM, Beltrán-Sánchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci. 2011 Jan;66(1):75–86. https://pubmed.ncbi.nlm.nih.gov/21135070/

77

de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/

78

Хуан Понсе де Леон (1460–1521) – испанский конкистадор, который основал первое европейское поселение на Пуэрто-Рико и во время поисков источника вечной молодости в 1513 году первым из европейцев высадился на берега Флориды. – Примеч. ред.

79

Furrer R, Handschin C. Lifestyle vs. pharmacological interventions for healthy aging. Aging (Albany NY). 2020;12(1):5–7. https://pubmed.ncbi.nlm.nih.gov/31937689/

80

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

81

de Magalhães JP. The scientific quest for lasting youth: prospects for curing aging. Rejuvenation Res. 2014;17(5):458–67. https://pubmed.ncbi.nlm.nih.gov/25132068/

82

Kirkwood T. Why can’t we live forever? Sci Am. 2010;303(3):42–9. https://pubmed.ncbi.nlm.nih.gov/20812478/

83

Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/

84

Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31. https://pubmed.ncbi.nlm.nih.gov/19915731/

85

Pakkenberg B, Pelvig D, Marner L, et al. Aging and the human neocortex. Exp Gerontol. 2003;38(1–2):95–9. https://pubmed.ncbi.nlm.nih.gov/12543266/

86

Finlay BB, Pettersson S, Melby MK, Bosch TCG. The microbiome mediates environmental effects on aging. BioEssays. 2019;41(10):1800257. https://pubmed.ncbi.nlm.nih.gov/31157928/

87

Hayflick L. “Anti-aging” is an oxymoron. J Gerontol A Biol Sci Med Sci. 2004;59(6):B573–8. https://pubmed.ncbi.nlm.nih.gov/15215267/

88

Underwood M, Bartlett HP, Hall WD. Professional and personal attitudes of researchers in ageing towards life extension. Biogerontology. 2009;10(1):73–81. https://pubmed.ncbi.nlm.nih.gov/18516699/

89

de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/

90

Richmond CR. Population exposure from the fuel cycle: review and future direction. University of North Texas Libraries Government Documents Department. https://digital.library.unt.edu/ark:/67531/metadc1086292/. Published January 1, 1987. Accessed November 28, 2022.; https://digital.library.unt.edu/ark:/67531/metadc1086292/

91

de Grey ADNJ. Like it or not, life-extension research extends beyond biogerontology. EMBO Rep. 2005;6(11):1000. https://pubmed.ncbi.nlm.nih.gov/16264420/

92

Thomson W. Kelvin on science: British lord tells his hopes for wireless telegraphy. The Newark Advocate. https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html. Published April 26, 1902. Accessed October 24, 2022.; https://zapatopi.net/kelvin/papers/interview_aeronautics_and_wireless.html

93

Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell. 2008;7(1):13–22. https://pubmed.ncbi.nlm.nih.gov/17996009/

94

Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS. Extending the lifespan of long-lived mice. Nature. 2001;414(6862):412. https://pubmed.ncbi.nlm.nih.gov/11719795/

95

Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA. Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 1994;8(15):1302–7. https://pubmed.ncbi.nlm.nih.gov/8001743/

96

Miller RA. Extending life: scientific prospects and political obstacles. Milbank Q. 2002;80(1):155–74. https://pubmed.ncbi.nlm.nih.gov/11933792/

97

Campbell S. Will biotechnology stop aging? IEEE Pulse. 2019;10(2):3–7. https://pubmed.ncbi.nlm.nih.gov/31021750/

98

Faragher RGA. Should we treat aging as a disease? The consequences and dangers of miscategorisation. Front Genet. 2015;6:171. https://pubmed.ncbi.nlm.nih.gov/26236330/

99

de Grey ADNJ. Escape velocity: why the prospect of extreme human life extension matters now. PLoS Biol. 2004;2(6):e187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423155/

100

Kurzweil R, Grossman T. Fantastic voyage: live long enough to live forever. The science behind radical life extension questions and answers. Stud Health Technol Inform. 2009;149:187–94. https://pubmed.ncbi.nlm.nih.gov/19745481/

101

Raghavachari N. The impact of apolipoprotein E genetic variability in health and life span. J Gerontol A Biol Sci Med Sci. 2020;75(10):1855–7. https://pubmed.ncbi.nlm.nih.gov/32789475/

102

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

103

Willcox DC, Willcox BJ, Poon LW. Centenarian studies: important contributors to our understanding of the aging process and longevity. Curr Gerontol Geriatr Res. 2010;2010:484529. https://pubmed.ncbi.nlm.nih.gov/21804821/

104

Steves CJ, Spector TD, Jackson SHD. Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing. 2012;41(5):581–6. https://pubmed.ncbi.nlm.nih.gov/22826292/

105

Kirkwood T. How can we live forever? BMJ. 1996;313(7072):1571. https://pubmed.ncbi.nlm.nih.gov/8990987/

106

Milman S, Barzilai N. Dissecting the mechanisms underlying unusually successful human health span and life span. Cold Spring Harb Perspect Med. 2015;6(1):a025098. https://pubmed.ncbi.nlm.nih.gov/26637439/

107

Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/

108

Herskind AM, McGue M, Holm NV, Sørensen TIA, Harvald B, Vaupel JW. The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870–1900. Hum Genet. 1996;97(3):319–23. https://link.springer.com/article/10.1007/bf02185763

109

Skytthe A, Pedersen NL, Kaprio J, et al. Longevity studies in GenomEUtwin. Twin Res. 2003;6(5):448–54. https://pubmed.ncbi.nlm.nih.gov/14624729/

110

Ruby JG, Wright KM, Rand KA, et al. Estimates of the heritability of human longevity are substantially inflated due to assortative mating. Genetics. 2018;210(3):1109–24. https://pubmed.ncbi.nlm.nih.gov/30401766/

111

Lee MB, Hill CM, Bitto A, Kaeberlein M. Antiaging diets: separating fact from fiction. Science. 2021;374(6570):eabe7365. https://pubmed.ncbi.nlm.nih.gov/34793210/

112

Search results: “the hallmarks of aging.” WebofScience.com. Accessed February 15, 2023.; https://www.webofscience.com/wos/woscc/summary/55559f9d-7ef6-429d-98f8-f41bc4c102d7-84135d71/relevance/1

113

Levine M, Crimmins E. Not all smokers die young: a model for hidden heterogeneity within the human population. PLoS ONE. 2014;9(2):e87403. https://pubmed.ncbi.nlm.nih.gov/24520332/

114

Devi AS, Thokchom S, Devi AM. Children living with Progeria. Nurs Care Open Access J. 2017;3(4):275–8. https://medcraveonline.com/NCOAJ/children-living-with-progeria.html

115

Ahmed MS, Ikram S, Bibi N, Mir A. Hutchinson-Gilford progeria syndrome: a premature aging disease. Mol Neurobiol. 2018;55(5):4417–27. https://pubmed.ncbi.nlm.nih.gov/28660486/

116

Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I. A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A Biol Sci Med Sci. 2014;69(12):1448–61. https://pubmed.ncbi.nlm.nih.gov/24347613/

117

Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG. Longevity: lesson from model organisms. Genes (Basel). 2019;10(7):518. https://pubmed.ncbi.nlm.nih.gov/31324014/

118

Концепция проведения научных исследований с привлечением широкого круга добровольцев-любителей (неспециалистов). – Примеч. ред.

119

Имя Мафусаила, прожившего 960 лет, стало синонимом долгожительства. «Собаками Мафусаила» традиционно называют собак-долгожителей. – Примеч. ред.

120

Jónás D, Sándor S, Tátrai K, Egyed B, Kubinyi E. A preliminary study to investigate the genetic background of longevity based on whole-genome sequence data of two Methuselah dogs. Front Genet. 2020;11:315. https://pubmed.ncbi.nlm.nih.gov/32373156/

121

Kaeberlein M, Creevy KE, Promislow DEL. The Dog Aging Project: translational geroscience in companion animals. Mamm Genome. 2016;27(7–8):279–88. https://pubmed.ncbi.nlm.nih.gov/27143112/

122

Pitt JN, Kaeberlein M. Why is aging conserved and what can we do about it? PLoS Biol. 2015;13(4):e1002131. https://pubmed.ncbi.nlm.nih.gov/25923592/

123

López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/

124

Steinberg GR, Macaulay SL, Febbraio MA, Kemp BE. AMP-activated protein kinase – the fat controller of the energy railroad. Can J Physiol Pharmacol. 2006;84(7):655–65. https://pubmed.ncbi.nlm.nih.gov/16998529/

125

Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41. https://pubmed.ncbi.nlm.nih.gov/22186033/

126

Vazirian M, Nabavi SM, Jafari S, Manayi A. Natural activators of adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) and their pharmacological activities. Food Chem Toxicol. 2018;122:69–79. https://pubmed.ncbi.nlm.nih.gov/30290216/

127

Jiang S, Li T, Yang Z, et al. AMPK orchestrates an elaborate cascade protecting tissue from fibrosis and aging. Ageing Res Rev. 2017;38:18–27. https://pubmed.ncbi.nlm.nih.gov/28709692/

128

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

129

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

130

Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev. 2016;28:15–26. https://pubmed.ncbi.nlm.nih.gov/27060201/

131

Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1865–75. https://pubmed.ncbi.nlm.nih.gov/31109453/

132

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

133

Mair W, Morantte I, Rodrigues APC, et al. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature. 2011;470(7334):404–8. https://pubmed.ncbi.nlm.nih.gov/21331044/

134

Sokolov SS, Severin FF. Manipulating cellular energetics to slow aging of tissues and organs. Biochemistry (Mosc). 2020;85(6):651–9. https://pubmed.ncbi.nlm.nih.gov/32586228/

135

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

136

Миметики – это лекарственные вещества, биохимически имитирующие естественное синтезируемое в организме вещество или вызывающие в организме изменения, сходные с теми, которые проявляются под действием какого-либо внешнего фактора. – Примеч. ред.

137

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

138

Musi N, Fujii N, Hirshman MF, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001;50(5):921–7. https://pubmed.ncbi.nlm.nih.gov/11334434/

139

Kola B, Grossman AB, Korbonits M. The role of AMP-activated protein kinase in obesity. Front Horm Res. 2008;36:198–211. https://pubmed.ncbi.nlm.nih.gov/18230904/

140

Narkar VA, Downes M, Yu RT, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405–15. https://pubmed.ncbi.nlm.nih.gov/18674809/

141

Benkimoun P. Police find range of drugs after trawling bins used by Tour de France cyclists. BMJ. 2009;339:b4201. https://pubmed.ncbi.nlm.nih.gov/19825964/

142

Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/

143

Niederberger E, King TS, Russe OQ, Geisslinger G. Activation of AMPK and its impact on exercise capacity. Sports Med. 2015;45(11):1497–509. https://pubmed.ncbi.nlm.nih.gov/26186961/

144

Hawley JA, Joyner MJ, Green DJ. Mimicking exercise: what matters most and where to next? J Physiol. 2021;599(3):791–802. https://pubmed.ncbi.nlm.nih.gov/31749163/

145

López-Lluch G, Santos-Ocaña C, Sánchez-Alcázar JA, et al. Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology. 2015;16(5):599–620. https://pubmed.ncbi.nlm.nih.gov/26105157/

146

Sharma A, Smith HJ, Yao P, Mair WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. https://pubmed.ncbi.nlm.nih.gov/31667999/

147

Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014;2:936–44. https://pubmed.ncbi.nlm.nih.gov/25180170/

148

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

149

Gonzalez-Freire M, de Cabo R, Bernier M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42. https://pubmed.ncbi.nlm.nih.gov/25995290/

150

Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY). 2014;6(4):296–310. https://pubmed.ncbi.nlm.nih.gov/24799450/

151

Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/

152

Corbisier P, Remacle J. Influence of the energetic pattern of mitochondria in cell ageing. Mech Ageing Dev. 1993;71(1):47–58. https://pubmed.ncbi.nlm.nih.gov/8309283/

153

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

154

Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

155

Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. https://pubmed.ncbi.nlm.nih.gov/32679729/

156

Agency for Healthcare Research and Quality (AHRQ). Medical Expenditure Panel Survey (MEPS) 2013–2019. ClinCalc DrugStats Database version 2021.10. https://clincalc.com/DrugStats/. Accessed May 22, 2023.; https://clincalc.com/DrugStats/

157

Inzucchi SE, Fonseca V. Dethroning the king?: the future of metformin as first line therapy in type 2 diabetes. J Diabetes Complications. 2019;33(6):462–4. https://pubmed.ncbi.nlm.nih.gov/31003925/

158

Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. https://pubmed.ncbi.nlm.nih.gov/28802803/

159

Glucophage® / Glucophage® XR: Response to FDA Comments of 10 12 00. U.S. Food & Drug Administration: Drugs@FDA. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202. Accessed April 25, 2021.; https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202

160

Braun B, Eze P, Stephens BR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33(1):61–7. https://pubmed.ncbi.nlm.nih.gov/18347654/

161

Walton RG, Dungan CM, Long DE, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial [published correction appears in Aging Cell. 2020;19(3):e13098]. Aging Cell. 2019;18(6):e13039. https://pubmed.ncbi.nlm.nih.gov/31557380/

162

Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

163

Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://pubmed.ncbi.nlm.nih.gov/11832527/

164

Iannello S, Camuto M, Cavaleri A, et al. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids. Diabetes Obes Metab. 2004;6(1):8–15. https://pubmed.ncbi.nlm.nih.gov/14686957/

165

Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15. https://pubmed.ncbi.nlm.nih.gov/21478880/

166

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/

167

Fatima S, Hu X, Gong RH, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76(13):2547–57. https://pubmed.ncbi.nlm.nih.gov/30968170/

168

Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

169

Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765–78. https://pubmed.ncbi.nlm.nih.gov/26027904/

170

Wang XJ, Malhi H. Nonalcoholic fatty liver disease. Ann Intern Med. 2018;169(9):ITC65–80. https://pubmed.ncbi.nlm.nih.gov/30398639/

171

Hydes T, Alam U, Cuthbertson DJ. The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD): too much fat, too much carbohydrate, or just too many calories? Front Nutr. 2021;8:640557. https://pubmed.ncbi.nlm.nih.gov/33665203/

172

Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

173

Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

174

Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

175

Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43(5):1134–41. https://pubmed.ncbi.nlm.nih.gov/32165444/

176

Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/

177

Wu Y, Song P, Zhang W, et al. Activation of AMPKa2 in adipocytes is essential for nicotine-induced insulin resistance in vivo. Nat Med. 2015;21(4):373–82. https://pubmed.ncbi.nlm.nih.gov/25799226/

178

Martínez de Morentin PB, Whittle AJ, Fernø J, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61(4):807–17. https://pubmed.ncbi.nlm.nih.gov/22315316/

179

Ferguson SG, Shiffman S, Rohay JM, Gitchell JG, Garvey AJ. Effect of compliance with nicotine gum dosing on weight gained during a quit attempt. Addiction. 2011;106(3):651–6. https://pubmed.ncbi.nlm.nih.gov/21182551/

180

Novak CM, Gavini CK. Smokeless weight loss. Diabetes. 2012;61(4):776–7. https://pubmed.ncbi.nlm.nih.gov/22442297/

181

Hadi A, Arab A, Ghaedi E, Rafie N, Miraghajani M, Kafeshani M. Barberry (Berberis vulgaris L.) is a safe approach for management of lipid parameters: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2019;43:117–24. https://pubmed.ncbi.nlm.nih.gov/30935518/

182

Fouladi RF. Aqueous extract of dried fruit of Berberis vulgaris L. in acne vulgaris, a clinical trial. J Diet Suppl. 2012;9(4):253–61. https://pubmed.ncbi.nlm.nih.gov/23038982/

183

Emamat H, Asadian S, Zahedmehr A, Ghanavati M, Nasrollahzadeh J. The effect of barberry (Berberis vulgaris) consumption on flow-mediated dilation and inflammatory biomarkers in patients with hypertension: a randomized controlled trial [published online ahead of print, 2020 Dec 22]. Phytother Res. 2020;10.1002/ptr.7000. https://pubmed.ncbi.nlm.nih.gov/33350540/

184

Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/

185

McCarty MF. AMPK activation – protean potential for boosting healthspan. Age (Dordr). 2014;36(2):641–63. https://pubmed.ncbi.nlm.nih.gov/24248330/

186

Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res. 2012;11(2):643–52. https://pubmed.ncbi.nlm.nih.gov/24250489/

187

Funk RS, Singh RK, Winefield RD, et al. Variability in potency among commercial preparations of berberine. J Diet Suppl. 2018;15(3):343–51. https://pubmed.ncbi.nlm.nih.gov/28792254/

188

Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci. 2007;20(1):83–92. https://pubmed.ncbi.nlm.nih.gov/17337435/

189

Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B. 2016;6(1):1–19. https://pubmed.ncbi.nlm.nih.gov/26904394/

190

Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M, Taheri E, Alizadeh M. A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. Daru. 2020;28(2):779–87. https://pubmed.ncbi.nlm.nih.gov/33140312/

191

Mousavi SM, Sheikhi A, Varkaneh HK, Zarezadeh M, Rahmani J, Milajerdi A. Effect of Nigella sativa supplementation on obesity indices: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2018;38:48–57. https://pubmed.ncbi.nlm.nih.gov/29857879/

192

Sahebkar A, Beccuti G, Simental-Mendía LE, Nobili V, Bo S. Nigella sativa (black seed) effects on plasma lipid concentrations in humans: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol Res. 2016;106:37–50. https://pubmed.ncbi.nlm.nih.gov/26875640/

193

Sahebkar A, Soranna D, Liu X, et al. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella sativa (black seed) on blood pressure. J Hypertens. 2016;34(11):2127–35. https://pubmed.ncbi.nlm.nih.gov/27512971/

194

Daryabeygi-Khotbehsara R, Golzarand M, Ghaffari MP, Djafarian K. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: a systematic review and meta-analysis. Complement Ther Med. 2017;35:6–13. https://pubmed.ncbi.nlm.nih.gov/29154069/

195

Agricultural Research Service, United States Department of Agriculture. Sweet sunnah, whole black seeds nigella sativa. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients. Published April 1, 2019. Accessed May 8, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/468991/nutrients

196

Montazeri RS, Fatahi S, Sohouli MH, et al. The effect of nigella sativa on biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J Food Biochem. 2021;45(4):e13625. https://pubmed.ncbi.nlm.nih.gov/33559935/

197

He T, Xu X. The influence of Nigella sativa for asthma control: a meta-analysis. Am J Emerg Med. 2020;38(3):589–93. https://pubmed.ncbi.nlm.nih.gov/31892440/

198

Khabbazi A, Javadivala Z, Seyedsadjadi N, Malek Mahdavi A. A systematic review of the potential effects of Nigella sativa on rheumatoid arthritis. Planta Med. 2020;86(7):457–69. https://pubmed.ncbi.nlm.nih.gov/32274788/

199

Tajmiri S, Abbasalizad Farhangi M, Dehghan P. Nigella Sativa treatment and serum concentrations of thyroid hormones, transforming growth factor ß (TGF-ß) and interleukin 23 (IL-23) in patients with Hashimoto’s thyroiditis. Eur J Integr Med. 2016;8(4):576–80. https://www.sciencedirect.com/science/article/abs/pii/S1876382016300208

200

Ardakani Movaghati MR, Yousefi M, Saghebi SA, Sadeghi Vazin M, Iraji A, Mosavat SH. Efficacy of black seed (Nigella sativa L.) on kidney stone dissolution: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2019;33(5):1404–12. https://pubmed.ncbi.nlm.nih.gov/30873671/

201

Latiff LA, Parhizkar S, Dollah MA, Hassan ST. Alternative supplement for enhancement of reproductive health and metabolic profile among perimenopausal women: a novel role of Nigella sativa. Iran J Basic Med Sci. 2014;17(12):980–5. https://pubmed.ncbi.nlm.nih.gov/25859301/

202

Lingesh A, Paul D, Naidu V, Satheeshkumar N. AMPK activating and anti adipogenic potential of Hibiscus rosa sinensis flower in 3T3-L1 cells. J Ethnopharmacol. 2019;233:123–30. https://pubmed.ncbi.nlm.nih.gov/30593890/

203

Amos A, Khiatah B. Mechanisms of action of nutritionally rich Hibiscus sabdariffa’s therapeutic uses in major common chronic diseases: a literature review [published online ahead of print, 2021 Jan 28]. J Am Coll Nutr. 2021;1–8. https://pubmed.ncbi.nlm.nih.gov/33507846/

204

Soleimani AR, Akbari H, Soleimani S, Beladi Mousavi SS, Tamadon MR. Effect of sour tea (Lipicom) pill versus captopril on the treatment of hypertension. J Renal Inj Prev. 2015;4(3):73–9. https://pubmed.ncbi.nlm.nih.gov/26468478/

205

Nwachukwu DC, Aneke EI, Nwachukwu NZ, Azubike N, Obika LF. Does consumption of an aqueous extract of Hibscus sabdariffa affect renal function in subjects with mild to moderate hypertension? J Physiol Sci. 2017;67(1):227–34. https://pubmed.ncbi.nlm.nih.gov/27221151/

206

Hopkins AL, Lamm MG, Funk JL, Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: a comprehensive review of animal and human studies. Fitoterapia. 2013;85:84–94. https://pubmed.ncbi.nlm.nih.gov/23333908/

207

Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: a systematic review and meta-analysis of randomized clinical trials. Food Res Int (Ottawa). 2020;130:108980. https://pubmed.ncbi.nlm.nih.gov/32156406/

208

Abubakar SM, Ukeyima MT, Spencer JPE, Lovegrove JA. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients. 2019;11(2):341. https://pubmed.ncbi.nlm.nih.gov/30764582/

209

Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734–9. https://pubmed.ncbi.nlm.nih.gov/24549255/

210

Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods. 2016;25:279–90. https://www.sciencedirect.com/science/article/abs/pii/S175646461630144X?via%3Dihub

211

Salim LZA, Mohan S, Othman R, et al. Thymoquinone induces mitochondria-mediated apoptosis in acute lymphoblastic leukaemia in vitro. Molecules. 2013;18(9):11219–40. https://pubmed.ncbi.nlm.nih.gov/24036512/

212

Chen H, Chen T, Giudici P, Chen F. Vinegar functions on health: constituents, sources, and formation mechanisms. Compr Rev Food Sci Food Saf. 2016;15(6):1124–38. https://pubmed.ncbi.nlm.nih.gov/33401833/

213

Ali Z, Wang Z, Amir RM, et al. Potential uses of vinegar as a medicine and related in vivo mechanisms. Int J Vitam Nutr Res. 2018;86(3–4):1–12. https://pubmed.ncbi.nlm.nih.gov/29580192/

214

Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112(3):580–93. https://pubmed.ncbi.nlm.nih.gov/25422909/

215

Shield KD, Soerjomataram I, Rehm J. Alcohol use and breast cancer: a critical review. Alcohol Clin Exp Res. 2016;40(6):1166–81. https://pubmed.ncbi.nlm.nih.gov/27130687/

216

Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194–203. https://pubmed.ncbi.nlm.nih.gov/22750051/

217

Center for Food Safety and Applied Nutrition, Office of Regulatory Affairs. CPG sec. 525.825 vinegar, definitions – adulteration with vinegar eels. United States Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels. Published March 1995. Accessed May 8, 2021.; https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-525825-vinegar-definitions-adulteration-vinegar-eels

218

Park J, Kim J, Kim J, et al. Pomegranate vinegar beverage reduces visceral fat accumulation in association with AMPK activation in overweight women: a double-blind, randomized, and placebo-controlled trial. J Funct Foods. 2014;8:274–81. https://www.sciencedirect.com/science/article/abs/pii/S1756464614001273

219

Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem. 2009;73(8):1837–43. https://pubmed.ncbi.nlm.nih.gov/19661687/

220

Johnston C, Quagliano S, White S. Vinegar ingestion at mealtime reduced fasting blood glucose concentrations in healthy adults at risk for type 2 diabetes. J Funct Foods. 2013;5(4):2007–11. https://www.sciencedirect.com/science/article/abs/pii/S1756464613001874

221

Mitrou P, Petsiou E, Papakonstantinou E, et al. Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. J Diabetes Res. 2015;2015:175204. https://pubmed.ncbi.nlm.nih.gov/26064976/

222

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

223

Abid M, Memon Z, Shaheen S, Ahmed F, Shaikh MZ, Agha F. Comparison of apple cider vinegar and metformin combination with metformin alone in newly diagnosed type 2 diabetic patients: a randomized controlled trial. Int J Med Res Health Sci. 2020;9(2):1–7. https://www.ijmrhs.com/abstract/comparison-of-apple-cider-vinegar-and-metformin-combination-with-metformin-alone-in-newly-diagnosed-type-2-diabetic-pati-44684.html

224

Sakakibara S, Murakami R, Takahashi M, et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Biosci Biotechnol Biochem. 2010;74(5):1055–61. https://pubmed.ncbi.nlm.nih.gov/20460711/

225

Beheshti Z, Chan YH, Nia HS, et al. Influence of apple cider vinegar on blood lipids. Life Sci J. 2012;9(4):2431–40. https://www.lifesciencesite.com/lsj/life0904/360_10755life0904_2431_2440.pdf

226

Chuang MH, Chiou SH, Huang CH, Yang WB, Wong CH. The lifespan-promoting effect of acetic acid and Reishi polysaccharide. Bioorg Med Chem. 2009;17(22):7831–40. https://pubmed.ncbi.nlm.nih.gov/19837596/

227

Hu FB, Stampfer MJ, Manson JE, et al. Dietary intake of alpha-linolenic acid and risk of fatal ischemic heart disease among women. Am J Clin Nutr. 1999;69(5):890–7. https://pubmed.ncbi.nlm.nih.gov/10232627/

228

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

229

Koç F, Mills S, Strain C, Ross RP, Stanton C. The public health rationale for increasing dietary fibre: health benefits with a focus on gut microbiota. Nutr Bull. 2020;45:294–308. https://onlinelibrary.wiley.com/doi/10.1111/nbu.12448

230

Pritchard SE, Marciani L, Garsed KC, et al. Fasting and postprandial volumes of the undisturbed colon: normal values and changes in diarrhea-predominant irritable bowel syndrome measured using serial MRI. Neurogastroenterol Motil. 2014;26(1):124–30. https://pubmed.ncbi.nlm.nih.gov/24131490/

231

Tang R, Li L. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus. Can J Infect Dis Med Microbiol. 2021;2021:6632266. https://pubmed.ncbi.nlm.nih.gov/33488888/

232

Hu GX, Chen GR, Xu H, Ge RS, Lin J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med Hypotheses. 2010;74(1):123–6. https://pubmed.ncbi.nlm.nih.gov/19665312/

233

Spiller G, ed. Topics in Dietary Fiber Research. Plenum Press; 1978. https://link.springer.com/book/10.1007/978-1-4684-2481-2

234

Eaton SB, Eaton SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–16. https://pubmed.ncbi.nlm.nih.gov/9104571/

235

Usual nutrient intake from food and beverages, by gender and age: what we eat in America, NHANES 2015–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf. Published January 2021. Accessed December 25, 2022.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/Usual_Intake_gender_WWEIA_2015_2018.pdf

236

McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/

237

López M. Hypothalamic AMPK: a golden target against obesity? Eur J Endocrinol. 2017;176(5):R235–46. https://pubmed.ncbi.nlm.nih.gov/28232370/

238

Morgunova GV, Klebanov AA. Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity. Cell Biochem Funct. 2019;37(3):169–76. https://pubmed.ncbi.nlm.nih.gov/30895648/

239

Американская единица объема «чашка» (cup) равна 240 мл. – Примеч. ред.

240

There are many different types of autophagy, including chaperone-mediated autophagy and microautophagy. In this book, I’m referring to macroautophagy.

241

Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/

242

Levine B, Klionsky DJ. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: breakthroughs in baker’s yeast fuel advances in biomedical research. PNAS. 2017;114(2):201–5. https://pubmed.ncbi.nlm.nih.gov/28039434/

243

Vijayakumar K, Cho G. Autophagy: an evolutionarily conserved process in the maintenance of stem cells and aging. Cell Biochem Funct. 2019;37(6):452–8. https://pubmed.ncbi.nlm.nih.gov/31318072/

244

Kouda K, Iki M. Beneficial effects of mild stress (hormetic effects): dietary restriction and health. J Physiol Anthropol. 2010;29(4):127–32. https://pubmed.ncbi.nlm.nih.gov/20686325/

245

Tschachler E, Eckhart L. Autophagy: how to control your intracellular diet. Br J Dermatol. 2017;176(6):1417–9. https://pubmed.ncbi.nlm.nih.gov/28581245/

246

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

247

Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/

248

Pyo JO, Yoo SM, Ahn HH, et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun. 2013;4:2300. https://pubmed.ncbi.nlm.nih.gov/23939249/

249

Wong SQ, Kumar AV, Mills J, Lapierre LR. Autophagy in aging and longevity. Hum Genet. 2020;139(3):277–90. https://pubmed.ncbi.nlm.nih.gov/31144030/

250

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

251

Meijer AJ. Autophagy in practice: stevia and leucine. Autophagy. 2019;15(12):2043. https://pubmed.ncbi.nlm.nih.gov/31455125/

252

Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids. 2015;47(10):2037–63. https://pubmed.ncbi.nlm.nih.gov/24880909/

253

Показатель физической работоспособности, определяет максимальное количество кислорода, которое может потреблять организм во время интенсивных упражнений. – Примеч. ред.

254

Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/

255

Brandt N, Gunnarsson TP, Bangsbo J, Pilegaard H. Exercise and exercise training – induced increase in autophagy markers in human skeletal muscle. Physiol Rep. 2018;6(7):e13651. https://pubmed.ncbi.nlm.nih.gov/29626392/

256

Escobar KA, Cole NH, Mermier CM, VanDusseldorp TA. Autophagy and aging: maintaining the proteome through exercise and caloric restriction. Aging Cell. 2019;18(1):e12876. https://pubmed.ncbi.nlm.nih.gov/30430746/

257

Cuervo AM. Calorie restriction and aging: the ultimate “cleansing diet.” J Gerontol A Biol Sci Med Sci. 2008;63(6):547–9. https://academic.oup.com/biomedgerontology/article/63/6/547/573952

258

Melnik BC. Leucine signaling in the pathogenesis of type 2 diabetes and obesity. World J Diabetes. 2012;3(3):38. https://pubmed.ncbi.nlm.nih.gov/22442749/

259

Rittig N, Bach E, Thomsen HH, et al. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without ß-hydroxy-ß-methylbutyrate (Hmb) during fasting-induced catabolism: a human randomized crossover trial. Clin Nutr. 2017;36(3):697–705. https://pubmed.ncbi.nlm.nih.gov/27265181/

260

Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem. 2002;50:4998–5006. https://pubmed.ncbi.nlm.nih.gov/12166997/

261

Song D, Xu C, Holck AL, Liu R. Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicol Environ Saf. 2021;208:111543. https://pubmed.ncbi.nlm.nih.gov/33396091/

262

Huang M, Jiao J, Wang J, Chen X, Zhang Y. Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003–2006. Environ Pollut. 2018;238:852–8. https://pubmed.ncbi.nlm.nih.gov/29627755/

263

Naruszewicz M, Zapolska-Downar D, Kosmider A, et al. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: a pilot study. Am J Clin Nutr. 2009;89(3):773–7. https://pubmed.ncbi.nlm.nih.gov/19158207/

264

Chase P, Mitchell K, Morley JE. In the steps of giants: the early geriatrics texts. J Am Geriatr Soc. 2000;48(1):89–94. https://pubmed.ncbi.nlm.nih.gov/10642028/

265

Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest. 2015;125(1):85–93. https://pubmed.ncbi.nlm.nih.gov/25654554/

266

Arnesen E, Huseby NE, Brenn T, Try K. The Tromsø Heart Study: distribution of, and determinants for, gamma-glutamyltransferase in a free-living population. Scand J Clin Lab Invest. 1986;46(1):63–70. https://pubmed.ncbi.nlm.nih.gov/2869572/

267

Ruhl CE, Everhart JE. Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology. 2005;129(6):1928–36. https://pubmed.ncbi.nlm.nih.gov/16344061/

268

Hayat U, Siddiqui AA, Okut H, Afroz S, Tasleem S, Haris A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: a meta-analysis of 11 epidemiological studies. Ann Hepatol. 2021;20:100254. https://pubmed.ncbi.nlm.nih.gov/32920163/

269

Ray K. Caffeine is a potent stimulator of autophagy to reduce hepatic lipid content – a coffee for NAFLD? Nat Rev Gastroenterol Hepatol 2013;10:563. https://pubmed.ncbi.nlm.nih.gov/23982685/

270

Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366–80. https://pubmed.ncbi.nlm.nih.gov/23929677/

271

Czachor J, Milek M, Galiniak S, Stepien K, Dzugan M, Molon M. Coffee extends yeast chronological lifespan through antioxidant properties. Int J Mol Sci. 2020;21(24):9510. https://pubmed.ncbi.nlm.nih.gov/33327536/

272

Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan. 2012;1(1):9. https://pubmed.ncbi.nlm.nih.gov/24764514/

273

Pietrocola F, Malik SA, Mariño G, et al. Coffee induces autophagy in vivo. Cell Cycle. 2014;13(12):1987–94. https://pubmed.ncbi.nlm.nih.gov/24769862/

274

Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/

275

Известный слоган кофейного бренда Maxwell House. – Примеч. ред.

276

Saab S, Mallam D, Cox GA, Tong MJ. Impact of coffee on liver diseases: a systematic review. Liver Int. 2014;34(4):495–504. https://pubmed.ncbi.nlm.nih.gov/24102757/

277

Kanbay M, Siriopol D, Copur S, et al. Effect of coffee consumption on renal outcome: a systematic review and meta-analysis of clinical studies. J Ren Nutr. 2021;31(1):5–20. https://pubmed.ncbi.nlm.nih.gov/32958376/

278

Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. https://pubmed.ncbi.nlm.nih.gov/28826374/

279

Thomas DR, Hodges ID. Dietary research on coffee: improving adjustment for confounding. Curr Dev Nutr. 2020;4(nzz142). https://pubmed.ncbi.nlm.nih.gov/31938763/

280

Duregon E, Bernier M, de Cabo R. A glance back at the journal of gerontology – coffee, dietary interventions and life span. J Geront A Biol Sci Med Sci. 2020;75(11):2029–30. https://pubmed.ncbi.nlm.nih.gov/33057720/

281

Li Q, Liu Y, Sun X, et al. Caffeinated and decaffeinated coffee consumption and risk of all-cause mortality: a dose – response meta-analysis of cohort studies. J Hum Nut Diet. 2019;32(3):279–87. https://pubmed.ncbi.nlm.nih.gov/30786114/

282

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012 Dec 14;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

283

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

284

Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178(8):1086. https://pubmed.ncbi.nlm.nih.gov/29971434/

285

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

286

Gao LJ, Dai Y, Li XQ, Meng S, Zhong ZQ, Xu SJ. Chlorogenic acid enhances autophagy by upregulating lysosomal function to protect against SH-SY5Y cell injury induced by H2O2. Exp Ther Med. 2021;21(5):426. https://pubmed.ncbi.nlm.nih.gov/33747165/

287

Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/

288

Mills CE, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JPE. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem. 2013;141(4):3335–40. https://pubmed.ncbi.nlm.nih.gov/23993490/

289

Ludwig IA, Mena P, Calani L, et al. Variations in caffeine and chlorogenic acid contents of coffees: what are we drinking? Food Funct. 2014;5(8):1718–26. https://pubmed.ncbi.nlm.nih.gov/25014672/

290

Corrêa TAF, Monteiro MP, Mendes TMN, et al. Medium light and medium roast paper-filtered coffee increased antioxidant capacity in healthy volunteers: results of a randomized trial. Plant Foods Hum Nutr. 2012;67(3):277–82. https://pubmed.ncbi.nlm.nih.gov/22766993/

291

DiBaise JK. A randomized, double-blind comparison of two different coffee-roasting processes on development of heartburn and dyspepsia in coffee-sensitive individuals. Dig Dis Sci. 2003;48(4):652–6. https://pubmed.ncbi.nlm.nih.gov/12741451/

292

Liu J, Wang Q, Zhang H, Yu D, Jin S, Ren F. Interaction of chlorogenic acid with milk proteins analyzed by spectroscopic and modeling methods. Spectrosc Lett. 2016;49(1):44–50. https://www.tandfonline.com/doi/full/10.1080/00387010.2015.1066826

293

Duarte GS, Farah A. Effect of simultaneous consumption of milk and coffee on chlorogenic acids’ bioavailability in humans. J Agric Food Chem. 2011;59(14):7925–31. https://pubmed.ncbi.nlm.nih.gov/21627318/

294

Lorenz M, Jochmann N, von Krosigk A, et al. Addition of milk prevents vascular protective effects of tea. Eur Heart J. 2007;28(2):219–23. https://pubmed.ncbi.nlm.nih.gov/17213230/

295

Serafini M, Testa MF, Villaño D, et al. Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med. 2009;46(6):769–74. https://pubmed.ncbi.nlm.nih.gov/19135520/

296

Serafini M, Bugianesi R, Maiani G, Valtuena S, De Santis S, Crozier A. Plasma antioxidants from chocolate. Nature. 2003;424(6952):1013. https://pubmed.ncbi.nlm.nih.gov/12944955/

297

Budryn G, Palecz B, Rachwal-Rosiak D, et al. Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in ß-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chem. 2015;168:276–87. https://pubmed.ncbi.nlm.nih.gov/25172711/

298

Felberg I, Farah A, Monteiro M, et al. Effect of simultaneous consumption of soymilk and coffee on the urinary excretion of isoflavones, chlorogenic acids and metabolites in healthy adults. J Funct Foods. 2015;19:688–99. https://www.sciencedirect.com/science/article/pii/S1756464615004910?via%3Dihub

299

Colombo R, Papetti A. An outlook on the role of decaffeinated coffee in neurodegenerative diseases. Crit Rev Food Sci Nutr. 2020;60(5):760–79. https://pubmed.ncbi.nlm.nih.gov/30614247/

300

Tverdal A, Selmer R, Cohen JM, Thelle DS. Coffee consumption and mortality from cardiovascular diseases and total mortality: does the brewing method matter? Eur J Prev Cardiol. 2020;27(18):1986–93. https://pubmed.ncbi.nlm.nih.gov/32320635/

301

Aubin HJ, Luquiens A, Berlin I. Letter by Aubin et al regarding article, “Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts.” Circulation. 2016;133(20):e659. https://pubmed.ncbi.nlm.nih.gov/27185028/

302

Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/

303

Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD. Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect. 2011;119(7):989–96. https://pubmed.ncbi.nlm.nih.gov/21367689/

304

Sakaki JR, Melough MM, Provatas AA, Perkins C, Chun OK. Evaluation of estrogenic chemicals in capsule and French press coffee using ultra-performance liquid chromatography with tandem mass spectrometry. Toxicol Rep. 2020;7:1020–4. https://pubmed.ncbi.nlm.nih.gov/32874926/

305

Li M, Wang M, Guo W, Wang J, Sun X. The effect of caffeine on intraocular pressure: a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol. 2011;249(3):435–42. https://pubmed.ncbi.nlm.nih.gov/20706731/

306

Kang JH, Willett WC, Rosner BA, Hankinson SE, Pasquale LR. Caffeine consumption and the risk of primary open-angle glaucoma: a prospective cohort study. Invest Ophthalmol Vis Sci. 2008;49(5):1924–31. https://pubmed.ncbi.nlm.nih.gov/18263806/

307

Gleason JL, Richter HE, Redden DT, Goode PS, Burgio KL, Markland AD. Caffeine and urinary incontinence in US women. Int Urogynecol J. 2013;24(2):295–302. https://pubmed.ncbi.nlm.nih.gov/22699886/

308

Davis NJ, Vaughan CP, Johnson TM, et al. Caffeine intake and its association with urinary incontinence in United States men: results from National Health and Nutrition Examination Surveys 2005–2006 and 2007–2008. J Urol. 2013;189(6):2170–4. https://pubmed.ncbi.nlm.nih.gov/23276513/

309

Bonilha L, Li LM. Heavy coffee drinking and epilepsy. Seizure. 2004;13(4):284–5. https://pubmed.ncbi.nlm.nih.gov/15121141/

310

Surdea-Blaga T, Negrutiu DE, Palage M, Dumitrascu DL. Food and gastroesophageal reflux disease. Curr Med Chem. 2019;26(19):3497–511. https://pubmed.ncbi.nlm.nih.gov/28521699/

311

Lloret-Linares C, Lafuente-Lafuente C, Chassany O, et al. Does a single cup of coffee at dinner alter the sleep? A controlled cross-over randomised trial in real-life conditions. Nutr Diet. 2012;69(4):250–5. https://onlinelibrary.wiley.com/doi/10.1111/j.1747–0080.2012.01601.x

312

Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ. 2017;359:j5024. https://pubmed.ncbi.nlm.nih.gov/29167102/

313

Son H, Song HJ, Seo HJ, Lee H, Choi SM, Lee S. The safety and effectiveness of self-administered coffee enema: a systematic review of case reports. Medicine. 2020;99(36):e21998. https://pubmed.ncbi.nlm.nih.gov/32899046/

314

Dirks-Naylor AJ. The benefits of coffee on skeletal muscle. Life Sci. 2015;143:182–6. https://pubmed.ncbi.nlm.nih.gov/26546720/

315

Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 2004;176(1):1–29. https://pubmed.ncbi.nlm.nih.gov/15448977/

316

O’Keefe JH, Bhatti SK, Patil HR, DiNicolantonio JJ, Lucan SC, Lavie CJ. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J Am Coll Cardiol. 2013;62(12):1043–51. https://pubmed.ncbi.nlm.nih.gov/23871889/

317

Mendez JD. The other legacy of Antonie van Leeuwenhoek: the polyamines. J Clin Mol Endocrinol. 2017;02(01):e107. https://clinical-and-molecular-endocrinology.imedpub.com/the-other-legacy-of-antonie-van-leeuwenhoek-the-polyamines.php?aid=19400

318

Bachrach U. The early history of polyamine research. Plant Physiol Biochem. 2010;48(7):490–5. https://pubmed.ncbi.nlm.nih.gov/20219382/

319

Guerra GP, Rubin MA, Mello CF. Modulation of learning and memory by natural polyamines. Pharmacol Res. 2016;112:99–118. https://pubmed.ncbi.nlm.nih.gov/27015893/

320

Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/

321

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

322

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

323

Kaeberlein M. Spermidine surprise for a long life. Nat Cell Biol. 2009;11(11):1277–8. https://pubmed.ncbi.nlm.nih.gov/19884883/

324

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

325

Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY). 2011;3(8):716–32. https://pubmed.ncbi.nlm.nih.gov/21869457/

326

Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol. 2009;44(11):727–32. https://pubmed.ncbi.nlm.nih.gov/19735716/

327

Yue F, Li W, Zou J, et al. Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating map1s-mediated autophagy. Cancer Res. 2017;77(11):2938–51. https://pubmed.ncbi.nlm.nih.gov/28386016/

328

Eisenberg T, Knauer H, Schauer A, et al. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol. 2009;11(11):1305–14. https://pubmed.ncbi.nlm.nih.gov/19801973/

329

Rudman D, Kutner MH, Chawla RK, Goldsmith MA, Blackston RD, Bain R. Serum and urine polyamines in normal and in short children. J Clin Invest. 1979;64(6):1661–8. https://pubmed.ncbi.nlm.nih.gov/500832/

330

Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/

331

Piore A. Can blood from young people slow aging? Silicon Valley bets it will. Newsweek. April 7, 2021. https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html. Accessed December 25, 2022.; https://www.newsweek.com/2021/04/16/can-blood-young-people-slow-aging-silicon-valley-has-bet-billions-it-will-1581447.html

332

Viltard M, Durand S, Pérez-Lanzón M, et al. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY). 2019;11(14):4783–800. https://pubmed.ncbi.nlm.nih.gov/31346149/

333

Pucciarelli S, Moreschini B, Micozzi D, et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 2012;15(6):590–5. https://pubmed.ncbi.nlm.nih.gov/22950434/

334

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

335

Flurkey K, Currer JM, Harrison DE. 2007. The Mouse in Aging Research. In The Mouse in Biomedical Research 2nd Edition. Fox JG, et al, editors. American College Laboratory Animal Medicine (Elsevier), Burlington, MA. pp. 637–72.; https://www.sciencedirect.com/science/article/abs/pii/B9780123694546500741?via%3Dihub

336

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

337

Filfan M, Olaru A, Udristoiu I, et al. Long-term treatment with spermidine increases health span of middle-aged Sprague-Dawley male rats. GeroScience. 2020;42(3):937–49. https://pubmed.ncbi.nlm.nih.gov/32285289/

338

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

339

Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/

340

Rinaldi F, Marzani B, Pinto D, Ramot Y. A spermidine-based nutritional supplement prolongs the anagen phase of hair follicles in humans: a randomized, placebo-controlled, double-blind study. Derm Pract Concept. Published online October 31, 2017:17–21.; https://pubmed.ncbi.nlm.nih.gov/29214104/

341

Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/

342

Zhang H, Alsaleh G, Feltham J, et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol Cell. 2019;76(1):110–25.e9. https://pubmed.ncbi.nlm.nih.gov/31474573/

343

Metur SP, Klionsky DJ. The curious case of polyamines: spermidine drives reversal of B cell senescence. Autophagy. 2020;16(3):389–90. https://pubmed.ncbi.nlm.nih.gov/31795807/

344

de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/

345

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

346

Fetterman JL, Holbrook M, Flint N, et al. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis. 2016;247:207–17. https://pubmed.ncbi.nlm.nih.gov/26926601/

347

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

348

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

349

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

350

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

351

Madeo F, Bauer MA, Carmona-Gutierrez D, Kroemer G. Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy. 2019;15(1):165–8. https://pubmed.ncbi.nlm.nih.gov/30306826/

352

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

353

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

354

Madeo F, Hofer SJ, Pendl T, et al. Nutritional aspects of spermidine. Annu Rev Nutr. 2020;40(1):135–59. https://pubmed.ncbi.nlm.nih.gov/32634331/

355

Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/

356

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

357

Еще раз напомним, что американская единица объема «чашка» (cup) равна 240 мл: здесь и далее во всех рецептах. – Примеч. ред.

358

Ali MA, Poortvliet E, Strömberg R, Yngve A. Polyamines: total daily intake in adolescents compared to the intake estimated from the Swedish Nutrition Recommendations Objectified (Sno). Food Nutr Res. 2011;55(1):5455. https://pubmed.ncbi.nlm.nih.gov/21249160/

359

Varghese N, Werner S, Grimm A, Eckert A. Dietary mitophagy enhancer: a strategy for healthy brain aging? Antioxidants (Basel). 2020;9(10). https://pubmed.ncbi.nlm.nih.gov/33003315/

360

Handa AK, Fatima T, Mattoo AK. Polyamines: bio-molecules with diverse functions in plant and human health and disease. Front Chem. 2018;6. https://pubmed.ncbi.nlm.nih.gov/29468148/

361

Agricultural Research Service, United States Department of Agriculture. Dill weed, fresh. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients. Published April 1, 2019. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=dill&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/172233/nutrients

362

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

363

Agricultural Research Service, United States Department of Agriculture. Potato, baked, NFS. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=potato&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102880/nutrients

364

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nut Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

365

Agricultural Research Service, United States Department of Agriculture. Garlic, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=garlic&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103354/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

366

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

367

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

368

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

369

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

370

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

371

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

372

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

373

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

374

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

375

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

376

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

377

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

378

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

379

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

380

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

381

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

382

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

383

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

384

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

385

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

386

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

387

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

388

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

389

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

390

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

391

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

392

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

393

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

394

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

395

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

396

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

397

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

398

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

399

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

400

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

401

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

402

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

403

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

404

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

405

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

406

Zoumas-Morse C, Rock CL, Quintana EL, Neuhouser ML, Gerner EW, Meyskens FL. Development of a polyamine database for assessing dietary intake. J Am Diet Assoc. 2007;107(6):1024–7. https://pubmed.ncbi.nlm.nih.gov/17524725/

407

Buyukuslu N, Hizli H, Esin K, Garipagaoglu M. A cross-sectional study: nutritional polyamines in frequently consumed foods of the Turkish population. Foods. 2014;3(4):541–57. https://pubmed.ncbi.nlm.nih.gov/28234336/

408

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

409

Reis GCL, Dala-Paula BM, Tavano OL, Guidi LR, Godoy HT, Gloria MBA. In vitro digestion of spermidine and amino acids in fresh and processed Agaricus bisporus mushroom. Food Res Int. 2020;137:109616. https://pubmed.ncbi.nlm.nih.gov/33233206/

410

Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/

411

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

412

Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med. 2016;22(12):1428–38. https://pubmed.ncbi.nlm.nih.gov/27841876/

413

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

414

Agricultural Research Service, United States Department of Agriculture. Mangos, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients. Published April 2018. Accessed February 10, 2023.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/169910/nutrients

415

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

416

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

417

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

418

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

419

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

420

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

421

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

422

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

423

Konakovsky V, Focke M, Hoffmann-Sommergruber K, et al. Levels of histamine and other biogenic amines in high-quality red wines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(4):408–16. https://pubmed.ncbi.nlm.nih.gov/21337238/

424

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

425

Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997;61(9):1582–4. https://pubmed.ncbi.nlm.nih.gov/9339564/

426

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

427

Agricultural Research Service, United States Department of Agriculture. Lettuce, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=lettuce&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1103358/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

428

Fukushima T, Tanaka K, Ushijima K, Moriyama M. Retrospective study of preventive effect of maize on mortality from Parkinson’s disease in Japan. Asia Pac J Clin Nutr. 2003;12(4):447–50. https://pubmed.ncbi.nlm.nih.gov/14672869/

429

McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/

430

Rossetto MRM, Vianello F, Saeki MJ, Lima GPP. Polyamines in conventional and organic vegetables exposed to exogenous ethylene. Food Chem. 2015;188:218–24. https://pubmed.ncbi.nlm.nih.gov/26041185/

431

Kalac¿ P, Krausová P. A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem. 2005;90(1–2):219–30. https://www.sciencedirect.com/science/article/abs/pii/S0308814604002961?via%3Dihub

432

Kozová M, Kalac P, Pelikánová T. Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food Chem. 2009;116(2):419–25. https://www.sciencedirect.com/science/article/abs/pii/S0308814609002441?via%3Dihub

433

.

434

Binh PNT, Soda K, Kawakami M. Gross domestic product and dietary pattern among 49 western countries with a focus on polyamine intake. Health. 2010;02(11):1327–34. https://www.scirp.org/journal/paperinformation.aspx?paperid=3116

435

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

436

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

437

Arulkumar A, Paramithiotis S, Paramasivam S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac Fish. Published online March 16, 2021. https://www.sciencedirect.com/science/article/pii/S2468550X21000198. Accessed December 25, 2022.; https://www.sciencedirect.com/science/article/pii/S2468550X21000198

438

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

439

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

440

Soda K, Binh P, Kawakami M. Mediterranean diet and polyamine intake: possible contribution of increased polyamine intake to inhibition of age-associated disease. NDS. Published online December 2010:1.; https://www.dovepress.com/mediterranean-diet-and-polyamine-intake-possible-contribution-of-incre-peer-reviewed-fulltext-article-NDS

441

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

442

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

443

Nishimura K, Shiina R, Kashiwagi K, Igarashi K. Decrease in polyamines with aging and their ingestion from food and drink. J Biochem. 2006;139(1):81–90. https://pubmed.ncbi.nlm.nih.gov/16428322/

444

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

445

Cipolla BG, Havouis R, Moulinoux JP. Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 2007;33(2):203–12. https://pubmed.ncbi.nlm.nih.gov/17578651/

446

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

447

Kalac P. Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 2014;161:27–39. https://pubmed.ncbi.nlm.nih.gov/24837918/

448

Nishibori N, Fujihara S, Akatuki T. Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 2007;100(2):491–7. https://www.sciencedirect.com/science/article/abs/pii/S0308814605008915?via%3Dihub

449

Atiya Ali M, Poortvliet E, Strömberg R, Yngve A. Polyamines in foods: development of a food database. Food Nutr Res. 2011;55(1):5572. https://pubmed.ncbi.nlm.nih.gov/21249159/

450

Kiechl S, Pechlaner R, Willeit P, et al. Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am J Clin Nutr. 2018;108(2):371–80. https://pubmed.ncbi.nlm.nih.gov/29955838/

451

Pekar T, Bruckner K, Pauschenwein-Frantsich S, et al. The positive effect of spermidine in older adults suffering from dementia: first results of a 3-month trial. Wien Klin Wochenschr. 2021;133:484–91. https://pubmed.ncbi.nlm.nih.gov/33211152/

452

MacMillen H. Could consuming semen make you live longer? Cosmopolitan. https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553–20161201?ref=feed_1. Published online November 17, 2016. Accessed May 19, 2021.; https://www.cosmo.ph/relationships/could-semen-make-you-live-longer-src-intl-a1553-20161201?ref=feed_1

453

Scott E. Drinking semen might help you live longer. Metro.co.uk. https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/. Published November 18, 2016. Accessed April 29, 2021.; https://metro.co.uk/2016/11/18/drinking-semen-might-actually-help-you-live-longer-6266961/

454

Owen DH, Katz DF. A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl. 2005;26(4):459–69. https://pubmed.ncbi.nlm.nih.gov/15955884/

455

Fair WR, Clark RB, Wehner N. A correlation of seminal polyamine levels and semen analysis in the human. Fertil Steril. 1972;23(1):38–42. https://pubmed.ncbi.nlm.nih.gov/5008948/

456

Definition of testament. Merriam-Webster.com. https://www.merriam-webster.com/dictionary/testament. Accessed February 11, 2023.; https://www.merriam-webster.com/dictionary/testament

457

Agricultural Research Service, United States Department of Agriculture. Wheat germ, plain. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients. Published October 30, 2020. Accessed April 30, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=wheat+germ&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1101819/nutrients

458

Liaqat H, Jeong E, Kim KJ, Kim JY. Effect of wheat germ on metabolic markers: a systematic review and meta-analysis of randomized controlled trials. Food Sci Biotechnol. 2020;29(6):739–49. https://pubmed.ncbi.nlm.nih.gov/32523783/

459

McCarty MF, Lerner A. Perspective: low risk of Parkinson’s disease in quasi-vegan cultures may reflect GCN2-mediated upregulation of Parkin. Adv Nutr. 2021;12(2):355–62. https://pubmed.ncbi.nlm.nih.gov/32945884/

460

Cara L, Borel P, Armand M, et al. Plasma lipid lowering effects of wheat germ in hypercholesterolemic subjects. Plant Foods Hum Nutr. 1991;41(2):135–50. https://pubmed.ncbi.nlm.nih.gov/1649472/

461

Moreira-Rosário A, Pinheiro H, Marques C, Teixeira JA, Calhau C, Azevedo LF. Does intake of bread supplemented with wheat germ have a preventive role on cardiovascular disease risk markers in healthy volunteers? A randomised, controlled, crossover trial. BMJ Open. 2019;9(1):e023662. https://pubmed.ncbi.nlm.nih.gov/30659039/

462

Atallahi M, Amir Ali Akbari S, Mojab F, Alavi Majd H. Effects of wheat germ extract on the severity and systemic symptoms of primary dysmenorrhea: a randomized controlled clinical trial. Iran Red Crescent Med J. 2014;16(8). https://pubmed.ncbi.nlm.nih.gov/25389490/

463

Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr. 2013;109 Suppl 2:S81–5. https://pubmed.ncbi.nlm.nih.gov/23360884/

464

Milovic V. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol. 2001;13(9):1021–5. https://pubmed.ncbi.nlm.nih.gov/11564949/

465

Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/

466

Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/

467

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

468

Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N. The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr. 2010;103(2):227–34. https://pubmed.ncbi.nlm.nih.gov/19703328/

469

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

470

Matsumoto M, Aranami A, Ishige A, Watanabe K, Benno Y. LKM512 yogurt consumption improves the intestinal environment and induces the T-helper type 1 cytokine in adult patients with intractable atopic dermatitis. Clin Exp Allergy. 2007;37(3):358–70. https://pubmed.ncbi.nlm.nih.gov/17359386/

471

Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One. 2011;6(8):e23652. https://pubmed.ncbi.nlm.nih.gov/21858192/

472

Kibe R, Kurihara S, Sakai Y, et al. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep. 2014;4(1):4548. https://pubmed.ncbi.nlm.nih.gov/24686447/

473

Matsumoto M, Kitada Y, Naito Y. Endothelial function is improved by inducing microbial polyamine production in the gut: a randomized placebo-controlled trial. Nutrients. 2019;11(5). https://pubmed.ncbi.nlm.nih.gov/31137855/

474

Matsumoto M. Prevention of atherosclerosis by the induction of microbial polyamine production in the intestinal lumen. Biol Pharm Bull. 2020;43(2):221–9. https://pubmed.ncbi.nlm.nih.gov/32009110/

475

Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr. 1998;128(8):1385–91. https://pubmed.ncbi.nlm.nih.gov/9687560/

476

de Cabo R, Navas P. Spermidine to the rescue for an aging heart. Nat Med. 2016;22(12):1389–90. https://pubmed.ncbi.nlm.nih.gov/27923032/

477

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

478

Pietrocola F, Castoldi F, Kepp O, Carmona-Gutierrez D, Madeo F, Kroemer G. Spermidine reduces cancer-related mortality in humans. Autophagy. 2019;15(2):362–5. https://pubmed.ncbi.nlm.nih.gov/30354939/

479

Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D. The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol. 2020;10. https://pubmed.ncbi.nlm.nih.gov/33117715/

480

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

481

Madeo F, Eisenberg T, Pietrocola F, Kroemer G. Spermidine in health and disease. Science. 2018;359(6374):eaan2788. https://pubmed.ncbi.nlm.nih.gov/29371440/

482

Barardo D, Thornton D, Thoppil H, et al. The DrugAge database of aging-related drugs. Aging Cell. 2017;16(3):594–7. https://pubmed.ncbi.nlm.nih.gov/28299908/

483

DrugAge: database of ageing-related drugs. https://genomics.senescence.info/drugs/stats.php. Updated February 7, 2023. Accessed February 11, 2023.; https://genomics.senescence.info/drugs/stats.php

484

Janssens GE, Houtkooper RH. Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. 2020;21(6):709–19. https://pubmed.ncbi.nlm.nih.gov/32562114/

485

Hunter DC, Burritt DJ. Polyamines of plant origin: an important dietary consideration for human health. In: Rao V, ed. Phytochemicals as Nutraceuticals: Global Approaches to Their Role in Nutrition and Health. InTech; 2012:225–44. https://www.intechopen.com/chapters/32904

486

Larqué E, Sabater-Molina M, Zamora S. Biological significance of dietary polyamines. Nutrition. 2007;23(1):87–95. https://pubmed.ncbi.nlm.nih.gov/17113752/

487

Khandia R, Dadar M, Munjal A, et al. A comprehensive review of autophagy and its various roles in infectious, non-infectious, and lifestyle diseases: current knowledge and prospects for disease prevention, novel drug design, and therapy. Cells. 2019;8(7):674. https://pubmed.ncbi.nlm.nih.gov/31277291/

488

Hayflick L, Moorhead PS. 1961. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.; https://pubmed.ncbi.nlm.nih.gov/13905658/

489

Zhang H, Simon AK. Polyamines reverse immune senescence via the translational control of autophagy. Autophagy. 2020;16(1):181–2. https://pubmed.ncbi.nlm.nih.gov/31679458/

490

Luo J, Si H, Jia Z, Liu D. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants. 2021;10(2):283. https://pubmed.ncbi.nlm.nih.gov/33668479/

491

Schmitt R. Senotherapy: growing old and staying young? Pflugers Arch-Eur J Physiol. 2017;469(9):1051–9. https://pubmed.ncbi.nlm.nih.gov/28389776/

492

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

493

Baker DJ, Petersen RC. Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Invest. 2018;128(4):1208–16. https://pubmed.ncbi.nlm.nih.gov/29457783/

494

Davan-Wetton CSA, Pessolano E, Perretti M, Montero-Melendez T. Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci. 2021;78(7):3333–54. https://pubmed.ncbi.nlm.nih.gov/33439271/

495

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

496

Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/

497

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

498

Mau T, Yung R. Adipose tissue inflammation in aging. Exp Gerontol. 2018;105:27–31. https://pubmed.ncbi.nlm.nih.gov/29054535/

499

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

500

de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/

501

Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev. 2021;66:101251. https://pubmed.ncbi.nlm.nih.gov/33385543/

502

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

503

Hofmann B. Young blood rejuvenates old bodies: a call for reflection when moving from mice to men. Transfus Med Hemother. 2018;45(1):67–71. https://pubmed.ncbi.nlm.nih.gov/29593463/

504

Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci. 1972;34(7):582–7. https://pubmed.ncbi.nlm.nih.gov/4507935/

505

Lavazza A, Garasic M. Vampires 2.0? The ethical quandaries of young blood infusion in the quest for eternal life. Med Health Care Philos. 2020;23(3):421–32. https://pubmed.ncbi.nlm.nih.gov/32447568/

506

Rebo J, Mehdipour M, Gathwala R, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun. 2016;7(1):13363. https://pubmed.ncbi.nlm.nih.gov/27874859/

507

Mehdipour M, Skinner C, Wong N, et al. Rejuvenation of three germ layers tissues by exchanging old blood plasma with saline-albumin. Aging (Albany NY). 2020;12(10):8790–819. https://pubmed.ncbi.nlm.nih.gov/32474458/

508

Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. https://pubmed.ncbi.nlm.nih.gov/32715623/

509

Biller-Andorno N. Young blood for old hands? A recent anti-ageing trial prompts ethical questions. Swiss Med Wkly. 2016;146(3940):w14359. https://pubmed.ncbi.nlm.nih.gov/27684581/

510

Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082705/

511

Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16INK4a-positive cells shorten healthy lifespan. Nature. 2016;530(7589):184–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845101/

512

de Keizer PLJ. The fountain of youth by targeting senescent cells? Trends Mol Med. 2017;23(1):6–17. https://pubmed.ncbi.nlm.nih.gov/28041565/

513

Chen X, Yi Z, Wong GT, et al. Is exercise a senolytic medicine? A systematic review. Aging Cell. 2021;20(1). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811843/

514

Fontana L, Mitchell SE, Wang B, et al. The effects of graded caloric restriction: XII. Comparison of mouse to human impact on cellular senescence in the colon. Aging Cell. 2018;17(3):e12746. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946078/

515

Rusznyák S, Szent-Györgyi A. Vitamin P: flavonols as vitamins. Nature. 1936;138(3479):27. https://www.nature.com/articles/138027a0

516

Belinha I, Amorim MA, Rodrigues P, et al. Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem. 2007;55(6):2446–51. https://pubmed.ncbi.nlm.nih.gov/17323973/

517

Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/

518

Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405395/

519

Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://pubmed.ncbi.nlm.nih.gov/25754370/

520

Geng L, Liu Z, Wang S, et al. Low-dose quercetin positively regulates mouse healthspan. Protein Cell. 2019;10(10):770–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6776572/

521

Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:1–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790550/

522

Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/

523

Mai F, Glomb MA. Isolation of phenolic compounds from iceberg lettuce and impact on enzymatic browning. J Agric Food Chem. 2013;61(11):2868–74. https://pubmed.ncbi.nlm.nih.gov/23473017/

524

Murphy MM, Barraj LM, Herman D, Bi X, Cheatham R, Randolph RK. Phytonutrient intake by adults in the United States in relation to fruit and vegetable consumption. J Acad Nutr Diet. 2012;112(2):222–9. https://pubmed.ncbi.nlm.nih.gov/22741166/

525

Agricultural Research Service, United States Department of Agriculture. Onions, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/170000/nutrients. Published April 1, 2019. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients

526

Agricultural Research Service, United States Department of Agriculture. Onions, red, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=onion&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/790577/nutrients. Published April 1, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/food-details/170000/nutrients

527

Agricultural Research Service, United States Department of Agriculture. Apple, raw. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients. Published October 30, 2020. Accessed May 11, 2021.; https://fdc.nal.usda.gov/fdc-app.html?query=apples&utf8=%E2%9C%93&affiliate=usda&commit=Search#/food-details/1102644/nutrients

528

Formica JV, Regelson W. Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol. 1995;33(12):1061–80. https://pubmed.ncbi.nlm.nih.gov/8847003/

529

Amanzadeh E, Esmaeili A, Rahgozar S, Nourbakhshnia M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. Rev Neurosci. 2019;30(5):555–72. https://pubmed.ncbi.nlm.nih.gov/30753166/

530

Vida RG, Fittler A, Somogyi-Végh A, Poór M. Dietary quercetin supplements: assessment of online product informations and quantitation of quercetin in the products by high-performance liquid chromatography. Phytother Res. 2019;33(7):1912–20. https://pubmed.ncbi.nlm.nih.gov/31155780/

531

Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007;45(11):2179–205. https://pubmed.ncbi.nlm.nih.gov/17698276/

532

Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–56. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796530/

533

Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267

534

Bondonno NP, Bondonno CP, Blekkenhorst LC, et al. Flavonoid-rich apple improves endothelial function in individuals at risk for cardiovascular disease: a randomized controlled clinical trial. Mol Nutr Food Res. 2018;62(3). https://pubmed.ncbi.nlm.nih.gov/29086478/

535

Huang H, Liao D, Dong Y, Pu R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev. 2020;78(8):615–26. https://pubmed.ncbi.nlm.nih.gov/31940027/

536

Tabrizi R, Tamtaji OR, Mirhosseini N, et al. The effects of quercetin supplementation on lipid profiles and inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2020;60(11):1855–68. https://pubmed.ncbi.nlm.nih.gov/31017459/

537

Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71(9):1033–9. https://pubmed.ncbi.nlm.nih.gov/28537580/

538

Nakagawa T, Itoh M, Ohta K, et al. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients. Neuroreport. 2016;27(9):671–6. https://pubmed.ncbi.nlm.nih.gov/27145228/

539

Nishimura M, Ohkawara T, Nakagawa T, et al. A randomized, double-blind, placebo-controlled study evaluating the effects of quercetin-rich onion on cognitive function in elderly subjects. FFHD. 2017;7(6):353–74. https://ffhdj.com/index.php/ffhd/article/view/334

540

Kalus U, Pindur G, Jung F, et al. Influence of the onion as an essential ingredient of the Mediterranean diet on arterial blood pressure and blood fluidity. Arzneimittelforschung. 2000;50(9):795–801. https://pubmed.ncbi.nlm.nih.gov/11050695/

541

Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342(8878):1007–11. https://pubmed.ncbi.nlm.nih.gov/8105262/

542

Briggs ADM, Mizdrak A, Scarborough P. A statin a day keeps the doctor away: comparative proverb assessment modelling study. BMJ. 2013;347:f7267. https://www.bmj.com/content/347/bmj.f7267

543

Hwang HV, Tran DT, Rebuffatti MN, Li CS, Knowlton AA. Investigation of quercetin and hyperoside as senolytics in adult human endothelial cells. PLoS ONE. 2018;13(1):e0190374. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5760026/

544

Khan S, Shukla S, Sinha S, Meeran SM. Epigenetic targets in cancer and aging: dietary and therapeutic interventions. Expert Opin Ther Targets. 2016;20(6):689–703. https://pubmed.ncbi.nlm.nih.gov/26667209/

545

Geng L, Liu Z, Zhang W, et al. Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell. 2019;10(6):417–35. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6538594/

546

Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–71. https://pubmed.ncbi.nlm.nih.gov/20619334/

547

Zhu Y, Doornebal EJ, Pirtskhalava T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL–XL inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391241/

548

Wyld L, Bellantuono I, Tchkonia T, et al. Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel). 2020;12(8):2134. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464619/

549

Li W, Qin L, Feng R, et al. Emerging senolytic agents derived from natural products. Mech Ageing Dev. 2019;181:1–6. https://pubmed.ncbi.nlm.nih.gov/31077707/

550

Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/

551

Maher P, Akaishi T, Abe K. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. PNAS. 2006;103(44):16568–73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637622/

552

Farsad-Naeimi A, Alizadeh M, Esfahani A, Darvish Aminabad E. Effect of fisetin supplementation on inflammatory factors and matrix metalloproteinase enzymes in colorectal cancer patients. Food Funct. 2018;9(4):2025–31. https://pubmed.ncbi.nlm.nih.gov/29541713/

553

Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197652/

554

U.S. National Library of Medicine. Search results for fisetin. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=. Accessed May 29, 2021.; https://clinicaltrials.gov/ct2/results?cond=&term=fisetin&cntry=&state=&city=&dist=

555

Grynkiewicz G, Demchuk OM. New perspectives for fisetin. Front Chem. 2019;7:697. https://pubmed.ncbi.nlm.nih.gov/31750288/

556

Rabin BM, Joseph JA, Shukitt-Hale B. Effects of age and diet on the heavy particle-induced disruption of operant responding produced by a ground-based model for exposure to cosmic rays. Brain Res. 2005;1036(1–2):122–9. https://pubmed.ncbi.nlm.nih.gov/15725409/

557

Miller MG, Thangthaeng N, Rutledge GA, Scott TM, Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br J Nutr. Published online January 20, 2021:1–11.; https://pubmed.ncbi.nlm.nih.gov/33468271/

558

Gao Q, Qin LQ, Arafa A, Eshak ES, Dong JY. Effects of strawberry intervention on cardiovascular risk factors: a meta-analysis of randomised controlled trials. Br J Nutr. 2020;124(3):241–6. https://pubmed.ncbi.nlm.nih.gov/32238201/

559

Schell J, Scofield RH, Barrett JR, et al. Strawberries improve pain and inflammation in obese adults with radiographic evidence of knee osteoarthritis. Nutrients. 2017;9(9):949. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622709/

560

Ezzat-Zadeh Z, Henning SM, Yang J, et al. California strawberry consumption increased the abundance of gut microorganisms related to lean body weight, health and longevity in healthy subjects. Nutr Res. 2021;85:60–70. https://pubmed.ncbi.nlm.nih.gov/33450667/

561

Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol. 2012;62(1):144–9. https://pubmed.ncbi.nlm.nih.gov/21357455/

562

Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17(1):83. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6819567/

563

Wang Y, Chang J, Liu X, et al. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016;8(11):2915–26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5191878/

564

Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L.: bridging traditional knowledge and pharmacological evidence for future translational research. J Ethnopharmacol. 2020;247:112255. https://pubmed.ncbi.nlm.nih.gov/31568819/

565

Kumar S, Kamboj J, Suman, Sharma S. Overview for various aspects of the health benefits of Piper Longum Linn. fruit. J Acupunct Meridian Stud. 2011;4(2):134–40. https://pubmed.ncbi.nlm.nih.gov/21704957/

566

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

567

van Deursen JM. Senolytic therapies for healthy longevity. Science. 2019;364(6441):636–7. https://pubmed.ncbi.nlm.nih.gov/31097655/

568

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

569

Sallon S, Solowey E, Cohen Y, et al. Germination, genetics, and growth of an ancient date seed. Science. 2008;320(5882):1464. https://pubmed.ncbi.nlm.nih.gov/18556553/

570

Yashina S, Gubin S, Maksimovich S, Yashina A, Gakhova E, Gilichinsky D. Regeneration of whole fertile plants from 30,000-y-old fruit tissue buried in Siberian permafrost. Proc Natl Acad Sci U S A. 2012;109(10):4008–13. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309767/

571

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

572

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

573

Американская кантри-певица и киноактриса. – Примеч. ред.

574

BBC News. 1997: Dolly the sheep is cloned. On this day: 1950–2005. BBC. http://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm. Published February 22, 2005. Accessed May 26, 2021.; https://news.bbc.co.uk/onthisday/hi/dates/stories/february/22/newsid_4245000/4245877.stm

575

Gurdon JB. The cloning of a frog. Development. 2013;140(12):2446–8. https://pubmed.ncbi.nlm.nih.gov/23715536/

576

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

577

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

578

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

579

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

580

Burgstaller JP, Brem G. Aging of cloned animals: a mini-review. Gerontology. 2017;63(5):417–25. https://pubmed.ncbi.nlm.nih.gov/27820924/

581

Wakayama S, Kohda T, Obokata H, et al. Successful serial recloning in the mouse over multiple generations. Cell Stem Cell. 2013;12(3):293–7. https://pubmed.ncbi.nlm.nih.gov/23472871/

582

López-León M, Goya RG. The emerging view of aging as a reversible epigenetic process. Gerontology. 2017;63(5):426–31. https://pubmed.ncbi.nlm.nih.gov/28538216/

583

Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–13. https://pubmed.ncbi.nlm.nih.gov/22186258/

584

Watson JD, Crick FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://pubmed.ncbi.nlm.nih.gov/13054692/

585

Song S, Johnson FB. Epigenetic mechanisms impacting aging: a focus on histone levels and telomeres. Genes. 2018;9(4):201. https://pubmed.ncbi.nlm.nih.gov/29642537/

586

Salzberg SL. Open questions: how many genes do we have? BMC Biol. 2018;16(1):94. https://pubmed.ncbi.nlm.nih.gov/30124169/

587

Govindaraju D, Atzmon G, Barzilai N. Genetics, lifestyle and longevity: lessons from centenarians. Appl Transl Genom. 2015;4:23–32. https://pubmed.ncbi.nlm.nih.gov/26937346/

588

vel Szic KS, Declerck K, Vidakovic M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenet. 2015;7(1):33. https://pubmed.ncbi.nlm.nih.gov/25861393/

589

Li X, Yi C. A novel epigenetic mark derived from vitamin C. Biochemistry. 2020;59(1):8–9. https://pubmed.ncbi.nlm.nih.gov/31538774/

590

Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev. 2018;174:3–17. https://pubmed.ncbi.nlm.nih.gov/29268958/

591

Mitteldorf J. How does the body know how old it is? Introducing the epigenetic clock hypothesis. In: Yashin AI, Jazwinski SM, eds. Aging and Health – A Systems Biology Perspective. Interdisciplinary Topics in Gerontology, vol 40. Karger, Basel;2015:49–62. https://pubmed.ncbi.nlm.nih.gov/25341512/

592

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

593

Vaiserman AM. Hormesis and epigenetics: is there a link? Ageing Res Rev. 2011;10(4):413–21. https://pubmed.ncbi.nlm.nih.gov/21292042/

594

Kawahata A, Sakamoto H. Some observations on sweating of the Aino. Jpn J Physiol. 1951;2(2):166–9. https://pubmed.ncbi.nlm.nih.gov/14897491/

595

Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG. 2008;115(10):1243–9. https://pubmed.ncbi.nlm.nih.gov/18715409/

596

Ornish D, Magbanua MJ, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci USA. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/

597

Corona M, Velarde RA, Remolina S, et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc Natl Acad Sci USA. 2007;104(17):7128–33. https://pubmed.ncbi.nlm.nih.gov/17438290/

598

Bacalini MG, Friso S, Olivieri F, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136–137:101–15. https://pubmed.ncbi.nlm.nih.gov/24388875/

599

Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30. https://pubmed.ncbi.nlm.nih.gov/18339900/

600

Hadi A, Najafgholizadeh A, Aydenlu ES, et al. Royal jelly is an effective and relatively safe alternative approach to blood lipid modulation: a meta-analysis. J Funct Foods. 2018;41:202–9. https://www.sciencedirect.com/science/article/abs/pii/S1756464617307284?via%3Dihub

601

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

602

Ecker S, Beck S. The epigenetic clock: a molecular crystal ball for human aging? Aging (Albany NY). 2019;11(2):833–5. https://pubmed.ncbi.nlm.nih.gov/30669120/

603

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

604

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. https://pubmed.ncbi.nlm.nih.gov/11181995/

605

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

606

Устройство, выполняющее очень простое действие чрезвычайно сложным образом. Как правило, это происходит посредством длинной последовательности взаимодействий по «принципу домино». – Примеч. ред.

607

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

608

Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172–85. https://pubmed.ncbi.nlm.nih.gov/30419258/

609

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

610

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

611

Social Security Administration. Actuarial life table. Period life table, 2017. Social Security Administration. https://www.ssa.gov/oact/STATS/table4c6.html. Accessed May 26, 2021.; https://www.ssa.gov/oact/STATS/table4c6.html

612

McCrory C, Fiorito G, Hernandez B, et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J Gerontol A Biol Sci Med Sci. 2021;76(5):741–9. https://pubmed.ncbi.nlm.nih.gov/33211845/

613

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

614

Mendelson MM. Epigenetic age acceleration: a biological doomsday clock for cardiovascular disease? Circ Genom Precis Med. 2018;11(3). https://pubmed.ncbi.nlm.nih.gov/29555673/

615

Mitteldorf J. An incipient revolution in the testing of anti-aging strategies. Biochemistry (Mosc). 2018;83(12):1517–23. https://pubmed.ncbi.nlm.nih.gov/30878026/

616

Horvath S, Pirazzini C, Bacalini MG, et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY). 2015;7(12):1159–70. https://pubmed.ncbi.nlm.nih.gov/26678252/

617

Declerck K, Vanden Berghe W. Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018;174:18–29. https://pubmed.ncbi.nlm.nih.gov/29337038/

618

Austad SN, Bartke A. Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology. 2015;62(1):40–6. https://pubmed.ncbi.nlm.nih.gov/25968226/

619

Robert L, Fulop T. Longevity and its regulation: centenarians and beyond. Interdiscip Top Gerontol. 2014;39:198–211. https://pubmed.ncbi.nlm.nih.gov/24862022/

620

Beach SRH, Dogan MV, Lei MK, et al. Methylomic aging as a window onto the influence of lifestyle: tobacco and alcohol use alter the rate of biological aging. J Am Geriatr Soc. 2015;63(12):2519–25. https://pubmed.ncbi.nlm.nih.gov/26566992/

621

Vyas CM, Hazra A, Chang SC, et al. Pilot study of DNA methylation, molecular aging markers and measures of health and well-being in aging. Transl Psychiatry. 2019;9(1):118. https://pubmed.ncbi.nlm.nih.gov/30886137/

622

Pavanello S, Campisi M, Tona F, Dal Lin C, Iliceto S. Exploring epigenetic age in response to intensive relaxing training: a pilot study to slow down biological age. Int J Environ Res Public Health. 2019;16(17):3074. https://pubmed.ncbi.nlm.nih.gov/31450859/

623

Chaix R, Alvarez-López MJ, Fagny M, et al. Epigenetic clock analysis in long-term meditators. Psychoneuroendocrinology. 2017;85:210–4. https://pubmed.ncbi.nlm.nih.gov/28889075/

624

Maegawa S, Lu Y, Tahara T, et al. Caloric restriction delays age-related methylation drift. Nat Commun. 2017;8(1):539. https://pubmed.ncbi.nlm.nih.gov/28912502/

625

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

626

Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the rate of biological aging in response to caloric restriction: CALERIE Biobank analysis. J Gerontol A Biol Sci Med Sci. 2018;73(1):4–10. https://pubmed.ncbi.nlm.nih.gov/28531269/

627

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

628

de Toro-Martín J, Guénard F, Tchernof A, et al. Body mass index is associated with epigenetic age acceleration in the visceral adipose tissue of subjects with severe obesity. Clin Epigenetics. 2019;11(1):172. https://pubmed.ncbi.nlm.nih.gov/31791395/

629

Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA. 2014;111(43):15538–43. https://pubmed.ncbi.nlm.nih.gov/25313081/

630

Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303–27. https://pubmed.ncbi.nlm.nih.gov/30669119/

631

Quach A, Levine ME, Tanaka T, et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY). 2017;9(2):419–37. https://pubmed.ncbi.nlm.nih.gov/28198702/

632

Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3(4):503–18. https://pubmed.ncbi.nlm.nih.gov/22022340/

633

Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. https://pubmed.ncbi.nlm.nih.gov/29676998/

634

Dugué PA, Bassett JK, Joo JE, et al. Association of DNA methylation-based biological age with health risk factors and overall and cause-specific mortality. Am J Epidemiol. 2018;187(3):529–38. https://pubmed.ncbi.nlm.nih.gov/29020168/

635

Lind PM, Salihovic S, Lind L. High plasma organochlorine pesticide levels are related to increased biological age as calculated by DNA methylation analysis. Environ Int. 2018;113:109–13. https://pubmed.ncbi.nlm.nih.gov/29421399/

636

Mariscal-Arcas M, Lopez-Martinez C, Granada A, Olea N, Lorenzo-Tovar ML, Olea-Serrano F. Organochlorine pesticides in umbilical cord blood serum of women from Southern Spain and adherence to the Mediterranean diet. Food Chem Toxicol. 2010;48(5):1311–5. https://pubmed.ncbi.nlm.nih.gov/20188779/

637

Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, et al. Long-term exposure to air pollution is associated with biological aging. Oncotarget. 2016;7(46):74510–25. https://pubmed.ncbi.nlm.nih.gov/27793020/

638

Ryan J, Wrigglesworth J, Loong J, Fransquet PD, Woods RL. A systematic review and meta-analysis of environmental, lifestyle, and health factors associated with DNA methylation age. J Gerontol A Biol Sci Med Sci. 2020;75(3):481–94. https://pubmed.ncbi.nlm.nih.gov/31001624/

639

Mitteldorf J. A clinical trial using methylation age to evaluate current antiaging practices. Rejuvenation Res. 2019;22(3):201–9. https://pubmed.ncbi.nlm.nih.gov/30345885/

640

Fransquet PD, Wrigglesworth J, Woods RL, Ernst ME, Ryan J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin Epigenet. 2019;11(1):62. https://pubmed.ncbi.nlm.nih.gov/30975202/

641

Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: just a convenient marker or an active driver of aging? In: Guest PC, ed. Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology, vol 1178. Springer Cham; 2019:175–206. https://pubmed.ncbi.nlm.nih.gov/31493228/

642

Nobel Media AB 2021. Shinya Yamanaka – Facts. NobelPrize.org. https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/. Accessed June 5, 2021.; https://www.nobelprize.org/prizes/medicine/2012/yamanaka/facts/

643

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. https://pubmed.ncbi.nlm.nih.gov/16904174/

644

Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. Regeneration. 2015;2(4):149–68. https://pubmed.ncbi.nlm.nih.gov/27499873/

645

Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588(7836):124–9. https://pubmed.ncbi.nlm.nih.gov/33268865/

646

Jacobsen SC, Brøns C, Bork-Jensen J, et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55(12):3341–9. https://pubmed.ncbi.nlm.nih.gov/22961225/

647

Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. https://pubmed.ncbi.nlm.nih.gov/28275132/

648

Miles FL, Mashchak A, Filippov V, et al. DNA methylation profiles of vegans and non-vegetarians in the Adventist Health Study-2 cohort. Nutrients. 2020;12(12):3697. https://pubmed.ncbi.nlm.nih.gov/33266012/

649

Key TJ, Appleby PN, Crowe FL, Bradbury KE, Schmidt JA, Travis RC. Cancer in British vegetarians: updated analyses of 4998 incident cancers in a cohort of 32,491 meat eaters, 8612 fish eaters, 18,298 vegetarians, and 2246 vegans. Am J Clin Nutr. 2014;100 Suppl 1:378S-85S. https://pubmed.ncbi.nlm.nih.gov/24898235/

650

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

651

McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/

652

Thaler R, Karlic H, Rust P, Haslberger AG. Epigenetic regulation of human buccal mucosa mitochondrial superoxide dismutase gene expression by diet. Br J Nutr. 2009;101(5):743–9. https://pubmed.ncbi.nlm.nih.gov/18684339/

653

Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhães JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483–94. https://pubmed.ncbi.nlm.nih.gov/23098078/

654

ElGendy K, Malcomson FC, Lara JG, Bradburn DM, Mathers JC. Effects of dietary interventions on DNA methylation in adult humans: systematic review and meta-analysis. Br J Nutr. 2018;120(9):961–76. https://pubmed.ncbi.nlm.nih.gov/30355391/

655

Miller JW. Factors associated with different forms of folate in human serum: the folate folio continues to grow. J Nutr. 2020;150(4):650–1. https://pubmed.ncbi.nlm.nih.gov/32119743/

656

Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press (US); 1998. https://pubmed.ncbi.nlm.nih.gov/23193625/

657

ter Borg S, Verlaan S, Hemsworth J, et al. Micronutrient intakes and potential inadequacies of community-dwelling older adults: a systematic review. Br J Nutr. 2015;113(8):1195–206. https://pubmed.ncbi.nlm.nih.gov/25822905/

658

Jacob RA, Gretz DM, Taylor PC, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr. 1998;128(7):1204–12. https://pubmed.ncbi.nlm.nih.gov/9649607/

659

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

660

Amenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults – a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–66. https://pubmed.ncbi.nlm.nih.gov/31977026/

661

Rampersaud GC, Kauwell GP, Hutson AD, Cerda JJ, Bailey LB. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr. 2000;72(4):998–1003. https://pubmed.ncbi.nlm.nih.gov/11010943/

662

Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet. 2010;71:3–39. https://pubmed.ncbi.nlm.nih.gov/20933124/

663

Eaton SB, Eaton SB. Paleolithic vs. modern diets – selected pathophysiological implications. Eur J Nutr. 2000;39(2):67–70. https://pubmed.ncbi.nlm.nih.gov/10918987/

664

Метилентетрагидрофолатредуктаза, ключевой фермент фолатного цикла. – Примеч. ред.

665

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

666

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

667

Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients. 2016;8(11). https://pubmed.ncbi.nlm.nih.gov/27854316/

668

Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci USA. 2002;99(8):5606–11. https://pubmed.ncbi.nlm.nih.gov/11929966/

669

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

670

Levin BL, Varga E. MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns. 2016;25(5):901–11. https://pubmed.ncbi.nlm.nih.gov/27130656/

671

Parkhurst E, Calonico E, Noh G. Medical decision support to reduce unwarranted methylene tetrahydrofolate reductase (MTHFR) genetic testing. J Med Syst. 2020;44(9):152. https://pubmed.ncbi.nlm.nih.gov/32737598/

672

Seitz HK, Matsuzaki S, Yokoyama A, Homann N, Väkeväinen S, Wang XD. Alcohol and cancer. Alcohol Clin Exp Res. 2001;25(5 Suppl ISBRA):137S-43S. https://pubmed.ncbi.nlm.nih.gov/15082451/

673

Bailey LB. Folate, methyl-related nutrients, alcohol, and the MTHFR 677C®T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S-53S. https://pubmed.ncbi.nlm.nih.gov/14608109/

674

Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015–35. https://pubmed.ncbi.nlm.nih.gov/30146330/

675

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

676

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

677

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification – its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370–84. https://pubmed.ncbi.nlm.nih.gov/22254102/

678

Bailey SW, Ayling JE. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci U S A. 2009;106(36):15424–9. https://pubmed.ncbi.nlm.nih.gov/19706381/

679

Selhub J, Rosenberg IH. Excessive folic acid intake and relation to adverse health outcome. Biochimie. 2016;126:71–8. https://pubmed.ncbi.nlm.nih.gov/27131640/

680

Troen AM, Mitchell B, Sorensen B, et al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women. J Nutr. 2006;136(1):189–94. https://pubmed.ncbi.nlm.nih.gov/16365081/

681

Bo Y, Zhu Y, Tao Y, et al. Association between folate and health outcomes: an umbrella review of meta-analyses. Front Public Health. 2020;8:550753. https://pubmed.ncbi.nlm.nih.gov/33384976/

682

U.S. Preventive Services Task Force. Final recommendation statement: folic acid for the prevention of neural tube defects: preventive medication. U.S. Preventive Services Task Force. https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication. Published January 10, 2017. Accessed May 26, 2021.; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/folic-acid-for-the-prevention-of-neural-tube-defects-preventive-medication

683

Dudeja PK, Torania SA, Said HM. Evidence for the existence of a carrier-mediated folate uptake mechanism in human colonic luminal membranes. Am J Physiol. 1997;272(6Pt1):G1408–15. https://pubmed.ncbi.nlm.nih.gov/9227476/

684

Strozzi GP, Mogna L. Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol. 2008;42 Suppl 3 Pt 2:S179–84. https://pubmed.ncbi.nlm.nih.gov/18685499/

685

Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012;148(1–2):46–57. https://pubmed.ncbi.nlm.nih.gov/22265401/

686

Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/

687

Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by processed animal feed: the role of Maillard reaction products and advanced glycation end-products (AGEs). Front Immunol. 2018;9:2088. https://pubmed.ncbi.nlm.nih.gov/30271411/

688

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

689

Unnikrishnan R, Anjana RM, Mohan V. Drugs affecting HbA1c levels. Indian J Endocrinol Metab. 2012;16(4):528–31. https://pubmed.ncbi.nlm.nih.gov/22837911/

690

American Diabetes Association. Understanding A1C. American Diabetes Association website. https://www.diabetes.org/a1c. Accessed June 2, 2021.; https://www.diabetes.org/a1c

691

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

692

Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem. 2000;275(50):39027–31. https://pubmed.ncbi.nlm.nih.gov/10976109/

693

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

694

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

695

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

696

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

697

Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/

698

Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced glycation end products and risks for chronic diseases: intervening through lifestyle modification. Am J Lifestyle Med. 2019;13(4):384–404. https://pubmed.ncbi.nlm.nih.gov/31285723/

699

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/

700

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

701

Sergi D, Boulestin H, Campbell FM, Williams LM. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res. 2021;65(1):1900934. https://pubmed.ncbi.nlm.nih.gov/32246887/

702

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

703

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

704

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

705

Azman KF, Zakaria R. D-galactose-induced accelerated aging model: an overview. Biogerontology. 2019;20(6):763–82. https://pubmed.ncbi.nlm.nih.gov/31538262/

706

Sadowska-Bartosz I, Bartosz G. Effect of glycation inhibitors on aging and age-related diseases. Mech Ageing Dev. 2016;160:1–18. https://pubmed.ncbi.nlm.nih.gov/27671971/

707

Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules – a missing hallmark of aging. Ageing Res Rev. 2020;62:101097. https://pubmed.ncbi.nlm.nih.gov/32540391/

708

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/

709

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

710

Teissier T, Boulanger É. The receptor for advanced glycation end-products (RAGE) is an important pattern recognition receptor (PRR) for inflammaging. Biogerontology. 2019;20(3):279–301. https://pubmed.ncbi.nlm.nih.gov/30968282/

711

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/

712

Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53(39):10316–29. https://pubmed.ncbi.nlm.nih.gov/25044982/

713

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

714

Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond). 2018;15(1):72. https://pubmed.ncbi.nlm.nih.gov/30337945/

715

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

716

Sgarbieri VC, Amaya J, Tanaka M, Chichester CO. Response of rats to amino acid supplementation of brown egg albumin. J Nutr. 1973;103(12):1731–8. https://pubmed.ncbi.nlm.nih.gov/4201784/

717

Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/

718

Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019;9(12):888. https://pubmed.ncbi.nlm.nih.gov/31861217/

719

Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/

720

Koschinsky T, He CJ, Mitsuhashi T, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci USA. 1997;94(12):6474–9. https://pubmed.ncbi.nlm.nih.gov/9177242/

721

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

722

Babtan AM, Ilea A, Bosca BA, et al. Advanced glycation end products as biomarkers in systemic diseases: premises and perspectives of salivary advanced glycation end products. Biomark Med. 2019;13(6):479–95. https://pubmed.ncbi.nlm.nih.gov/30968701/

723

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

724

Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/

725

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

726

Clarivate. Web of science. https://clarivate.com/webofsciencegroup/solutions/web-of-science/. Accessed June 5, 2021.; https://clarivate.com/webofsciencegroup/solutions/web-of-science/

727

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

728

Bettiga A, Fiorio F, Di Marco F, et al. The modern Western diet rich in advanced glycation end-products (AGES): an overview of its impact on obesity and early progression of renal pathology. Nutrients. 2019;11(8):1748. https://pubmed.ncbi.nlm.nih.gov/31366015/

729

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci USA. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

730

Hellwig M, Gensberger-Reigl S, Henle T, Pischetsrieder M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin Cancer Biol. 2018;49:1–8. https://pubmed.ncbi.nlm.nih.gov/29174601/

731

Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, et al. Comparative evaluation of three different ELISA assays and HPLC-ESI–ITMS/MS for the analysis of Ne-carboxymethyl lysine in food samples. Food Chem. 2018;243:11–8. https://pubmed.ncbi.nlm.nih.gov/29146316/

732

Zhang Q, Wang Y, Fu L. Dietary advanced glycation end-products: perspectives linking food processing with health implications. Compr Rev Food Sci Food Saf. 2020;19(5):2559–87. https://pubmed.ncbi.nlm.nih.gov/33336972/

733

Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep. 2021;14(5):46. https://pubmed.ncbi.nlm.nih.gov/33786175/

734

Morales FJ, Somoza V, Fogliano V. Physiological relevance of dietary melanoidins. Amino Acids. 2012;42(4):1097–109. https://pubmed.ncbi.nlm.nih.gov/20949365/

735

Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. J Clin Biochem Nutr. 2015;57(1):1–12. https://pubmed.ncbi.nlm.nih.gov/26236094/

736

Cai W, Gao Q, Zhu L, Peppa M, He C, Vlassara H. Oxidative stress-inducing carbonyl compounds from common foods: novel mediators of cellular dysfunction. Mol Med. 2002;8(7):337–46. https://pubmed.ncbi.nlm.nih.gov/12393931/

737

Nicholl ID, Bucala R. Advanced glycation endproducts and cigarette smoking. Cell Mol Biol (Noisy-le-grand). 1998;44(7):1025–33. https://pubmed.ncbi.nlm.nih.gov/9846884/

738

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

739

Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/

740

Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev. 2020;33(2):298–311. https://pubmed.ncbi.nlm.nih.gov/32238213/

741

Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods. J Am Diet Assoc. 2004;104(8):1287–91. https://pubmed.ncbi.nlm.nih.gov/15281050/

742

del Castillo MD, Iriondo-DeHond A, Iriondo-DeHond M, et al. Healthy eating recommendations: good for reducing dietary contribution to the body’s advanced glycation/lipoxidation end products pool? Nutr Res Rev. 2021;34(1):48–63. https://pubmed.ncbi.nlm.nih.gov/32450931/

743

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

744

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

745

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

746

Rungratanawanich W, Qu Y, Wang X, Essa MM, Song BJ. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp Mol Med. 2021;53(2):168–88. https://pubmed.ncbi.nlm.nih.gov/33568752/

747

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

748

Davis KE, Prasad C, Vijayagopal P, Juma S, Adams-Huet B, Imrhan V. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: role of dietary fat. Br J Nutr. 2015;114(11):1797–806. https://pubmed.ncbi.nlm.nih.gov/26392152/

749

Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A(9):963–75. https://pubmed.ncbi.nlm.nih.gov/20478906/

750

Senolt L, Braun M, Olejarova M, Forejtova S, Gatterova J, Pavelka K. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein. Ann Rheum Dis. 2005;64(6):886–90. https://pubmed.ncbi.nlm.nih.gov/15897309/

751

Hein G, Wiegand R, Lehmann G, Stein G, Franke S. Advanced glycation end-products pentosidine and N epsilon-carboxymethyllysine are elevated in serum of patients with osteoporosis. Rheumatology (Oxford). 2003;42(10):1242–6. https://pubmed.ncbi.nlm.nih.gov/12777635/

752

Meerwaldt R, Graaff R, Oomen PHN, et al. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia. 2004;47(7):1324–30. https://pubmed.ncbi.nlm.nih.gov/15243705/

753

Mahmoudi R, Jaisson S, Badr S, et al. Post-translational modification-derived products are associated with frailty status in elderly subjects. Clin Chem Lab Med. 2019;57(8):1153–61. https://pubmed.ncbi.nlm.nih.gov/30817296/

754

Cavero-Redondo I, Soriano-Cano A, Álvarez-Bueno C, et al. Skin autofluorescence – indicated advanced glycation end products as predictors of cardiovascular and all-cause mortality in high-risk subjects: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(18):e009833. https://pubmed.ncbi.nlm.nih.gov/30371199/

755

Igase M, Ohara M, Igase K, et al. Skin autofluorescence examination as a diagnostic tool for mild cognitive impairment in healthy people. J Alzheimers Dis. 2017;55(4):1481–7. https://pubmed.ncbi.nlm.nih.gov/27858716/

756

Cai W, Uribarri J, Zhu L, et al. Oral glycotoxins are a modifiable cause of dementia and the metabolic syndrome in mice and humans. Proc Natl Acad Sci U S A. 2014;111(13):4940–5. https://pubmed.ncbi.nlm.nih.gov/24567379/

757

Giem P, Beeson WL, Fraser GE. The incidence of dementia and intake of animal products: preliminary findings from the Adventist Health Study. Neuroepidemiology. 1993;12(1):28–36. https://pubmed.ncbi.nlm.nih.gov/8327020/

758

Cao GY, Li M, Han L, et al. Dietary fat intake and cognitive function among older populations: a systematic review and meta-analysis. J Prev Alzheimers Dis. 2019;6(3):204–11. https://pubmed.ncbi.nlm.nih.gov/31062836/

759

Holloway CJ, Cochlin LE, Emmanuel Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr. 2011;93(4):748–55. https://pubmed.ncbi.nlm.nih.gov/21270386/

760

Cai W, He JC, Zhu L, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol. 2007;170(6):1893–902. https://pubmed.ncbi.nlm.nih.gov/17525257/

761

Akhter F, Chen D, Akhter A, et al. High dietary advanced glycation end products impair mitochondrial and cognitive function. J Alzheimers Dis. 2020;76(1):165–78. https://pubmed.ncbi.nlm.nih.gov/32444539/

762

Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/

763

Tsakiri EN, Iliaki KK, Höhn A, et al. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Radic Biol Med. 2013;65:1155–63. https://pubmed.ncbi.nlm.nih.gov/23999505/

764

Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–8. https://pubmed.ncbi.nlm.nih.gov/12765955/

765

Cai W, He JC, Zhu L, et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol. 2008;173(2):327–36. https://pubmed.ncbi.nlm.nih.gov/18599606/

766

Negrean M, Stirban A, Stratmann B, et al. Effects of low- and high-advanced glycation endproduct meals on macro-and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus. Am J Clin Nutr. 2007;85(5):1236–43. https://pubmed.ncbi.nlm.nih.gov/17490958/

767

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

768

. Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: friend or foe? Exp Gerontol. 2019;117:76–90. https://pubmed.ncbi.nlm.nih.gov/30458224/

769

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

770

Gaesser GA, Rodriguez J, Patrie JT, Whisner CM, Angadi SS. Effects of glycemic index and cereal fiber on postprandial endothelial function, glycemia, and insulinemia in healthy adults. Nutrients. 2019;11(10):2387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6835298/

771

Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004;292(20):2482–90. https://pubmed.ncbi.nlm.nih.gov/15562127/

772

Jenkins DJ, Taylor RH, Goff DV, et al. Scope and specificity of acarbose in slowing carbohydrate absorption in man. Diabetes. 1981;30(11):951–4. https://pubmed.ncbi.nlm.nih.gov/7028548/

773

Augustin LSA, Kendall CWC, Jenkins DJA, et al. Glycemic index, glycemic load and glycemic response: an international scientific consensus summit from the International Carbohydrate Quality Consortium (ICQC). Nutr Metab Cardiovasc Dis. 2015;25(9):795–815. https://pubmed.ncbi.nlm.nih.gov/26160327/

774

Schnell O, Weng J, Sheu WH, et al. Acarbose reduces body weight irrespective of glycemic control in patients with diabetes: results of a worldwide, non-interventional, observational study data pool. J Diabetes Complicat. 2016;30(4):628–37. https://pubmed.ncbi.nlm.nih.gov/26935335/

775

Tsunosue M, Mashiko N, Ohta Y, et al. An a-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin Exp Med. 2010;10(2):139–41. https://pubmed.ncbi.nlm.nih.gov/19834782/

776

Newman JC, Milman S, Hashmi SK, et al. Strategies and challenges in clinical trials targeting human aging. J Gerontol A Biol Sci Med Sci. 2016;71(11):1424–34. https://pubmed.ncbi.nlm.nih.gov/27535968/

777

Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/

778

Jenkins D, Wolever T, Taylor R, Barker H, Fielden H. Exceptionally low blood glucose response to dried beans: comparison with other carbohydrate foods. BMJ. 1980;281(6240):578–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1713902/

779

Jenkins DJ, Wolever TM, Taylor RH, et al. Slow release dietary carbohydrate improves second meal tolerance. Am J Clin Nutr. 1982;35(6):1339–46. https://pubmed.ncbi.nlm.nih.gov/6282105/

780

Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR. Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988;48(4):1041–7. https://pubmed.ncbi.nlm.nih.gov/2844076/

781

Mollard RC, Wong CL, Luhovyy BL, Anderson GH. First and second meal effects of pulses on blood glucose, appetite, and food intake at a later meal. Appl Physiol Nutr Metab. 2011;36(5):634–42. https://pubmed.ncbi.nlm.nih.gov/21957874/

782

Jenkins DJA, Kendall CWC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus: a randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60. https://pubmed.ncbi.nlm.nih.gov/23089999/

783

Sievenpiper JL, Chiavaroli L, de Souza RJ, et al. “Catalytic” doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012;108(3):418–23. https://pubmed.ncbi.nlm.nih.gov/22354959/

784

Christensen AS, Viggers L, Hasselström K, Gregersen S. Effect of fruit restriction on glycemic control in patients with type 2 diabetes – a randomized trial. Nutr J. 2013;12:29. https://pubmed.ncbi.nlm.nih.gov/23497350/

785

Choo VL, Viguiliouk E, Mejia SB, et al. Food sources of fructose-containing sugars and glycaemic control: systematic review and meta-analysis of controlled intervention studies. BMJ. 2018;363:k4644. https://pubmed.ncbi.nlm.nih.gov/30463844/

786

McSwiney FT, Doyle L. Low-carbohydrate ketogenic diets in male endurance athletes demonstrate different micronutrient contents and changes in corpuscular haemoglobin over 12 weeks. Sports (Basel). 2019;7(9):201. https://pubmed.ncbi.nlm.nih.gov/31480346/

787

Sweeney JS. Dietary factors that influence the dextrose tolerance test: a preliminary study. Arch Intern Med (Chic). 1927;40(6):818–30. https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/535594

788

Manco M, Bertuzzi A, Salinari S, et al. The ingestion of saturated fatty acid triacylglycerols acutely affects insulin secretion and insulin sensitivity in human subjects. Br J Nutr. 2004;92(6):895–903. https://pubmed.ncbi.nlm.nih.gov/15613251/

789

Koska J, Ozias MK, Deer J, et al. A human model of dietary saturated fatty acid induced insulin resistance. Metabolism. 2016;65(11):1621–8. https://pubmed.ncbi.nlm.nih.gov/27733250/

790

Angeloni C, Zambonin L, Hrelia S. Role of methylglyoxal in Alzheimer’s disease. Biomed Res Int. 2014;2014:238485. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966409/

791

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–16.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

792

Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/

793

Franz MJ. Protein and diabetes: much advice, little research. Curr Diab Rep. 2002;2(5):457–64. https://pubmed.ncbi.nlm.nih.gov/12643172/

794

Jones AW, Rössner S. False-positive breath-alcohol test after a ketogenic diet. Int J Obes (Lond). 2007;31(3):559–61. https://pubmed.ncbi.nlm.nih.gov/16894360/

795

Beisswenger BG, Delucia EM, Lapoint N, Sanford RJ, Beisswenger PJ. Ketosis leads to increased methylglyoxal production on the Atkins diet. Ann N Y Acad Sci. 2005;1043:201–10. https://pubmed.ncbi.nlm.nih.gov/16037240/

796

Tey SL, Salleh NB, Henry CJ, Forde CG. Effects of non-nutritive (artificial vs natural) sweeteners on 24-h glucose profiles. Eur J Clin Nutr. 2017;71(9):1129–32. https://pubmed.ncbi.nlm.nih.gov/28378852/

797

Coca-Cola. Nutrition facts – original 20 fl oz. https://us.coca-cola.com/products/coca-cola/original. Accessed December 26, 2022.; https://us.coca-cola.com/products/coca-cola/original

798

Tey SL, Salleh NB, Henry J, Forde CG. Effects of aspartame-, monk fruit-, stevia- and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes (Lond). 2017;41(3):450–7. https://pubmed.ncbi.nlm.nih.gov/27956737/

799

Pepino MY, Tiemann CD, Patterson BW, Wice BM, Klein S. Sucralose affects glycemic and hormonal responses to an oral glucose load. Diabetes Care. 2013;36(9):2530–5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747933/

800

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

801

Brand JC, Nicholson PL, Thorburn AW, Truswell AS. Food processing and the glycemic index. Am J Clin Nutr. 1985;42(6):1192–6. https://pubmed.ncbi.nlm.nih.gov/4072954/

802

Atkinson FS, Foster-Powell K, Brand-Miller JC. International tables of glycemic index and glycemic load values: 2008. Diabetes Care. 2008;31(12):2281–3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2584181/

803

Mofidi A, Ferraro ZM, Stewart KA, et al. The acute impact of ingestion of sourdough and whole-grain breads on blood glucose, insulin, and incretins in overweight and obese men. J Nutr Metab. 2012;2012:184710. https://pubmed.ncbi.nlm.nih.gov/22474577/

804

Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/

805

Jenkins DJ, Wesson V, Wolever TM, et al. Wholemeal versus wholegrain breads: proportion of whole or cracked grain and the glycaemic response. BMJ. 1988;297(6654):958–60. https://pubmed.ncbi.nlm.nih.gov/3142566/

806

Breen C, Ryan M, Gibney MJ, Corrigan M, O’Shea D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013;39(3):376–86. https://pubmed.ncbi.nlm.nih.gov/23482513/

807

Reynolds AN, Mann J, Elbalshy M, et al. Wholegrain particle size influences postprandial glycemia in type 2 diabetes: a randomized crossover study comparing four wholegrain breads. Dia Care. 2020;43(2):476–9. https://pubmed.ncbi.nlm.nih.gov/31744812/

808

Burton P, Lightowler HJ. The impact of freezing and toasting on the glycaemic response of white bread. Eur J Clin Nutr. 2008;62(5):594–9. https://pubmed.ncbi.nlm.nih.gov/17426743/

809

Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163–74. https://pubmed.ncbi.nlm.nih.gov/23414580/

810

Yadav BS, Sharma A, Yadav RB. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers. Int J Food Sci Nutr. 2009;60 Suppl 4:258–72. https://pubmed.ncbi.nlm.nih.gov/19562607/

811

de Morais Cardoso L, Pinheiro SS, Martino HSD, Pinheiro-Sant’Ana HM. Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit Rev Food Sci Nutr. 2017;57(2):372–90. https://pubmed.ncbi.nlm.nih.gov/25875451/

812

Narayanan J, Sanjeevi V, Rohini U, Trueman P, Viswanathan V. Postprandial glycaemic response of foxtail millet dosa in comparison to a rice dosa in patients with type 2 diabetes. Indian J Med Res. 2016;144(5):712–7. https://pubmed.ncbi.nlm.nih.gov/28361824/

813

Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014;5(5):894–9. https://pubmed.ncbi.nlm.nih.gov/24608948/

814

Abdelgadir M, Abbas M, Järvi A, Elbagir M, Eltom M, Berne C. Glycaemic and insulin responses of six traditional Sudanese carbohydrate-rich meals in subjects with Type 2 diabetes mellitus. Diabet Med. 2005;22(2):213–7. https://pubmed.ncbi.nlm.nih.gov/15660741/

815

Chen Z, Glisic M, Song M, et al. Dietary protein intake and all-cause and cause-specific mortality: results from the Rotterdam Study and a meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):411–29. https://pubmed.ncbi.nlm.nih.gov/32076944/

816

Mazidi M, Katsiki N, Mikhailidis DP, Pella D, Banach M. Potato consumption is associated with total and cause-specific mortality: a population-based cohort study and pooling of prospective studies with 98,569 participants. Arch Med Sci. 2020;16(2):260–72. https://pubmed.ncbi.nlm.nih.gov/32190135/

817

Fernandes G, Velangi A, Wolever TMS. Glycemic index of potatoes commonly consumed in North America. J Am Diet Assoc. 2005;105(4):557–62. https://pubmed.ncbi.nlm.nih.gov/15800557/

818

Johnston CS, Steplewska I, Long CA, Harris LN, Ryals RH. Examination of the antiglycemic properties of vinegar in healthy adults. Ann Nutr Metab. 2010;56(1):74–9. https://pubmed.ncbi.nlm.nih.gov/20068289/

819

Leeman M, Östman E, Björck I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. Eur J Clin Nutr. 2005;59(11):1266–71. https://pubmed.ncbi.nlm.nih.gov/16034360/

820

Grussu D, Stewart D, McDougall GJ. Berry polyphenols inhibit a-amylase in vitro: identifying active components in rowanberry and raspberry. J Agric Food Chem. 2011;59(6):2324–31. https://pubmed.ncbi.nlm.nih.gov/21329358/

821

Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: effect on fasting blood sugar and induced hyperglycemia in man. Indian J Med Res. 1977;65(3):422–9. https://pubmed.ncbi.nlm.nih.gov/336527/

822

Haldar S, Chia SC, Lee SH, et al. Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose-response randomized controlled crossover trial. Eur J Nutr. 2019;58(1):301–13. https://pubmed.ncbi.nlm.nih.gov/29236165/

823

Azzeh FS. Synergistic effect of green tea, cinnamon and ginger combination on enhancing postprandial blood glucose. Pak J Biol Sci. 2013;16(2):74–9. https://pubmed.ncbi.nlm.nih.gov/24199490/

824

Hajizadeh-Sharafabad F, Varshosaz P, Jafari-Vayghan H, Alizadeh M, Maleki V. Chamomile (Matricaria recutita L.) and diabetes mellitus, current knowledge and the way forward: a systematic review. Complement Ther Med. 2020;48:102284. https://pubmed.ncbi.nlm.nih.gov/31987240/

825

Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/

826

Kermanian S, Mozaffari-Khosravi H, Dastgerdi G, Zavar-Reza J, Rahmanian M. The effect of chamomile tea versus black tea on glycemic control and blood lipid profiles in depressed patients with type 2 diabetes: a randomized clinical trial. JNFS, 2018;3(3):157–66. https://jnfs.ssu.ac.ir/article-1-197-en.pdf

827

Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163–70. https://pubmed.ncbi.nlm.nih.gov/25194428/

828

Pirouzpanah S, Mahboob S, Sanayei M, Hajaliloo M, Safaeiyan A. The effect of chamomile tea consumption on inflammation among rheumatoid arthritis patients: randomized clinical trial. Prog Nutr. 2017;19(1-S)27–33. https://doi.org/10.23751/PN.V19I1-S.5171

829

Chang SM, Chen CH. Effects of an intervention with drinking chamomile tea on sleep quality and depression in sleep disturbed postnatal women: a randomized controlled trial. J Adv Nurs. 2016;72(2):306–15. https://pubmed.ncbi.nlm.nih.gov/26483209/

830

Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016;32(1):66–72. https://pubmed.ncbi.nlm.nih.gov/26437613/

831

Villa-Rodriguez JA, Aydin E, Gauer JS, Pyner A, Williamson G, Kerimi A. Green and chamomile teas, but not acarbose, attenuate glucose and fructose transport via inhibition of GLUT2 and GLUT5. Mol Nutr Food Res. 2017;61(12):1700566. https://pubmed.ncbi.nlm.nih.gov/28868668/

832

Bowen AJ, Reeves RL. Diurnal variation in glucose tolerance. Arch Intern Med. 1967;119(3):261–4. https://pubmed.ncbi.nlm.nih.gov/6019944/

833

Van Cauter E, Polonsky KS, Scheen AJ. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr Rev. 1997;18(5):716–38. https://pubmed.ncbi.nlm.nih.gov/9331550/

834

Bandín C, Scheer FA, Luque AJ, et al. Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: a randomized, crossover trial. Int J Obes (Lond). 2015;39(5):828–33. https://pubmed.ncbi.nlm.nih.gov/25311083/

835

Gibbs M, Harrington D, Starkey S, Williams P, Hampton S. Diurnal postprandial responses to low and high glycaemic index mixed meals. Clin Nutr. 2014;33(5):889–94. https://pubmed.ncbi.nlm.nih.gov/24135087/

836

3,2 км/ч. – Примеч. ред.

837

Colberg SR, Zarrabi L, Bennington L, et al. Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J Am Med Dir Assoc. 2009;10(6):394–7. https://pubmed.ncbi.nlm.nih.gov/19560716/

838

Haxhi J, Scotto di Palumbo A, Sacchetti M. Exercising for metabolic control: is timing important? Ann Nutr Metab. 2013;62(1):14–25. https://pubmed.ncbi.nlm.nih.gov/23208206/

839

Reynolds AN, Mann JI, Williams S, Venn BJ. Advice to walk after meals is more effective for lowering postprandial glycaemia in type 2 diabetes mellitus than advice that does not specify timing: a randomised crossover study. Diabetologia. 2016;59(12):2572–8. https://pubmed.ncbi.nlm.nih.gov/27747394/

840

Rahmadi A, Steiner N, Münch G. Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):385–91. https://pubmed.ncbi.nlm.nih.gov/21275816/

841

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

842

Uribarri J, He JC. The low AGE diet: a neglected aspect of clinical nephrology practice? Nephron. 2015;130(1):48–53. https://pubmed.ncbi.nlm.nih.gov/25871778/

843

Yamagishi S, Nakamura K, Matsui T, Inoue H, Takeuchi M. Oral administration of AST-120 (Kremezin) is a promising therapeutic strategy for advanced glycation end product (AGE)-related disorders. Med Hypotheses. 2007;69(3):666–8. https://pubmed.ncbi.nlm.nih.gov/17331665/

844

MIMS. Kremezin full prescribing information, dosage & side effects. https://www.mims.com/philippines/drug/info/kremezin?type=full. Accessed December 26, 2022.; https://www.mims.com/philippines/drug/info/kremezin?type=full

845

Uribarri J, Woodruff S, Goodman S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J Am Diet Assoc. 2010;110(6):911–6.e12. https://pubmed.ncbi.nlm.nih.gov/20497781/

846

Cerami C, Founds H, Nicholl I, et al. Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci USA. 1997;94(25):13915–20. https://pubmed.ncbi.nlm.nih.gov/9391127/

847

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

848

Green AS. mTOR, glycotoxins and the parallel universe. Aging (Albany NY). 2018;10(12):3654–6. https://pubmed.ncbi.nlm.nih.gov/30540565/

849

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

850

Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4. https://pubmed.ncbi.nlm.nih.gov/8247153/

851

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

852

Partridge L, Harvey PH. Gerontology. Methuselah among nematodes. Nature. 1993;366(6454):404–5. https://pubmed.ncbi.nlm.nih.gov/8247143/

853

Мрачный жнец – образ смерти. – Примеч. ред.

854

Coffer P. OutFOXing the grim reaper: novel mechanisms regulating longevity by Forkhead transcription factors. Sci STKE. 2003;2003(201):PE39. https://pubmed.ncbi.nlm.nih.gov/14506287/

855

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

856

Kenyon C. The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1561):9–16. https://pubmed.ncbi.nlm.nih.gov/21115525/

857

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

858

Vitale G, Pellegrino G, Vollery M, Hofland LJ. Role of IGF-1 system in the modulation of longevity: controversies and new insights from a centenarians’ perspective. Front Endocrinol. 2019;10:27. https://pubmed.ncbi.nlm.nih.gov/30774624/

859

Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/

860

Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol. 2013;9(6):366–76. https://pubmed.ncbi.nlm.nih.gov/23591370/

861

Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/

862

Vitale G, Brugts MP, Ogliari G, et al. Low circulating IGF-I bioactivity is associated with human longevity: findings in centenarians’ offspring. Aging (Albany NY). 2012;4(9):580–9. https://pubmed.ncbi.nlm.nih.gov/22983440/

863

Vitale G, Barbieri M, Kamenetskaya M, Paolisso G. GH/IGF-I/insulin system in centenarians. Mech Ageing Dev. 2017;165(Pt B):107–14. https://pubmed.ncbi.nlm.nih.gov/27932301/

864

Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/

865

Ben-Avraham D, Govindaraju DR, Budagov T, et al. The GH receptor exon 3 deletion is a marker of male-specific exceptional longevity associated with increased GH sensitivity and taller stature. Sci Adv. 2017;3(6):e1602025. https://pubmed.ncbi.nlm.nih.gov/28630896/

866

Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/

867

Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/

868

van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 2015;7(11):956–63. https://pubmed.ncbi.nlm.nih.gov/26568155/

869

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

870

Tazearslan C, Huang J, Barzilai N, Suh Y. Impaired IGF1R signaling in cells expressing longevity-associated human IGF1R alleles. Aging Cell. 2011;10(3):551–4. https://pubmed.ncbi.nlm.nih.gov/21388493/

871

Bartke A. Healthy aging: is smaller better? – a mini-review. Gerontology. 2012;58(4):337–43. https://pubmed.ncbi.nlm.nih.gov/22261798/

872

Michell AR. Longevity of British breeds of dog and its relationships with sex, size, cardiovascular variables and disease. Vet Rec. 1999;145(22):625–9. https://pubmed.ncbi.nlm.nih.gov/10619607/

873

Sutter NB, Bustamante CD, Chase K, et al. A single IGF1 allele is a major determinant of small size in dogs. Science. 2007;316(5821):112–5. https://pubmed.ncbi.nlm.nih.gov/17412960/

874

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

875

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/

876

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

877

Samaras TT, Elrick H, Storms LH. Is height related to longevity? Life Sci. 2003;72(16):1781–802. https://pubmed.ncbi.nlm.nih.gov/12586217/

878

Samaras TT. How height is related to our health and longevity: a review. Nutr Health. 2012;21(4):247–61. https://pubmed.ncbi.nlm.nih.gov/24620006/

879

Один дюйм равен 2,54 см. – Примеч. ред.

880

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–9. https://pubmed.ncbi.nlm.nih.gov/25991828/

881

Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/

882

Shors AR, Solomon C, McTiernan A, White E. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 2001;12(7):599–606. https://pubmed.ncbi.nlm.nih.gov/11552707/

883

Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst. 2013;105(12):860–8. https://pubmed.ncbi.nlm.nih.gov/23708052/

884

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci U S A. 2008;105(9):3438–42. https://pubmed.ncbi.nlm.nih.gov/18316725/

885

Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17(9):2941–53. https://pubmed.ncbi.nlm.nih.gov/10561374/

886

Murphy N, Knuppel A, Papadimitriou N, et al. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ~430 000 women. Ann Oncol. 2020;31(5):641–9. https://pubmed.ncbi.nlm.nih.gov/32169310/

887

Chi F, Wu R, Zeng Y, Xing R, Liu Y. Circulation insulin-like growth factor peptides and colorectal cancer risk: an updated systematic review and meta-analysis. Mol Biol Rep. 2013;40(5):3583–90. https://pubmed.ncbi.nlm.nih.gov/23269623/

888

Travis RC, Appleby PN, Martin RM, et al. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk. Cancer Res. 2016;76(8):2288–300. https://pubmed.ncbi.nlm.nih.gov/26921328/

889

Cao H, Wang G, Meng L, et al. Association between circulating levels of IGF-1 and IGFBP-3 and lung cancer risk: a meta-analysis. PLoS One. 2012;7(11):e49884. https://pubmed.ncbi.nlm.nih.gov/23185474/

890

Li Y, Li Y, Zhang J, et al. Circulating insulin-like growth factor-1 level and ovarian cancer risk. Cell Physiol Biochem. 2016;38(2):589–97. https://pubmed.ncbi.nlm.nih.gov/26845340/

891

Gong Y, Zhang B, Liao Y, et al. Serum insulin-like growth factor axis and the risk of pancreatic cancer: systematic review and meta-analysis. Nutrients. 2017;9(4):394. https://pubmed.ncbi.nlm.nih.gov/28420208/

892

Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor I and risk of breast cancer. Lancet. 1998;351(9113):1393–6. https://pubmed.ncbi.nlm.nih.gov/9593409/

893

Yee D. Insulin-like growth factor receptor inhibitors: baby or the bathwater? J Natl Cancer Inst. 2012;104(13):975–81. https://pubmed.ncbi.nlm.nih.gov/22761272/

894

Quan H, Tang H, Fang L, Bi J, Liu Y, Li H. IGF1(CA)19 and IGFBP-3–202A/C gene polymorphism and cancer risk: a meta-analysis. Cell Biochem Biophys. 2014;69(1):169–78. https://pubmed.ncbi.nlm.nih.gov/24310658/

895

Yokoyama NN, Denmon AP, Uchio EM, Jordan M, Mercola D, Zi X. When anti-aging studies meet cancer chemoprevention: can anti-aging agent kill two birds with one blow? Curr Pharmacol Rep. 2015;1(6):420–33. https://pubmed.ncbi.nlm.nih.gov/26756023/

896

Elia I, Doglioni G, Fendt SM. Metabolic hallmarks of metastasis formation. Trends Cell Biol. 2018;28(8):673–84. https://pubmed.ncbi.nlm.nih.gov/29747903/

897

Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev. 2009;30(1):51–74. https://pubmed.ncbi.nlm.nih.gov/19075184/

898

Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/

899

Zhang Y, Ma B, Fan Q. Mechanisms of breast cancer bone metastasis. Cancer Lett. 2010;292(1):1–7. https://pubmed.ncbi.nlm.nih.gov/20006425/

900

Yang SY, Miah A, Pabari A, Winslet M. Growth factors and their receptors in cancer metastases. Front Biosci (Landmark Ed). 2011;16:531–8. https://pubmed.ncbi.nlm.nih.gov/21196186/

901

Sohn K. Now, the taller die earlier: the curse of cancer. J Gerontol A Biol Sci Med Sci. 2016;71(6):713–19. https://pubmed.ncbi.nlm.nih.gov/25991828/

902

Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/

903

Piantanelli L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann N Y Acad Sci. 1988;521:99–109. https://pubmed.ncbi.nlm.nih.gov/3377369/

904

Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005;120(4):449–60. https://pubmed.ncbi.nlm.nih.gov/15734678/

905

Stanta G, Campagner L, Cavallieri F, Giarelli L. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med. 1997;13(1):55–68. https://pubmed.ncbi.nlm.nih.gov/8995100/

906

Salvioli S, Capri M, Bucci L, et al. Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53. Cancer Immunol Immunother. 2009;58(12):1909–17. https://pubmed.ncbi.nlm.nih.gov/19139887/

907

Laron Z, Pertzelan A, Mannheimer S. Genetic pituitary dwarfism with high serum concentration of growth hormone: a new inborn error of metabolism? Isr J Med Sci 1966;2:152–5. https://pubmed.ncbi.nlm.nih.gov/5916640/

908

Guevara-Aguirre J, Bautista C, Torres C, et al. Insights from the clinical phenotype of subjects with Laron syndrome in Ecuador. Rev Endocr Metab Disord. 2021;22(1):59–70. https://pubmed.ncbi.nlm.nih.gov/33047268/

909

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

910

Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/

911

Boguszewski CL, Boguszewski MC da S. Growth hormone’s links to cancer. Endocr Rev. 2019;40(2):558–74. https://pubmed.ncbi.nlm.nih.gov/30500870/

912

Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med. 2011;3(70):70ra13. https://pubmed.ncbi.nlm.nih.gov/21325617/

913

Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome. Mutat Res Rev Mutat Res. 2017;772:123–33. https://pubmed.ncbi.nlm.nih.gov/28528685/

914

Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol. 2014;77(6):917–28. https://pubmed.ncbi.nlm.nih.gov/24033707/

915

Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15(1):80–101. https://pubmed.ncbi.nlm.nih.gov/8156941/

916

Lee C, Safdie FM, Raffaghello L, et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 2010;70(4):1564–72. https://pubmed.ncbi.nlm.nih.gov/20145127/

917

Longo VD, Anderson RM. Nutrition, longevity and disease: from molecular mechanisms to interventions. Cell. 2022;185(9):1455–70. https://pubmed.ncbi.nlm.nih.gov/35487190/

918

Dunn SE, Kari FW, French J, et al. Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice. Cancer Res. 1997;57(21):4667–72. https://pubmed.ncbi.nlm.nih.gov/9354418/

919

Fontana L, Weiss EP, Villareal DT, Klein S, Holloszy JO. Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell. 2008;7(5):681–7. https://pubmed.ncbi.nlm.nih.gov/18843793/

920

Schüler R, Markova M, Osterhoff MA, et al. Similar dietary regulation of IGF-1-and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr. https://link.springer.com/article/10.1007/s00394–021–02518-y. Published online March 8, 2021. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33686453/

921

Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/

922

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

923

Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/

924

Flood A, Mai V, Pfeiffer R, et al. The effects of a high-fruit and – vegetable, high-fiber, low-fat dietary intervention on serum concentrations of insulin, glucose, IGF-I and IGFBP-3. Eur J Clin Nutr. 2008;62(2):186–96. https://pubmed.ncbi.nlm.nih.gov/17487212/

925

Allen NE, Appleby PN, Davey GK, Key TJ. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men. Br J Cancer. 2000;83(1):95–7. https://pubmed.ncbi.nlm.nih.gov/10883675/

926

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

927

Berrino F, Bellati C, Secreto G, et al. Reducing bioavailable sex hormones through a comprehensive change in diet: the diet and androgens (DIANA) randomized trial. Cancer Epidemiol Biomarkers Prev. 2001;10(1):25–33. https://pubmed.ncbi.nlm.nih.gov/11205485/

928

Kaaks R, Bellati C, Venturelli E, et al. Effects of dietary intervention on IGF-I and IGF-binding proteins, and related alterations in sex steroid metabolism: the Diet and Androgens (DIANA) Randomised Trial. Eur J Clin Nutr. 2003;57(9):1079–88. https://pubmed.ncbi.nlm.nih.gov/12947426/

929

Pasanisi P, Bruno E, Venturelli E, et al. A dietary intervention to lower serum levels of IGF-I in BRCA mutation carriers. Cancers (Basel). 2018;10(9):309. https://pubmed.ncbi.nlm.nih.gov/30181513/

930

Gulick CN, Peddie MC, Cameron C, Bradbury K, Rehrer NJ. Physical activity, dietary protein and insulin-like growth factor 1: cross-sectional analysis utilising UK Biobank. Growth Horm IGF Res. 2020;55:101353. https://pubmed.ncbi.nlm.nih.gov/33002777/

931

Toden S, Belobrajdic DP, Bird AR, Topping DL, Conlon MA. Effects of dietary beef and chicken with and without high amylose maize starch on blood malondialdehyde, interleukins, IGF-I, insulin, leptin, MMP-2, and TIMP-2 concentrations in rats. Nutr Cancer. 2010;62(4):454–65. https://pubmed.ncbi.nlm.nih.gov/20432166/

932

Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(S7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/

933

Один галлон равен 4,55 л. – Примеч. ред.

934

Hoppe C, Kristensen M, Boiesen M, Kudsk J, Michaelsen KF, Mølgaard C. Short-term effects of replacing milk with cola beverages on insulin-like growth factor-I and insulin – glucose metabolism: a 10 d interventional study in young men. Br J Nutr. 2009;102(7):1047–51. https://pubmed.ncbi.nlm.nih.gov/15578035/

935

Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/

936

Adams AM, Smith AF. Risk perception and communication: recent developments and implications for anaesthesia. Anaesthesia. 2001;56(8):745–55. https://pubmed.ncbi.nlm.nih.gov/11493237/

937

Harrison S, Lennon R, Holly J, et al. Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control. 2017;28(6):497–528. https://pubmed.ncbi.nlm.nih.gov/28361446/

938

Naghshi S, Sadeghi O, Larijani B, Esmaillzadeh A. High vs. low-fat dairy and milk differently affects the risk of all-cause, CVD, and cancer death: a systematic review and dose-response meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2021;Jan 5:1–15. https://pubmed.ncbi.nlm.nih.gov/33397132/

939

Qin LQ, He K, Xu JY. Milk consumption and circulating insulin-like growth factor-I level: a systematic literature review. Int J Food Sci Nutr. 2009;60(7):330–40. https://pubmed.ncbi.nlm.nih.gov/19746296/

940

Jones CM, Heinrichs J. Growth charts for dairy heifers. Penn State Extension. https://extension.psu.edu/growth-charts-for-dairy-heifers. Updated July 28, 2017. Accessed June 9, 2021.; https://extension.psu.edu/growth-charts-for-dairy-heifers

941

Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/

942

Honegger A, Humbel RE. Insulin-like growth factors I and II in fetal and adult bovine serum. Purification, primary structures, and immunological cross-reactivities. J Biol Chem. 1986;261(2):569–75. https://pubmed.ncbi.nlm.nih.gov/3941093/

943

Collier RJ, Miller MA, Hildebrandt JR, et al. Factors affecting insulin-like growth factor-I concentration in bovine milk. J Dairy Sci. 1991;74(9):2905–11. https://pubmed.ncbi.nlm.nih.gov/1779049/

944

Kim WK, Ryu YH, Seo DS, Lee CY, Ko Y. Effects of oral administration of insulin-like growth factor-I on circulating concentration of insulin-like growth factor-I and growth of internal organs in weanling mice. Biol Neonate. 2006;89(3):199–204. https://pubmed.ncbi.nlm.nih.gov/16293962/

945

Clatici VG, Voicu C, Voaides C, Roseanu A, Icriverzi M, Jurcoane S. Diseases of civilization – cancer, diabetes, obesity and acne – the implication of milk, IGF-1 and mTORC1. Maedica (Bucur). 2018;13(4):273–81. https://pubmed.ncbi.nlm.nih.gov/30774725/

946

Allen NE, Key TJ. Re: plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J Natl Cancer Inst. 2001;93(8):649–51. https://pubmed.ncbi.nlm.nih.gov/11309444/

947

Conover CA. Discrepancies in insulin-like growth factor signaling? No, not really. Growth Horm IGF Res. 2016;30–31:42–4. https://pubmed.ncbi.nlm.nih.gov/27792888/

948

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

949

Clemmons DR, Seek MM, Underwood LE. Supplemental essential amino acids augment the somatomedin-C/insulin-like growth factor I response to refeeding after fasting. Metabolism. 1985;34(4):391–5. https://pubmed.ncbi.nlm.nih.gov/3884968/

950

Mariotti F, Gardner CD. Dietary protein and amino acids in vegetarian diets – a review. Nutrients. 2019;11(11):2661. https://pubmed.ncbi.nlm.nih.gov/31690027/

951

Ten Have GAM, Engelen MPKJ, Soeters PB, Deutz NEP. Absence of post-prandial gut anabolism after intake of a low quality protein meal. Clin Nutr. 2012;31(2):273–82. https://pubmed.ncbi.nlm.nih.gov/22001026/

952

Katz DL, Doughty KN, Geagan K, Jenkins DA, Gardner CD. Perspective: the public health case for modernizing the definition of protein quality. Adv Nutr. 2019;10(5):755–64. https://pubmed.ncbi.nlm.nih.gov/31066877/

953

Freda PU, Shen W, Reyes-Vidal CM, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab. 2009;94(8):2880–6. https://pubmed.ncbi.nlm.nih.gov/19491226/

954

Friedlander AL, Butterfield GE, Moynihan S, et al. One year of insulin-like growth factor I treatment does not affect bone density, body composition, or psychological measures in postmenopausal women. J Clin Endocrinol Metab. 2001;86(4):1496–503. https://pubmed.ncbi.nlm.nih.gov/11297574/

955

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

956

Allen NE, Appleby PN, Davey GK, Kaaks R, Rinaldi S, Key TJ. The associations of diet with serum insulin-like growth factor I and its main binding proteins in 292 women meat-eaters, vegetarians, and vegans. Cancer Epidemiol Biomarkers Prev. 2002;11(11):1441–8. https://pubmed.ncbi.nlm.nih.gov/12433724/

957

Crimarco A, Springfield S, Petlura C, et al. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood – Meat Eating Alternative Trial (SWAP-MEAT). Am J Clin Nutr. 2020;112(5):1188–99. https://pubmed.ncbi.nlm.nih.gov/32780794/

958

Arjmandi BH, Khalil DA, Smith BJ, et al. Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab. 2003;88(3):1048–54. https://pubmed.ncbi.nlm.nih.gov/12629084/

959

Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH. Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr. 2002;132(9):2605–8. https://pubmed.ncbi.nlm.nih.gov/12221217/

960

Maskarinec G, Takata Y, Murphy SP, Franke AA, Kaaks R. Insulin-like growth factor-1 and binding protein-3 in a 2-year soya intervention among premenopausal women. Br J Nutr. 2005;94(3):362–7. https://pubmed.ncbi.nlm.nih.gov/16176606/

961

Messina M, Magee P. Does soy protein affect circulating levels of unbound IGF-1? Eur J Nutr. 2018;57(2):423–32. https://pubmed.ncbi.nlm.nih.gov/28434035/

962

Nachvak SM, Moradi S, Anjom-Shoae J, et al. Soy, soy isoflavones, and protein intake in relation to mortality from all causes, cancers, and cardiovascular diseases: a systematic review and dose-response meta-analysis of prospective cohort studies. J Acad Nutr Diet. 2019;119(9):1483–1500.e17. https://pubmed.ncbi.nlm.nih.gov/31278047/

963

Applegate CC, Rowles JL III, Ranard KM, Jeon S, Erdman JW Jr. Soy consumption and the risk of prostate cancer: an updated systematic review and meta-analysis. Nutrients. 2018;10(1):40. https://pubmed.ncbi.nlm.nih.gov/29300347/

964

Willcox DC, Willcox BJ, Todoriki H, Suzuki M. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28(sup4):500S-16S. https://pubmed.ncbi.nlm.nih.gov/20234038/

965

Lousuebsakul-Matthews V, Thorpe DL, Knutsen R, Beeson WL, Fraser GE, Knutsen SF. Legumes and meat analogues consumption are associated with hip fracture risk independently of meat intake among Caucasian men and women: the Adventist Health Study-2. Public Health Nutr. 2014;17(10):2333–43. https://pubmed.ncbi.nlm.nih.gov/24103482/

966

Mazidi M, Katsiki N, Mikhailidis DP, et al. Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies. Eur Heart J. 2019;40(34):2870–9. https://pubmed.ncbi.nlm.nih.gov/31004146/

967

Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies. Ann Intern Med. 2010;153(5):289–98. https://pubmed.ncbi.nlm.nih.gov/20820038/

968

Sun Y, Liu B, Snetselaar LG, et al. Association of major dietary protein sources with all-cause and cause-specific mortality: prospective cohort study. J Am Heart Assoc. 2021;10(5):e015553. https://pubmed.ncbi.nlm.nih.gov/33624505/

969

Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med. 2020;180(9):1173–84. https://pubmed.ncbi.nlm.nih.gov/32658243/

970

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

971

Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/

972

Wu S. Meat and cheese may be as bad as smoking. USC News. https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/. Published March 4, 2014. Accessed June 11, 2021.; https://news.usc.edu/59199/meat-and-cheese-may-be-as-bad-for-you-as-smoking/

973

Spiegelhalter D. Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. BMJ. 2012;345:e8223. https://pubmed.ncbi.nlm.nih.gov/23247978/

974

Sample I. Diets high in meat, eggs and dairy could be as harmful to health as smoking. Guardian. https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy. Published March 5, 2014. Accessed June 9, 2021.; https://www.theguardian.com/science/2014/mar/04/animal-protein-diets-smoking-meat-eggs-dairy

975

Philip Morris, Europe. Second-hand tobacco smoke in perspective. What risks do you take? Philip Morris Records; Master Settlement Agreement. UCSF Industry Documents Library. https://www.industrydocuments.ucsf.edu/docs/pkdl0113. Produced 1994. Accessed February 11 https://www.industrydocuments.ucsf.edu/docs/pkdl0113

976

Ngo TH, Barnard RJ, Tymchuk CN, Cohen P, Aronson WJ. Effect of diet and exercise on serum insulin, IGF-I, and IGFBP-1 levels and growth of LNCaP cells in vitro (United States). Cancer Causes Control. 2002;13(10):929–35. https://pubmed.ncbi.nlm.nih.gov/12588089/

977

Soliman S, Aronson WJ, Barnard RJ. Analyzing serum-stimulated prostate cancer cell lines after low-fat, high-fiber diet and exercise intervention. Evid Based Complement Alternat Med. 2011;2011:529053. https://pubmed.ncbi.nlm.nih.gov/19376839/

978

Barnard RJ, Ngo TH, Leung PS, Aronson WJ, Golding LA. A low-fat diet and/or strenuous exercise alters the IGF axis in vivo and reduces prostate tumor cell growth in vitro. Prostate. 2003;56(3):201–6. https://pubmed.ncbi.nlm.nih.gov/12772189/

979

Ornish D, Weidner G, Fair WR, et al. Intensive lifestyle changes may affect the progression of prostate cancer. J Urol. 2005;174(3):1065–9. https://pubmed.ncbi.nlm.nih.gov/16094059/

980

Ornish D, Magbanua MJM, Weidner G, et al. Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A. 2008;105(24):8369–74. https://pubmed.ncbi.nlm.nih.gov/18559852/

981

Yang M, Kenfield SA, Van Blarigan EL, et al. Dairy intake after prostate cancer diagnosis in relation to disease-specific and total mortality. Int J Cancer. 2015;137(10):2462–9. https://pubmed.ncbi.nlm.nih.gov/25989745/

982

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

983

Mucci LA, Tamimi R, Lagiou P, et al. Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU Int. 2001;87(9):814–20. https://pubmed.ncbi.nlm.nih.gov/11412218/

984

Gunnell D, Oliver SE, Peters TJ, et al. Are diet – prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-I and IGFBP-3 in healthy middle-aged men. Br J Cancer. 2003;88(11):1682–6. https://pubmed.ncbi.nlm.nih.gov/12771980/

985

Walfisch S, Walfisch Y, Kirilov E, et al. Tomato lycopene extract supplementation decreases insulin-like growth factor-I levels in colon cancer patients. Eur J Cancer Prev. 2007;16(4):298–303. https://pubmed.ncbi.nlm.nih.gov/17554202/

986

Xie Z, Yang F. The effects of lycopene supplementation on serum insulin-like growth factor 1 (IGF-1) levels and cardiovascular disease: a dose-response meta-analysis of clinical trials. Complement Ther Med. 2021;56:102632. https://pubmed.ncbi.nlm.nih.gov/33259908/

987

Rickard SE, Yuan YV, Thompson LU. Plasma insulin-like growth factor I levels in rats are reduced by dietary supplementation of flaxseed or its lignan secoisolariciresinol diglycoside. Cancer Lett. 2000;161(1):47–55. https://pubmed.ncbi.nlm.nih.gov/11078912/

988

Sturgeon SR, Volpe SL, Puleo E, et al. Dietary intervention of flaxseed: effect on serum levels of IGF-1, IGF-BP3, and C-peptide. Nutr Cancer. 2011;63(3):376–80. https://pubmed.ncbi.nlm.nih.gov/21462084/

989

Zhou JR, Yu L, Mai Z, Blackburn GL. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer. 2004;108(1):8–14. https://pubmed.ncbi.nlm.nih.gov/14618609/

990

Biernacka KM, Holly JMP, Martin RM, et al. Effect of green tea and lycopene on the insulin-like growth factor system: the ProDiet randomized controlled trial. Eur J Cancer Prev. 2019;28(6):569–75. https://pubmed.ncbi.nlm.nih.gov/30921005/

991

Samavat H, Wu AH, Ursin G, et al. Green tea catechin extract supplementation does not influence circulating sex hormones and insulin-like growth factor axis proteins in a randomized controlled trial of postmenopausal women at high risk of breast cancer. J Nutr. 2019;149(4):619–27. https://pubmed.ncbi.nlm.nih.gov/30926986/

992

Teas J, Irhimeh MR, Druker S, et al. Serum IGF-1 concentrations change with soy and seaweed supplements in healthy postmenopausal American women. Nutr Cancer. 2011;63(5):743–8. https://pubmed.ncbi.nlm.nih.gov/21711174/

993

Burgers AMG, Biermasz NR, Schoones JW, et al. Meta-analysis and dose-response metaregression: circulating insulin-like growth factor I (IGF-I) and mortality. J Clin Endocrinol Metab. 2011;96(9):2912–20. https://pubmed.ncbi.nlm.nih.gov/21795450/

994

LeRoith D. IGF-I: panacea or poison? J Clin Endocrinol Metab. 2010;95(10):4549–51. https://pubmed.ncbi.nlm.nih.gov/20926541/

995

Zhang WB, Aleksic S, Gao T, et al. Insulin-like growth factor-1 and IGF binding proteins predict all-cause mortality and morbidity in older adults. Cells. 2020;9(6):1368. https://pubmed.ncbi.nlm.nih.gov/32492897/

996

Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/

997

Hartley A, Sanderson E, Paternoster L, et al. Mendelian randomization provides evidence for a causal effect of higher serum IGF-1 concentration on risk of hip and knee osteoarthritis. Rheumatology (Oxford). 2020;60(4):1676–86. https://pubmed.ncbi.nlm.nih.gov/33027520/

998

Larsson SC, Michaëlsson K, Burgess S. IGF-1 and cardiometabolic diseases: a Mendelian randomisation study. Diabetologia. 2020;63(9):1775–82. https://pubmed.ncbi.nlm.nih.gov/32548700/

999

Fan M, Li Y, Wang C, et al. Dietary protein consumption and the risk of type 2 diabetes: adose-response [sic] meta-analysis of prospective studies. Nutrients. 2019;11(11):2783. https://pubmed.ncbi.nlm.nih.gov/31731672/

1000

Teumer A, Qi Q, Nethander M, et al. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits. Aging Cell. 2016;15(5):811–24. https://pubmed.ncbi.nlm.nih.gov/27329260/

1001

Milman S, Atzmon G, Huffman DM, et al. Low insulin-like growth factor-1 level predicts survival in humans with exceptional longevity. Aging Cell. 2014;13(4):769–71. https://pubmed.ncbi.nlm.nih.gov/24618355/

1002

Pawlikowska L, Hu D, Huntsman S, et al. Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell. 2009;8(4):460–72. https://pubmed.ncbi.nlm.nih.gov/19489743/

1003

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1004

Chainani-Wu N, Weidner G, Purnell DM, et al. Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am J Cardiol. 2011;108(4):498–507. https://pubmed.ncbi.nlm.nih.gov/21624543/

1005

Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19(3):407–17. https://pubmed.ncbi.nlm.nih.gov/24606898/

1006

Werner H, Laron Z. Role of the GH-IGF1 system in progression of cancer. Mol Cell Endocrinol. 2020;518:111003. https://pubmed.ncbi.nlm.nih.gov/32919021/

1007

McCarty MF. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process. Med Hypotheses. 2003;60(6):784–92. https://pubmed.ncbi.nlm.nih.gov/12699704/

1008

Longo VD, Lieber MR, Vijg J. Turning anti-ageing genes against cancer. Nat Rev Mol Cell Biol. 2008;9(11):903–10. https://pubmed.ncbi.nlm.nih.gov/18946478/

1009

McCarty MF. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets. Med Hypotheses. 2014;83(3):365–71. https://pubmed.ncbi.nlm.nih.gov/25015767/

1010

Piper MDW, Soultoukis GA, Blanc E, et al. Matching dietary amino acid balance to the in silico – translated exome optimizes growth and reproduction without cost to lifespan. Cell Metab. 2017;25(3):610–21. https://pubmed.ncbi.nlm.nih.gov/28273481/

1011

Slavich GM. Understanding inflammation, its regulation, and relevance for health: a top scientific and public priority. Brain Behav Immun. 2015;45:13–4. https://pubmed.ncbi.nlm.nih.gov/25449576/

1012

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1013

Rubio-Ruiz ME, Peredo-Escárcega AE, Cano-Martínez A, Guarner-Lans V. An evolutionary perspective of nutrition and inflammation as mechanisms of cardiovascular disease. Int J Evol Biol. 2015:2015:179791.; https://pubmed.ncbi.nlm.nih.gov/26693381/

1014

Rogers J. The inflammatory response in Alzheimer’s disease. J Periodontol. 2008;79(8 Suppl):1535–43. https://pubmed.ncbi.nlm.nih.gov/18673008/

1015

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1016

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

1017

Bray C, Bell LN, Liang H, et al. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ. 2016;115(6):317–21. https://pubmed.ncbi.nlm.nih.gov/29094869/

1018

Ridker PM. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation. 2003;108(12):e81–5. https://pubmed.ncbi.nlm.nih.gov/14504253/

1019

Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/

1020

National Center for Injury Prevention and Control, CDC using WISQARSÔ.10 leading causes of death by age group, United States—2018. Centers for Disease Control and Prevention. https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg. Accessed June 29, 2021.; https://www.cdc.gov/injury/images/lc-charts/leading_causes_of_death_by_age_group_2018_1100w850h.jpg

1021

Weyh C, Krüger K, Strasser B. Physical activity and diet shape the immune system during aging. Nutrients. 2020;12(3):622. https://pubmed.ncbi.nlm.nih.gov/32121049/

1022

Fagiolo U, Cossarizza A, Scala E, et al. Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 1993;23(9):2375–8. https://pubmed.ncbi.nlm.nih.gov/8370415/

1023

Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://pubmed.ncbi.nlm.nih.gov/29375577/

1024

Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care. 2013;16(1):14–20. https://pubmed.ncbi.nlm.nih.gov/23132168/

1025

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/

1026

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

1027

Tait JL, Duckham RL, Milte CM, Main LC, Daly RM. Associations between inflammatory and neurological markers with quality of life and well-being in older adults. Exp Gerontol. 2019;125:110662. https://pubmed.ncbi.nlm.nih.gov/31323254/

1028

Tang Y, Fung E, Xu A, Lan HY. C-reactive protein and ageing. Clin Exp Pharmacol Physiol. 2017;44(S1):9–14. https://pubmed.ncbi.nlm.nih.gov/28378496/

1029

Rajasekaran S, Tangavel C, Anand SV KS, et al. Inflammaging determines health and disease in lumbar discs – evidence from differing proteomic signatures of healthy, aging, and degenerating discs. Spine J. 2020;20(1):48–59. https://pubmed.ncbi.nlm.nih.gov/31125691/

1030

Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(Pt 23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/

1031

Barron E, Lara J, White M, Mathers JC. Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS ONE. 2015;10(6):e0127550. https://pubmed.ncbi.nlm.nih.gov/26039142/

1032

Bottazzi B, Riboli E, Mantovani A. Aging, inflammation and cancer. Semin Immunol. 2018;40:74–82. https://pubmed.ncbi.nlm.nih.gov/30409538/

1033

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244–54. https://pubmed.ncbi.nlm.nih.gov/10911963/

1034

Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/

1035

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38:329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1036

Bonafè M, Olivieri F, Cavallone L, et al. A gender – dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol. 2001;31(8):2357–61. https://pubmed.ncbi.nlm.nih.gov/11500818/

1037

Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/

1038

Man MQ, Elias PM. Could inflammaging and its sequelae be prevented or mitigated? Clin Interv Aging. 2019;14:2301–4. https://pubmed.ncbi.nlm.nih.gov/31920294/

1039

Hu L, Mauro TM, Dang E, et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J Invest Dermatol. 2017;137(6):1277–85. https://pubmed.ncbi.nlm.nih.gov/28115059/

1040

Ye L, Mauro TM, Dang E, et al. Topical applications of an emollient reduce circulating pro-inflammatory cytokine levels in chronically aged humans: a pilot clinical study. J Eur Acad Dermatol Venereol. 2019;33(11):2197–201. https://pubmed.ncbi.nlm.nih.gov/30835878/

1041

Arai Y, Martin-Ruiz CM, Takayama M, et al. Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2(10):1549–58. https://pubmed.ncbi.nlm.nih.gov/26629551/

1042

Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. https://pubmed.ncbi.nlm.nih.gov/31806905/

1043

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1044

Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘garb-aging.’ Trends Endocrinol. Metab. 2017;28(3):199–212. https://pubmed.ncbi.nlm.nih.gov/27789101/

1045

Monti D, Ostan R, Borelli V, Castellani G, Franceschi C. Inflammaging and human longevity in the omics era. Mech Ageing Dev. 2017;165(Pt B):129–38. https://pubmed.ncbi.nlm.nih.gov/28038993/

1046

Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/

1047

Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a systematic review and meta-analysis. Obes Rev. 2013;14(3):232–44. https://pubmed.ncbi.nlm.nih.gov/23171381/

1048

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–63. https://pubmed.ncbi.nlm.nih.gov/28721154/

1049

Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25. https://pubmed.ncbi.nlm.nih.gov/19074987/

1050

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://pubmed.ncbi.nlm.nih.gov/14679176/

1051

Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46(11):2347–55. https://pubmed.ncbi.nlm.nih.gov/16150820/

1052

Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68. https://pubmed.ncbi.nlm.nih.gov/18327995/

1053

Welsh P, Polisecki E, Robertson M, et al. Unraveling the directional link between adiposity and inflammation: a bidirectional Mendelian randomization approach. J Clin Endocrinol Metab. 2010;95(1):93–9. https://pubmed.ncbi.nlm.nih.gov/28199503/

1054

Timpson NJ, Nordestgaard BG, Harbord RM, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes (Lond). 2011;35(2):300–8. https://pubmed.ncbi.nlm.nih.gov/20714329/

1055

Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/

1056

Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/

1057

Chung S, Parks JS. Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol. 2016;27(1):19–25. https://pubmed.ncbi.nlm.nih.gov/26655292/

1058

Chung S, Cuffe H, Marshall SM, et al. Dietary cholesterol promotes adipocyte hypertrophy and adipose tissue inflammation in visceral, but not in subcutaneous, fat in monkeys. Arterioscler Thromb Vasc Biol. 2014;34(9):1880–7. https://pubmed.ncbi.nlm.nih.gov/24969772/

1059

Xu Z, McClure ST, Appel LJ. Dietary cholesterol intake and sources among U.S. adults: results from National Health and Nutrition Examination Surveys (NHANES), 2001–2014. Nutrients. 2018;10(6):E771. https://pubmed.ncbi.nlm.nih.gov/29903993/

1060

Morgan-Bathke ME, Jensen MD. Preliminary evidence for reduced adipose tissue inflammation in vegetarians compared with omnivores. Nutr J. 2019;18(1):45. https://pubmed.ncbi.nlm.nih.gov/31405384/

1061

Hegsted DM. Dietary goals – a progressive view. Am J Clin Nutr. 1978;31(9):1504–9. https://pubmed.ncbi.nlm.nih.gov/28662/

1062

Trumbo PR, Shimakawa T. Tolerable upper intake levels for trans fat, saturated fat, and cholesterol. Nutr Rev. 2011;69(5):270–8. https://pubmed.ncbi.nlm.nih.gov/21521229/

1063

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1064

Zamboni M, Nori N, Brunelli A, Zoico E. How does adipose tissue contribute to inflammageing? Exp Gerontol. 2021;143:111162. https://pubmed.ncbi.nlm.nih.gov/33253807/

1065

Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. https://pubmed.ncbi.nlm.nih.gov/15479938/

1066

Rao SR. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm Res. 2012;61(8):789–807. https://pubmed.ncbi.nlm.nih.gov/22588278/

1067

Meydani SN, Das SK, Pieper CF, et al. Long-term moderate calorie restriction inhibits inflammation without impairing cell-mediated immunity: a randomized controlled trial in non-obese humans. Aging (Albany NY). 2016;8(7):1416–31. https://pubmed.ncbi.nlm.nih.gov/27410480/

1068

Chambers ES, Akbar AN. Can blocking inflammation enhance immunity during aging? J Allergy Clin Immunol. 2020;145(5):1323–31. https://pubmed.ncbi.nlm.nih.gov/32386656/

1069

Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9:E95. https://pubmed.ncbi.nlm.nih.gov/22575080/

1070

Egger G, Dixon J. Non-nutrient causes of low-grade, systemic inflammation: support for a ‘canary in the mineshaft’ view of obesity in chronic disease. Obes Rev. 2011;12(5):339–45. https://pubmed.ncbi.nlm.nih.gov/20701689/

1071

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1072

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1073

Ryu S, Shivappa N, Veronese N, et al. Secular trends in Dietary Inflammatory Index among adults in the United States, 1999–2014. Eur J Clin Nutr. 2019;73(10):1343–51. https://pubmed.ncbi.nlm.nih.gov/30542148/

1074

Xu H, Sjögren P, Ärnlöv J, et al. A proinflammatory diet is associated with systemic inflammation and reduced kidney function in elderly adults. J Nutr. 2015;145(4):729–35. https://pubmed.ncbi.nlm.nih.gov/25833776/

1075

Han YY, Forno E, Shivappa N, Wirth MD, Hébert JR, Celedón JC. The Dietary Inflammatory Index and current wheeze among children and adults in the United States. J Allergy Clin Immunol Pract. 2018;6(3):834–41. https://pubmed.ncbi.nlm.nih.gov/29426751/

1076

Cantero I, Abete I, Babio N, et al. Dietary Inflammatory Index and liver status in subjects with different adiposity levels within the PREDIMED trial. Clin Nutr. 2018;37(5):1736–43. https://pubmed.ncbi.nlm.nih.gov/28734553/

1077

Shivappa N, Godos J, Hébert JR, et al. Dietary Inflammatory Index and cardiovascular risk and mortality – a meta-analysis. Nutrients. 2018;10(2):200. https://pubmed.ncbi.nlm.nih.gov/29439509/

1078

Shivappa N, Wirth MD, Hurley TG, Hébert JR. Association between the dietary inflammatory index (DII) and telomere length and C-reactive protein from the National Health and Nutrition Examination Survey—1999–2002. Mol Nutr Food Res. 2017;61(4). https://pubmed.ncbi.nlm.nih.gov/29675557/

1079

García-Calzón S, Zalba G, Ruiz-Canela M, et al. Dietary inflammatory index and telomere length in subjects with a high cardiovascular disease risk from the PREDIMED-NAVARRA study: cross-sectional and longitudinal analyses over 5 y. Am J Clin Nutr. 2015;102(4):897–904. https://pubmed.ncbi.nlm.nih.gov/26354530/

1080

Shivappa N, Stubbs B, Hébert JR, et al. The relationship between the Dietary Inflammatory Index and incident frailty: a longitudinal cohort study. J Am Med Dir Assoc. 2018;19(1):77–82. https://pubmed.ncbi.nlm.nih.gov/28943182/

1081

Cervo MMC, Scott D, Seibel MJ, et al. Proinflammatory diet increases circulating inflammatory biomarkers and falls risk in community-dwelling older men. J Nutr. 2020;150(2):373–81. https://pubmed.ncbi.nlm.nih.gov/31665502/

1082

Kheirouri S, Alizadeh M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol Rev. 2019;41(1):109–20. https://pubmed.ncbi.nlm.nih.gov/31565731/

1083

Phillips CM, Shivappa N, Hébert JR, Perry IJ. Dietary inflammatory index and mental health: a cross-sectional analysis of the relationship with depressive symptoms, anxiety and well-being in adults. Clin Nutr. 2018;37(5):1485–91. https://pubmed.ncbi.nlm.nih.gov/28912008/

1084

Godos J, Ferri R, Caraci F, et al. Dietary inflammatory index and sleep quality in southern Italian adults. Nutrients. 2019;11(6):1324. https://pubmed.ncbi.nlm.nih.gov/31200445/

1085

Shivappa N, Jackson MD, Bennett F, Hébert JR. Increased dietary inflammatory index (DII) is associated with increased risk of prostate cancer in Jamaican men. Nutr Cancer. 2015;67(6):941–8. https://pubmed.ncbi.nlm.nih.gov/29439509/

1086

Shivappa N, Hébert JR, Jalilpiran Y, Faghih S. Association between dietary inflammatory index and prostate cancer in Shiraz province of Iran. Asian Pac J Cancer Prev. 2018;19(2):415–20. https://pubmed.ncbi.nlm.nih.gov/29479991/

1087

Shivappa N, Miao Q, Walker M, Hébert JR, Aronson KJ. Association between a dietary inflammatory index and prostate cancer risk in Ontario, Canada. Nutr Cancer. 2017;69(6):825–32. https://pubmed.ncbi.nlm.nih.gov/28718711/

1088

Huang WQ, Mo XF, Ye YB, et al. A higher Dietary Inflammatory Index score is associated with a higher risk of breast cancer among Chinese women: a case-control study. Br J Nutr. 2017;117(10):1358–67. https://pubmed.ncbi.nlm.nih.gov/32104043/

1089

Shivappa N, Sandin S, Löf M, Hébert JR, Adami HO, Weiderpass E. Prospective study of dietary inflammatory index and risk of breast cancer in Swedish women. Br J Cancer. 2015;113(7):1099–103. https://pubmed.ncbi.nlm.nih.gov/26335605/

1090

Shivappa N, Hébert JR, Zucchetto A, et al. Dietary inflammatory index and endometrial cancer risk in an Italian case-control study. Br J Nutr. 2016;115(1):138–46. https://pubmed.ncbi.nlm.nih.gov/26507451/

1091

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and ovarian cancer risk in a large Italian case-control study. Cancer Causes Control. 2016;27(7):897–906. https://pubmed.ncbi.nlm.nih.gov/27262447/

1092

Shivappa N, Zucchetto A, Serraino D, Rossi M, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of esophageal squamous cell cancer in a case-control study from Italy. Cancer Causes Control. 2015;26(10):1439–47. https://pubmed.ncbi.nlm.nih.gov/26208592/

1093

Shivappa N, Hébert JR, Ferraroni M, La Vecchia C, Rossi M. Association between dietary inflammatory index and gastric cancer risk in an Italian case-control study. Nutr Cancer. 2016;68(8):1262–8. https://pubmed.ncbi.nlm.nih.gov/27636679/

1094

Shivappa N, Hébert JR, Polesel J, et al. Inflammatory potential of diet and risk for hepatocellular cancer in a case-control study from Italy. Br J Nutr. 2016;115(2):324–31. https://pubmed.ncbi.nlm.nih.gov/26556602/

1095

Shivappa N, Bosetti C, Zucchetto A, Serraino D, La Vecchia C, Hébert JR. Dietary inflammatory index and risk of pancreatic cancer in an Italian case-control study. Br J Nutr. 2015;113(2):292–8. https://pubmed.ncbi.nlm.nih.gov/25515552/

1096

Shivappa N, Godos J, Hébert JR, et al. Dietary inflammatory index and colorectal cancer risk – a meta-analysis. Nutrients. 2017 Sep 20;9(9):1043. https://pubmed.ncbi.nlm.nih.gov/28930191/

1097

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and renal cell carcinoma risk in an Italian case-control study. Nutr Cancer. 2017;69(6):833–9. https://pubmed.ncbi.nlm.nih.gov/28718670/

1098

Shivappa N, Hébert JR, Rosato V, et al. Dietary inflammatory index and risk of bladder cancer in a large Italian case-control study. Urology. 2017;100:84–9. https://pubmed.ncbi.nlm.nih.gov/27693878/

1099

Shivappa N, Hébert JR, Taborelli M, et al. Dietary inflammatory index and non-Hodgkin lymphoma risk in an Italian case-control study. Cancer Causes Control. 2017;28(7):791–9. https://pubmed.ncbi.nlm.nih.gov/28503716/

1100

Fowler ME, Akinyemiju TF. Meta-analysis of the association between dietary inflammatory index (DII) and cancer outcomes. Int J Cancer. 2017;141(11):2215–27. https://pubmed.ncbi.nlm.nih.gov/28795402/

1101

Shivappa N, Hebert JR, Kivimaki M, Akbaraly T. Alternate Healthy Eating Index 2010, Dietary Inflammatory Index and risk of mortality: results from the Whitehall II cohort study and meta-analysis of previous Dietary Inflammatory Index and mortality studies. Br J Nutr. 2017;118(3):210–21. https://pubmed.ncbi.nlm.nih.gov/28831955/

1102

Edwards MK, Shivappa N, Mann JR, Hébert JR, Wirth MD, Loprinzi PD. The association between physical activity and dietary inflammatory index on mortality risk in U.S. adults. Phys Sportsmed. 2018;46(2):249–54. https://pubmed.ncbi.nlm.nih.gov/29463180/

1103

Shivappa N, Harris H, Wolk A, Hebert JR. Association between inflammatory potential of diet and mortality among women in the Swedish Mammography Cohort. Eur J Nutr. 2016;55(5):1891–900. https://pubmed.ncbi.nlm.nih.gov/26227485/

1104

Shivappa N, Blair CK, Prizment AE, Jacobs DR, Steck SE, Hébert JR. Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur J Nutr. 2016;55(4):1491–502. https://pubmed.ncbi.nlm.nih.gov/26130324/

1105

Tomata Y, Shivappa N, Zhang S, et al. Dietary inflammatory index and disability-free survival in community-dwelling older adults. Nutrients. 2018;10(12):1896. https://pubmed.ncbi.nlm.nih.gov/30513971/

1106

Garcia-Arellano A, Martínez-González MA, Ramallal R, et al. Dietary inflammatory index and all-cause mortality in large cohorts: the SUN and PREDIMED studies. Clin Nutr. 2019;38(3):1221–31. https://pubmed.ncbi.nlm.nih.gov/30651193/

1107

Nilsson MI, Bourgeois JM, Nederveen JP, et al. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One. 2019;14(1):e0210863. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0210863

1108

Bautmans I, Salimans L, Njemini R, Beyer I, Lieten S, Liberman K. The effects of exercise interventions on the inflammatory profile of older adults: a systematic review of the recent literature. Exp Gerontol. 2021;146:111236. https://pubmed.ncbi.nlm.nih.gov/33453323/

1109

Ferrer MD, Capó X, Martorell M, et al. Regular practice of moderate physical activity by older adults ameliorates their anti-inflammatory status. Nutrients. 2018;10(11):1780. https://pubmed.ncbi.nlm.nih.gov/30453505/

1110

Piercy KL, Troiano RP, Ballard RM, et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020–8. https://pubmed.ncbi.nlm.nih.gov/30418471/

1111

Harvard T.H. Chan School of Public Health. Top food sources of saturated fat in the U.S. https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf. Accessed November 23, 2021.; https://puntocritico.com/ausajpuntocritico/documentos/The_Nutrition_Source.pdf

1112

Exler J, Lemar L, Smith J. Fat and fatty acid content of selected foods containing trans-fatty acids: special purpose table no. 1. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf. Published January 1996. Accessed June 20, 2021.; https://www.ars.usda.gov/arsuserfiles/80400525/data/classics/trans_fa.pdf

1113

Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79(3):350–4. https://pubmed.ncbi.nlm.nih.gov/9036757/

1114

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1115

Kesteloot HE, Sasaki S. Nutrition and the aging process: a population study. Am J Geriatr Cardiol. 1994;3(2):8–19. https://pubmed.ncbi.nlm.nih.gov/11416305/

1116

Emerson SR, Kurti SP, Harms CA, et al. Magnitude and timing of the postprandial inflammatory response to a high-fat meal in healthy adults: a systematic review. Adv Nutr. 2017;8(2):213–25. https://pubmed.ncbi.nlm.nih.gov/28298267/

1117

Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106(5):506–12. https://pubmed.ncbi.nlm.nih.gov/10335721/

1118

Jonnalagadda SS, Egan SK, Heimbach JT, et al. Fatty acid consumption pattern of Americans: 1987–1988 USDA Nationwide Food Consumption Survey. Nutr Res. 1995;15(12):1767–81. https://agris.fao.org/agris-search/search.do?recordID=US19970167025

1119

Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/

1120

Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–32. https://pubmed.ncbi.nlm.nih.gov/31363792/

1121

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1122

Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/

1123

Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/

1124

Deopurkar R, Ghanim H, Friedman J, et al. Differential effects of cream, glucose, and orange juice on inflammation, endotoxin, and the expression of Toll-like receptor-4 and suppressor of cytokine signaling-3. Diabetes Care. 2010;33(5):991–7. https://pubmed.ncbi.nlm.nih.gov/20067961/

1125

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1126

Одна американская унция = 28,3 грамма, но в данном случае это метафора, а не точное количество. – Примеч. ред.

1127

Wassenaar TM, Zimmermann K. Lipopolysaccharides in food, food supplements, and probiotics: should we be worried? Eur J Microbiol Immunol (Bp). 2018;8(3):63–9. https://pubmed.ncbi.nlm.nih.gov/30345085/

1128

Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50(1):90–7. https://pubmed.ncbi.nlm.nih.gov/18815435/

1129

Ghezzal S, Postal BG, Quevrain E, et al. Palmitic acid damages gut epithelium integrity and initiates inflammatory cytokine production. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158530. https://pubmed.ncbi.nlm.nih.gov/31647994/

1130

Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/

1131

Erridge C. The capacity of foodstuffs to induce innate immune activation of human monocytes in vitro is dependent on food content of stimulants of Toll-like receptors 2 and 4. Br J Nutr. 2011;105(1):15–23. https://pubmed.ncbi.nlm.nih.gov/20849668/

1132

Cho B, Kim MS, Chao K, Lawrence K, Park B, Kim K. Detection of fecal residue on poultry carcasses by laser-induced fluorescence imaging. J Food Sci. 2009;74(3):E154–9. https://pubmed.ncbi.nlm.nih.gov/19397721/

1133

Giombelli A, Gloria MB. Prevalence of Salmonella and Campylobacter on broiler chickens from farm to slaughter and efficiency of methods to remove visible fecal contamination. J Food Prot. 2014;77(11):1851–9. https://pubmed.ncbi.nlm.nih.gov/25364917/

1134

Erridge C. Accumulation of stimulants of Toll-like receptor (TLR)-2 and TLR4 in meat products stored at 5 °C. J Food Sci. 2011;76(2):H72–9. https://pubmed.ncbi.nlm.nih.gov/21535770/

1135

Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/

1136

Tournas VH. Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol. 2005;31(1):33–44. https://pubmed.ncbi.nlm.nih.gov/15839403/

1137

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1138

Herieka M, Faraj TA, Erridge C. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutr Metab Cardiovasc Dis. 2016;26(3):194–200. https://pubmed.ncbi.nlm.nih.gov/26803597/

1139

Erridge C. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables. Food Chem Toxicol. 2011;49(6):1464–7. https://pubmed.ncbi.nlm.nih.gov/21376773/

1140

Neale EP, Tapsell LC, Guan V, Batterham MJ. The effect of nut consumption on markers of inflammation and endothelial function: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2017;7(11):e016863. https://pubmed.ncbi.nlm.nih.gov/29170286/

1141

Chen CYO, Holbrook M, Duess MA, et al. Effect of almond consumption on vascular function in patients with coronary artery disease: a randomized, controlled, cross-over trial. Nutr J. 2015;14:61. https://pubmed.ncbi.nlm.nih.gov/26080804/

1142

Li Z, Wong A, Henning SM, et al. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in healthy volunteers. Food Funct. 2013;4(3):384–91. https://pubmed.ncbi.nlm.nih.gov/23196671/

1143

Haskins CP, Henderson G, Champ CE. Meat, eggs, full-fat dairy, and nutritional boogeymen: does the way in which animals are raised affect health differently in humans? Crit Rev Food Sci Nutr. 2019;59(17):2709–19. https://pubmed.ncbi.nlm.nih.gov/29672133/

1144

Eaton SB. Humans, lipids and evolution. Lipids. 1992;27(10):814–20. https://pubmed.ncbi.nlm.nih.gov/1435101/

1145

Arya F, Egger S, Colquhoun D, Sullivan D, Pal S, Egger G. Differences in postprandial inflammatory responses to a ‘modern’ v. traditional meat meal: a preliminary study. Br J Nutr. 2010;104(5):724–8. https://pubmed.ncbi.nlm.nih.gov/20377925/

1146

Wang Y, Lehane C, Ghebremeskel K, et al. Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr. 2010;13(3):400–8. https://pubmed.ncbi.nlm.nih.gov/19728900/

1147

Kollander B, Widemo F, Ågren E, Larsen EH, Löschner K. Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets. Anal Bioanal Chem. 2017;409(7):1877–85. https://pubmed.ncbi.nlm.nih.gov/27966171/

1148

Metryka E, Chibowska K, Gutowska I, et al. Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci. 2018;19(6):1813. https://pubmed.ncbi.nlm.nih.gov/29925772/

1149

Хронически повышенный уровень LPS, вызванный высококалорийной диетой. – Примеч. ред.

1150

Harte AL, Varma MC, Tripathi G, et al. High fat intake leads to acute postprandial exposure to circulating endotoxin in type 2 diabetic subjects. Diabetes Care. 2012;35(2):375–82. https://pubmed.ncbi.nlm.nih.gov/22210577/

1151

National Cancer Institute. Identification of top food sources of various dietary components. Epidemiology and Genomics Research Program website. https://epi.grants.cancer.gov/diet/foodsources. Updated November 30, 2019. Accessed June 20, 2021.; https://epi.grants.cancer.gov/diet/foodsources

1152

Ghanim H, Batra M, Abuaysheh S, et al. Antiinflammatory and ROS suppressive effects of the addition of fiber to a high-fat high-calorie meal. J Clin Endocrinol Metab. 2017;102(3):858–69. https://pubmed.ncbi.nlm.nih.gov/27906549/

1153

Simon AH, Lima PR, Almerinda M, Alves VF, Bottini PV, de Faria JB. Renal haemodynamic responses to a chicken or beef meal in normal individuals. Nephrol Dial Transplant. 1998;13(9):2261–4. https://pubmed.ncbi.nlm.nih.gov/9761506/

1154

Kontessis P, Jones S, Dodds R, et al. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990 Jul;38(1):136–44. https://pubmed.ncbi.nlm.nih.gov/2166857/

1155

Liu Z, Ho SC, Chen Y, Tang N, Woo J. Effect of whole soy and purified isoflavone daidzein on renal function – a 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin Biochem. 2014;47(13–14):1250–6. https://pubmed.ncbi.nlm.nih.gov/24877660/

1156

Fioretto P, Trevisan R, Valerio A, et al. Impaired renal response to a meat meal in insulin-dependent diabetes: role of glucagon and prostaglandins. Am J Physiol. 1990;258(3 Pt 2):F675–83. https://pubmed.ncbi.nlm.nih.gov/2316671/

1157

N-гликолилнейраминовая кислота. – Примеч. ред.

1158

Varki A. Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J Autoimmun. 2017;83:134–42. https://pubmed.ncbi.nlm.nih.gov/28755952/

1159

Pham T, Gregg CJ, Karp F, et al. Evidence for a novel human-specific xeno-auto-antibody response against vascular endothelium. Blood. 2009;114(25):5225–35. https://pubmed.ncbi.nlm.nih.gov/19828701/

1160

Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/

1161

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1162

Samraj AN, Pearce OMT, Läubli H, et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc Natl Acad Sci U S A. 2015;112(2):542–7. https://pubmed.ncbi.nlm.nih.gov/25548184/

1163

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1164

Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/

1165

Peri S, Kulkarni A, Feyertag F, Berninsone PM, Alvarez-Ponce D. Phylogenetic distribution of CMP-Neu5Ac hydroxylase (CMAH), the enzyme synthetizing the proinflammatory human xenoantigen Neu5Gc. Genome Biol Evol. 2018;10(1):207–19. https://pubmed.ncbi.nlm.nih.gov/29206915/

1166

Jahan M, Thomson PC, Wynn PC, Wang B. The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chem. 2021;343:128439. https://pubmed.ncbi.nlm.nih.gov/33127222/

1167

Alisson-Silva F, Kawanishi K, Varki A. Human risk of diseases associated with red meat intake: analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol Aspects Med. 2016;51:16–30. https://pubmed.ncbi.nlm.nih.gov/27421909/

1168

MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. Lancet. 1982;1(8268):351–5. https://pubmed.ncbi.nlm.nih.gov/6120346/

1169

Yi B, Titze J, Rykova M, et al. Effects of dietary salt levels on monocytic cells and immune responses in healthy human subjects: a longitudinal study. Transl Res. 2015;166(1):103–10. https://pubmed.ncbi.nlm.nih.gov/25497276/

1170

Mickleborough TD, Lindley MR, Ray S. Dietary salt, airway inflammation, and diffusion capacity in exercise-induced asthma. Med Sci Sports Exerc. 2005;37(6):904–14. https://pubmed.ncbi.nlm.nih.gov/15947713/

1171

Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(1):26–31. https://pubmed.ncbi.nlm.nih.gov/28556498/

1172

Krajina I, Stupin A, Šola M, Mihalj M. Oxidative stress induced by high salt diet – possible implications for development and clinical manifestation of cutaneous inflammation and endothelial dysfunction in Psoriasis vulgaris. Antioxidants (Basel). 2022;11(7):1269. https://pubmed.ncbi.nlm.nih.gov/35883760/

1173

Carranza-León DA, Oeser A, Marton A, et al. Tissue sodium content in patients with systemic lupus erythematosus: association with disease activity and markers of inflammation. Lupus. 2020;29(5):455–62. https://pubmed.ncbi.nlm.nih.gov/32070186/

1174

Jung SM, Kim Y, Kim J, et al. Sodium chloride aggravates arthritis via Th17 polarization. Yonsei Med J. 2019;60(1):88–97. https://pubmed.ncbi.nlm.nih.gov/30554495/

1175

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1176

United States Department of Health and Human Services, United States Department of Agriculture. Appendix 13. Food sources of dietary fiber. In: 2015–2020 Dietary Guidelines for Americans. 8th ed. DietaryGuidelines.gov. 2015:114–8.; https://health.gov/our-work/nutrition-physical-activity/dietary-guidelines/previous-dietary-guidelines/2015

1177

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/

1178

Haytowitz DB, Bhagwat S, Harnly J, Holden JM, Gebhardt SE. Sources of flavonoids in the U.S. diet using USDA’s updated database on the flavonoid content of selected foods. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf. Published 2006. Accessed July 20, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400525/Articles/AICR06_flav.pdf

1179

Hostetler GL, Ralston RA, Schwartz SJ. Flavones: food sources, bioavailability, metabolism, and bioactivity. Adv Nutr. 2017;8(3):423–35. https://pubmed.ncbi.nlm.nih.gov/28507008/

1180

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. In: Alt FW, ed. Advances in Immunology. Vol 121. Academic Press, Elsevier; 2014:91–119. https://pubmed.ncbi.nlm.nih.gov/24388214/

1181

Pukatzki S, Provenzano D. Vibrio cholerae as a predator: lessons from evolutionary principles. Front Microbiol. 2013;4. https://pubmed.ncbi.nlm.nih.gov/24368907/

1182

Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A. 2014;111(6):2247–52. https://pubmed.ncbi.nlm.nih.gov/24390544/

1183

McRorie JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82–9. https://pubmed.ncbi.nlm.nih.gov/25972618/

1184

Nilsson AC, Östman EM, Knudsen KEB, Holst JJ, Björck IME. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning. J Nutr. 2010;140(11):1932–6. https://pubmed.ncbi.nlm.nih.gov/20810606/

1185

Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21. https://pubmed.ncbi.nlm.nih.gov/20823773/

1186

Dai Z, Lu N, Niu J, Felson DT, Zhang Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res (Hoboken). 2017;69(9):1331–9. https://pubmed.ncbi.nlm.nih.gov/27899003/

1187

Dai Z, Niu J, Zhang Y, Jacques P, Felson DT. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts [published correction appears in Ann Rheum Dis. 2017;76(12):2103]. Ann Rheum Dis. 2017;76(8):1411–9. https://pubmed.ncbi.nlm.nih.gov/28536116/

1188

Vaughan A, Frazer ZA, Hansbro PM, Yang IA. COPD and the gut-lung axis: the therapeutic potential of fibre. J Thorac Dis. 2019;11(Suppl 17):S2173–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831926/

1189

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019;393(10170):434-45. https://pubmed.ncbi.nlm.nih.gov/30638909/

1190

Brewer RA, Gibbs VK, Smith DL Jr. Targeting glucose metabolism for healthy aging. Nutr Healthy Aging. 2016;4(1):31–46. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5166514/

1191

Su B, Liu H, Li J, et al. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39. https://pubmed.ncbi.nlm.nih.gov/25327485/

1192

Zhang X, Fang Z, Zhang C, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Ther. 2017;8(2):293–307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380489/

1193

Wolever TMS, Chiasson JL. Acarbose raises serum butyrate in human subjects with impaired glucose tolerance. Br J Nutr. 2000;84(1):57–61. https://pubmed.ncbi.nlm.nih.gov/10961161/

1194

McCay CM, Ku CC, Woodward JC, Sehgal BS. Cellulose in the diet of rats and mice: two figures. J Nutr. 1934;8(4):435–47. https://academic.oup.com/jn/article-abstract/8/4/435/4727178

1195

Smith BJ, Miller RA, Ericsson AC, Harrison DC, Strong R, Schmidt TM. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019;19(1):130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567620/

1196

Hovey AL, Jones GP, Devereux HM, Walker KZ. Whole cereal and legume seeds increase faecal short chain fatty acids compared to ground seeds. Asia Pac J Clin Nutr. 2003;12(4):477–82. https://pubmed.ncbi.nlm.nih.gov/14672874/

1197

Stephen AM, Cummings JH. The microbial contribution to human faecal mass. J Med Microbiol. 1980;13(1):45–56. https://pubmed.ncbi.nlm.nih.gov/7359576/

1198

Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385025/

1199

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1200

Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/

1201

Minciullo PL, Catalano A, Mandraffino G, et al. Inflammaging and anti-inflammaging: the role of cytokines in extreme longevity. Arch Immunol Ther Exp (Warsz). 2016;64(2):111–26. https://pubmed.ncbi.nlm.nih.gov/26658771/

1202

Säemann MD, Böhmig GA, Österreicher CH, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2. https://pubmed.ncbi.nlm.nih.gov/11024006/

1203

Vitaglione P, Mennella I, Ferracane R, et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. Am J Clin Nutr. 2015;101(2):251–61. https://pubmed.ncbi.nlm.nih.gov/25646321/

1204

Kohl A, Gögebakan Ö, Möhlig M, et al. Increased interleukin-10 but unchanged insulin sensitivity after 4 weeks of (1, 3)(1, 6)-ß-glycan consumption in overweight humans. Nutr Res. 2009;29(4):248–54. https://pubmed.ncbi.nlm.nih.gov/19410976/

1205

Barclay GR, McKenzie H, Pennington J, Parratt D, Pennington CR. The effect of dietary yeast on the activity of stable chronic Crohn’s disease. Scand J Gastroenterol. 1992;27(3):196–200. https://pubmed.ncbi.nlm.nih.gov/1502481/

1206

Cannistrà C, Finocchi V, Trivisonno A, Tambasco D. New perspectives in the treatment of hidradenitis suppurativa: surgery and brewer’s yeast-exclusion diet. Surgery. 2013;154(5):1126–30. https://pubmed.ncbi.nlm.nih.gov/23891479/

1207

Franceschi C, Ostan R, Santoro A. Nutrition and inflammation: are centenarians similar to individuals on calorie-restricted diets? Annu Rev Nutr. 2018;38(1):329–56. https://pubmed.ncbi.nlm.nih.gov/29852087/

1208

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1209

Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27. https://pubmed.ncbi.nlm.nih.gov/23865797/

1210

Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/

1211

Sutliffe JT, Wilson LD, de Heer HD, Foster RL, Carnot MJ. C-reactive protein response to a vegan lifestyle intervention. Complement Ther Med. 2015;23(1):32–7. https://pubmed.ncbi.nlm.nih.gov/25637150/

1212

Macknin M, Kong T, Weier A, et al. Plant-based, no-added-fat or American Heart Association diets: impact on cardiovascular risk in obese children with hypercholesterolemia and their parents. J Pediatr. 2015;166(4):953–9.e1–3. https://pubmed.ncbi.nlm.nih.gov/25684089/

1213

Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A, Azizi F. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr. 2015;114(2):213–9. https://pubmed.ncbi.nlm.nih.gov/26077375/

1214

Watzl B, Kulling SE, Möseneder J, Barth SW, Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am J Clin Nutr. 2005;82(5):1052–8. https://pubmed.ncbi.nlm.nih.gov/16280438/

1215

Lee-Kwan SH, Moore LV, Blanck HM, Harris DM, Galuska D. Disparities in state-specific adult fruit and vegetable consumption – United States, 2015. MMWR Morb Mortal Wkly Rep. 2017;66:1241–7. https://pubmed.ncbi.nlm.nih.gov/29145355/

1216

Baden MY, Satija A, Hu FB, Huang T. Change in plant-based diet quality is associated with changes in plasma adiposity-associated biomarker concentrations in women. J Nutr. 2019;149(4):676–86. https://pubmed.ncbi.nlm.nih.gov/30927000/

1217

Ricker MA, Haas WC. Anti-inflammatory diet in clinical practice: a review. Nutr Clin Pract. 2017;32(3):318–25. https://pubmed.ncbi.nlm.nih.gov/28350517/

1218

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1219

Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor a: a meta-analysis. PLoS ONE. 2014;9(2):e88103. https://pubmed.ncbi.nlm.nih.gov/24505395/

1220

Agricultural Research Service, United States Department of Agriculture. Search results: PUFA 22:6 n-3 (DHA) (g). FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/?component=1272. Published April 1, 2019. Accessed July 19, 2021.; https://fdc.nal.usda.gov/fdc-app.html#/?component=1272

1221

Stella AB, Cappellari GG, Barazzoni R, Zanetti M. Update on the impact of omega 3 fatty acids on inflammation, insulin resistance and sarcopenia: a review. Int J Mol Sci. 2018;19(1):218. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796167/

1222

Alhassan A, Young J, Lean MEJ, Lara J. Consumption of fish and vascular risk factors: a systematic review and meta-analysis of intervention studies. Atherosclerosis. 2017;266:87–94. https://pubmed.ncbi.nlm.nih.gov/28992469/

1223

Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/

1224

Raymond MR, Christensen KY, Thompson BA, Anderson HA. Associations between fish consumption and contaminant biomarkers with cardiovascular conditions among older male anglers in Wisconsin. J Occup Environ Med. 2016;58(7):676–82. https://pubmed.ncbi.nlm.nih.gov/27253229/

1225

Tabung FK, Smith-Warner SA, Chavarro JE, et al. Development and validation of an empirical dietary inflammatory index. J Nutr. 2016;146(8):1560–70. https://pubmed.ncbi.nlm.nih.gov/27358416/

1226

Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr. 2015;54(4):599–608. https://pubmed.ncbi.nlm.nih.gov/25087093/

1227

Cassidy A, Rogers G, Peterson JJ, Dwyer JT, Lin H, Jacques PF. Higher dietary anthocyanin and flavonol intakes are associated with anti-inflammatory effects in a population of US adults. Am J Clin Nutr. 2015;102(1):172–81. https://pubmed.ncbi.nlm.nih.gov/26016863/

1228

Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/

1229

Moazen S, Amani R, Homayouni Rad A, Shahbazian H, Ahmadi K, Taha Jalali M. Effects of freeze-dried strawberry supplementation on metabolic biomarkers of atherosclerosis in subjects with type 2 diabetes: a randomized double-blind controlled trial. Ann Nutr Metab. 2013;63(3):256–64. https://pubmed.ncbi.nlm.nih.gov/24334868/

1230

Moylan S, Berk M, Dean OM, et al. Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev. 2014;45:46–62. https://pubmed.ncbi.nlm.nih.gov/24858007/

1231

Franzini L, Ardigi D, Valtueña S, et al. Food selection based on high total antioxidant capacity improves endothelial function in a low cardiovascular risk population. Nutr Metab Cardiovasc Dis. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/20674303/

1232

Sun CH, Li Y, Zhang YB, Wang F, Zhou XL, Wang F. The effect of vitamin – mineral supplementation on CRP and IL-6: a systemic review and meta-analysis of randomised controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(8):576–83. https://pubmed.ncbi.nlm.nih.gov/20399082/

1233

Fallah AA, Sarmast E, Fatehi P, Jafari T. Impact of dietary anthocyanins on systemic and vascular inflammation: systematic review and meta-analysis on randomised clinical trials. Food Chem Toxicol. 2020;135:110922. https://pubmed.ncbi.nlm.nih.gov/31669599/

1234

do Rosario VA, Chang C, Spencer J, et al. Anthocyanins attenuate vascular and inflammatory responses to a high fat high energy meal challenge in overweight older adults: a cross-over, randomized, double-blind clinical trial. Clin Nutr. 2021;40(3):879–89. https://pubmed.ncbi.nlm.nih.gov/33071012/

1235

O’Hara C, Ojo B, Emerson SR, et al. Acute freeze-dried mango consumption with a high-fat meal has minimal effects on postprandial metabolism, inflammation and antioxidant enzymes. Nutr Metab Insights. 2019;12:1178638819869946. https://pubmed.ncbi.nlm.nih.gov/31452602/

1236

Wang P, Zhang Q, Hou H, et al. The effects of pomegranate supplementation on biomarkers of inflammation and endothelial dysfunction: a meta-analysis and systematic review. Complement Ther Med. 2020;49:102358. https://pubmed.ncbi.nlm.nih.gov/32147056/

1237

Aptekmann NP, Cesar TB. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67(4):343–7. https://pubmed.ncbi.nlm.nih.gov/20729016/

1238

McAnulty LS, Nieman DC, Dumke CL, et al. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl Physiol Nutr Metab. 2011;36(6):976–84. https://pubmed.ncbi.nlm.nih.gov/22111516/

1239

Connolly DA, McHugh MP, Padilla-Zakour OI, Carlson L, Sayers SP. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83. https://pubmed.ncbi.nlm.nih.gov/16790484/

1240

Peake JM, Suzuki K, Coombes JS. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J Nutr Biochem. 2007;18(6):357–71. https://pubmed.ncbi.nlm.nih.gov/17156994/

1241

Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/

1242

McHugh M. The health benefits of cherries and potential applications in sports. Scand J Med Sci Sports. 2011;21(5):615–6. https://pubmed.ncbi.nlm.nih.gov/21917014/

1243

Blau LW. Cherry diet control for gout and arthritis. Tex Rep Biol Med. 1950;8(3):309–11. https://pubmed.ncbi.nlm.nih.gov/14776685/

1244

Overman T. Pegloticase: a new treatment for gout. Pharmacotherapy Update. 2011;14(2):1–3. https://pubmed.ncbi.nlm.nih.gov/29204266/

1245

Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Phila). 2010;48(5):407–14. https://pubmed.ncbi.nlm.nih.gov/20586571/

1246

Fritsch PO, Sidoroff A. Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Am J Clin Dermatol. 2000;1(6):349–60. https://pubmed.ncbi.nlm.nih.gov/11702611/

1247

Wang M, Jiang X, Wu W, Zhang D. A meta-analysis of alcohol consumption and the risk of gout. Clin Rheumatol. 2013;32(11):1641–8. https://pubmed.ncbi.nlm.nih.gov/23881436/

1248

Zhang Y, Chen C, Choi H, et al. Purine-rich foods intake and recurrent gout attacks. Ann Rheum Dis. 2012;71(9):1448–53. https://pubmed.ncbi.nlm.nih.gov/22648933/

1249

Menzel J, Jabakhanji A, Biemann R, Mai K, Abraham K, Weikert C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci Rep. 2020;10:21736. https://pubmed.ncbi.nlm.nih.gov/33303765/

1250

Eichelmann F, Schwingshackl L, Fedirko V, Aleksandrova K. Effect of plant-based diets on obesity-related inflammatory profiles: a systematic review and meta-analysis of intervention trials. Obes Rev. 2016;17(11):1067–79. https://pubmed.ncbi.nlm.nih.gov/27405372/

1251

Tran E, Dale HF, Jensen C, Lied GA. Effects of plant-based diets on weight status: a systematic review. Diabetes Metab Syndr Obes. 2020;13:3433–48. https://pubmed.ncbi.nlm.nih.gov/33061504/

1252

Shah B, Newman JD, Woolf K, et al. Anti-inflammatory effects of a vegan diet versus the American Heart Association – recommended diet in coronary artery disease trial. J Am Heart Assoc. 2018;7(23):e011367. https://pubmed.ncbi.nlm.nih.gov/30571591/

1253

Margolis KL, Manson JE, Greenland P, et al. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women’s Health Initiative Observational Study. Arch Intern Med. 2005;165(5):500–8. https://pubmed.ncbi.nlm.nih.gov/15767524/

1254

Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/

1255

Gkrania-Klotsas E, Ye Z, Cooper AJ, et al. Differential white blood cell count and type 2 diabetes: systematic review and meta-analysis of cross-sectional and prospective studies. PLoS One. 2010;5(10):e13405. https://pubmed.ncbi.nlm.nih.gov/20976133/

1256

Leng SX, Xue QL, Huang Y, Ferrucci L, Fried LP, Walston JD. Baseline total and specific differential white blood cell counts and 5-year all-cause mortality in community-dwelling older women. Exp Gerontol. 2005;40(12):982–7. https://pubmed.ncbi.nlm.nih.gov/16183235/

1257

de Labry LO, Campion EW, Glynn RJ, Vokonas PS. White blood cell count as a predictor of mortality: results over 18 years from the Normative Aging Study. J Clin Epidemiol. 1990;43(2):153–7. https://pubmed.ncbi.nlm.nih.gov/2303845/

1258

Panagiotakos DB, Pitsavos C, Chrysohoou C, et al. Effect of exposure to secondhand smoke on markers of inflammation: the ATTICA study. Am J Med. 2004;116(3):145–50. https://pubmed.ncbi.nlm.nih.gov/14749157/

1259

Swanson E. Prospective clinical study reveals significant reduction in triglyceride level and white blood cell count after liposuction and abdominoplasty and no change in cholesterol levels. Plast Reconstr Surg. 2011;128(3):182e-97e. https://pubmed.ncbi.nlm.nih.gov/21865992/

1260

Domene PA, Moir HJ, Pummell E, Knox A, Easton C. The health-enhancing efficacy of Zumba® fitness: an 8-week randomised controlled study. J Sports Sci. 2016;34(15):1396–404. https://pubmed.ncbi.nlm.nih.gov/26571136/

1261

Kjeldsen-Kragh J. Rheumatoid arthritis treated with vegetarian diets. Am J Clin Nutr. 1999;70(3 Suppl):594S-600S. https://pubmed.ncbi.nlm.nih.gov/10479237/

1262

Schultz H, Ying GS, Dunaief JL, Dunaief DM. Rising plasma beta-carotene is associated with diminishing C-reactive protein in patients consuming a dark green leafy vegetable – rich, Low Inflammatory Foods Everyday (LIFE) diet. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827619894954. Published December 21, 2019. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/34916884/

1263

Perzia B, Ying GS, Dunaief JL, Dunaief DM. Once-daily Low Inflammatory Foods Everyday (LIFE) smoothie or the full LIFE diet lowers C-reactive protein and raises plasma beta-carotene in 7 days. Am J Lifestyle Med. https://journals.sagepub.com/doi/10.1177/1559827620962458. Published October 5, 2020. Accessed June 26, 2021.; https://pubmed.ncbi.nlm.nih.gov/36389047/

1264

Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of ß-carotene and to a lesser extent of lutein in humans. J Nutr. 1999;129(2):349–55. https://pubmed.ncbi.nlm.nih.gov/10024612/

1265

Lin KH, Hsu CY, Huang YP, et al. Chlorophyll-related compounds inhibit cell adhesion and inflammation in human aortic cells. J Med Food. 2013;16(10):886–98. https://pubmed.ncbi.nlm.nih.gov/24066944/

1266

Subramoniam A, Asha VV, Nair SA, et al. Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-a gene by the same. Inflammation. 2012;35(3):959–66. https://pubmed.ncbi.nlm.nih.gov/22038065/

1267

Jiang Y, Wu SH, Shu XO, et al. Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. J Acad Nutr Diet. 2014;114(5):700–8.e2. https://pubmed.ncbi.nlm.nih.gov/25165394/

1268

Zhang X, Shu XO, Xiang YB, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94(1):240–6. https://pubmed.ncbi.nlm.nih.gov/21593509/

1269

Navarro SL, Schwarz Y, Song X, et al. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr. 2014;144(11):1850–7. https://pubmed.ncbi.nlm.nih.gov/25165394/

1270

López-Chillón MT, Carazo-Díaz C, Prieto-Merino D, Zafrilla P, Moreno DA, Villaño D. Effects of long-term consumption of broccoli sprouts on inflammatory markers in overweight subjects. Clin Nutr. 2019;38(2):745–52. https://pubmed.ncbi.nlm.nih.gov/29573889/

1271

Bentley J. Potatoes and tomatoes account for over half of U.S. vegetable availability. Economic Research Service, United States Department of Agriculture. https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability. Published September 8, 2015. Accessed June 20, 2021.; https://www.ers.usda.gov/amber-waves/2015/september/potatoes-and-tomatoes-account-for-over-half-of-us-vegetable-availability/

1272

Ghavipour M, Saedisomeolia A, Djalali M, et al. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br J Nutr. 2013;109(11):2031–5. https://pubmed.ncbi.nlm.nih.gov/23069270/

1273

Burton-Freeman B, Talbot J, Park E, Krishnankutty S, Edirisinghe I. Protective activity of processed tomato products on postprandial oxidation and inflammation: a clinical trial in healthy weight men and women. Mol Nutr Food Res. 2012;56(4):622–31. https://pubmed.ncbi.nlm.nih.gov/22331646/

1274

Markovits N, Ben Amotz A, Levy Y. The effect of tomato-derived lycopene on low carotenoids and enhanced systemic inflammation and oxidation in severe obesity. Isr Med Assoc J. 2009;11(10):598–601. https://pubmed.ncbi.nlm.nih.gov/20077945/

1275

Dai X, Stanilka JM, Rowe CA, et al. Consuming Lentinula edodes (shiitake) mushrooms daily improves human immunity: a randomized dietary intervention in healthy young adults. J Am Coll Nutr. 2015;34(6):478–87. https://pubmed.ncbi.nlm.nih.gov/25866155/

1276

World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. American Institute for Cancer Research; 2007. https://www.researchgate.net/publication/315725512_Food_Nutrition_Physical_Activity_and_the_Prevention_of_Cancer_A_Global_Perspective_Summary

1277

American Heart Association. Types of whole grains. Heart.org. https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains. Published January 1, 2015. Accessed November 5, 2021.; https://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/types-of-whole-grains

1278

Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/

1279

Jacobs DR, Andersen LF, Blomhoff R. Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2007;85(6):1606–14. https://pubmed.ncbi.nlm.nih.gov/17556700/

1280

Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908315/

1281

Afshin A, Sun PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–72. https://pubmed.ncbi.nlm.nih.gov/30954305/

1282

Yu Z, Malik VS, Keum NN, et al. Associations between nut consumption and inflammatory biomarkers. Am J Clin Nutr. 2016;104(3):722–8. https://pubmed.ncbi.nlm.nih.gov/27465378/

1283

Gopinath B, Buyken AE, Flood VM, Empson M, Rochtchina E, Mitchell P. Consumption of polyunsaturated fatty acids, fish, and nuts and risk of inflammatory disease mortality. Am J Clin Nutr. 2011;93(5):1073–9. https://pubmed.ncbi.nlm.nih.gov/21411616/

1284

Chen GC, Zhang R, Martínez-González MA, et al. Nut consumption in relation to all-cause and cause-specific mortality: a meta-analysis 18 prospective studies. Food Funct. 2017;8(11):3893–905. https://pubmed.ncbi.nlm.nih.gov/28875220/

1285

Xiao Y, Xia J, Ke Y, et al. Effects of nut consumption on selected inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Nutrition. 2018;54:129–43. https://pubmed.ncbi.nlm.nih.gov/29852452/

1286

Eftekhar Sadat B, Khadem Haghighian M, Alipoor B, Malek Mahdavi A, Asghari Jafarabadi M, Moghaddam A. Effects of sesame seed supplementation on clinical signs and symptoms in patients with knee osteoarthritis. Int J Rheum Dis. 2013;16(5):578–82. https://pubmed.ncbi.nlm.nih.gov/24164846/

1287

Rodriguez-Leyva D, Weighell W, Edel AL, et al. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension. 2013;62(6):1081–9. https://pubmed.ncbi.nlm.nih.gov/24126178/

1288

Rahimlou M, Jahromi NB, Hasanyani N, Ahmadi AR. Effects of flaxseed interventions on circulating inflammatory biomarkers: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2019;10(6):1108–19. https://pubmed.ncbi.nlm.nih.gov/31115436/

1289

Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313(5):H903–18. https://pubmed.ncbi.nlm.nih.gov/28801523/

1290

Caligiuri SPB, Aukema HM, Ravandi A, Pierce GN. Elevated levels of pro-inflammatory oxylipins in older subjects are normalized by flaxseed consumption. Exp Gerontol. 2014;59:51–7. https://pubmed.ncbi.nlm.nih.gov/24747581/

1291

Srinivasan K. Anti-inflammatory influences of culinary spices and their bioactives. Food Rev Int. 2020;Nov:1–17. https://www.tandfonline.com/doi/abs/10.1080/87559129.2020.1839761?journalCode=lfri20

1292

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1293

Allijn IE, Vaessen SF, Quarles van Ufford LC, et al. Head-to-head comparison of anti-inflammatory performance of known natural products in vitro. PLoS ONE. 2016;11(5):e0155325. https://pubmed.ncbi.nlm.nih.gov/27163931/

1294

Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: a systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19(8):717–29. https://pubmed.ncbi.nlm.nih.gov/27533649/

1295

Abidi A, Gupta S, Agarwal M, Bhalla HL, Saluja M. Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. J Clin Diagn Res. 2014;8(8):HC19–24. https://pubmed.ncbi.nlm.nih.gov/25302215/

1296

Panahi Y, Sahebkar A, Parvin S, Saadat A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann Clin Biochem. 2012;49(Pt 6):580–8. https://pubmed.ncbi.nlm.nih.gov/23038702/

1297

Garg SK, Ahuja V, Sankar MJ, Kumar A, Moss AC. Curcumin for maintenance of remission in ulcerative colitis. Cochrane Database Syst Rev. 2012;10:CD008424. https://pubmed.ncbi.nlm.nih.gov/23076948/

1298

Khajehdehi P, Zanjaninejad B, Aflaki E, et al. Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J Ren Nutr. 2012;22(1):50–7. https://pubmed.ncbi.nlm.nih.gov/21742514/

1299

Vors C, Couillard C, Paradis ME, et al. Supplementation with resveratrol and curcumin does not affect the inflammatory response to a high-fat meal in older adults with abdominal obesity: a randomized, placebo-controlled crossover trial. J Nutr. 2018;148(3):379–88. https://pubmed.ncbi.nlm.nih.gov/29546309/

1300

Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;111:394–404. https://pubmed.ncbi.nlm.nih.gov/27392742/

1301

Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-a levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:234–42. https://pubmed.ncbi.nlm.nih.gov/27025786/

1302

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1303

Morvaridzadeh M, Fazelian S, Agah S, et al. Effect of ginger (Zingiber officinale) on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Cytokine. 2020;135:155224. https://pubmed.ncbi.nlm.nih.gov/32763761/

1304

Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene. 2019;698:179–185. https://pubmed.ncbi.nlm.nih.gov/30844477/

1305

Bartels EM, Folmer VN, Bliddal H, et al. Efficacy and safety of ginger in osteoarthritis patients: a meta-analysis of randomized placebo-controlled trials. Osteoar Cartil. 2015;23(1):13–21. https://pubmed.ncbi.nlm.nih.gov/25300574/

1306

Haghighi M, Khalvat A, Toliat T, Jallaei SH. Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis. Arch Iran Med. 2005;8(4):267–71. https://www.researchgate.net/publication/235007127_Comparing_the_Effects_of_ginger_Zingiber_officinale_extract_and_ibuprofen_On_patients_with_osteoarthritis

1307

Haniadka R, Saldanha E, Sunita V, Palatty PL, Fayad R, Baliga MS. A review of the gastroprotective effects of ginger (Zingiber officinale Roscoe). Food Funct. 2013;4(6):845–55. https://pubmed.ncbi.nlm.nih.gov/23612703/

1308

Caunedo-Alvarez A, Gómez-Rodríguez BJ, Romero-Vázquez J, et al. Macroscopic small bowel mucosal injury caused by chronic nonsteroidal anti-inflammatory drugs (NSAID) use as assessed by capsule endoscopy. Rev Esp Enferm Dig. 2010;102(2):80–5. https://pubmed.ncbi.nlm.nih.gov/20361843/

1309

Maghbooli M, Golipour F, Moghimi Esfandabadi A, Yousefi M. Comparison between the efficacy of ginger and sumatriptan in the ablative treatment of the common migraine. Phytother Res. 2014;28(3):412–5. https://pubmed.ncbi.nlm.nih.gov/23657930/

1310

Kashefi F, Khajehei M, Alavinia M, Golmakani E, Asili J. Effect of ginger (Zingiber officinale) on heavy menstrual bleeding: a placebo-controlled, randomized clinical trial. Phytother Res. 2015;29(1):114–9. https://pubmed.ncbi.nlm.nih.gov/25298352/

1311

Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127(2):515–20. https://pubmed.ncbi.nlm.nih.gov/19833188/

1312

Darooghegi Mofrad M, Milajerdi A, Koohdani F, Surkan PJ, Azadbakht L. Garlic supplementation reduces circulating C-reactive protein, tumor necrosis factor, and interleukin-6 in adults: a systematic review and meta-analysis of randomized controlled trials. J Nutr. 2019;149(4):605–18. https://pubmed.ncbi.nlm.nih.gov/30949665/

1313

Moosavian SP, Paknahad Z, Habibagahi Z, Maracy M. The effects of garlic (Allium sativum) supplementation on inflammatory biomarkers, fatigue, and clinical symptoms in patients with active rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2020;34(11):2953–62. https://pubmed.ncbi.nlm.nih.gov/32478922/

1314

Taghizadeh M, Hamedifard Z, Jafarnejad S. Effect of garlic supplementation on serum C-reactive protein level: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2019;33(2):243–52. https://pubmed.ncbi.nlm.nih.gov/30370629/

1315

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

1316

Payahoo L, Ostadrahimi A, Mobasseri M, et al. Anethum graveolens L. supplementation has anti-inflammatory effect in type 2 diabetic patients. Indian J Tradit Knowl. 2014:13(3):461–5.; https://www.researchgate.net/publication/267032371_Anethum_graveolens_L_supplementation_has_anti-inflammatory_effect_in_type_2_diabetic_patients

1317

Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/

1318

Vallianou N, Tsang C, Taghizadeh M, Davoodvandi A, Jafarnejad S. Effect of cinnamon (Cinnamomum Zeylanicum) supplementation on serum C-reactive protein concentrations: a meta-analysis and systematic review. Complement Ther Med. 2019;42:271–8. https://pubmed.ncbi.nlm.nih.gov/30670254/

1319

Vázquez-Agell M, Urpi-Sarda M, Sacanella E, et al. Cocoa consumption reduces NF-¿B activation in peripheral blood mononuclear cells in humans. Nutr Metab Cardiovasc Dis. 2013;23(3):257–63. https://pubmed.ncbi.nlm.nih.gov/21824756/

1320

Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://pubmed.ncbi.nlm.nih.gov/23941862/

1321

Eshghpour M, Mortazavi H, Mohammadzadeh Rezaei NM, Nejat AH. Effectiveness of green tea mouthwash in postoperative pain control following surgical removal of impacted third molars: double blind randomized clinical trial. Daru. 2013;21(1):59. https://pubmed.ncbi.nlm.nih.gov/23866761/

1322

Sridharan S, Archer N, Manning N. Premature constriction of the fetal ductus arteriosus following the maternal consumption of camomile herbal tea. Ultrasound Obstet Gynecol. 2009;34(3):358–9. https://pubmed.ncbi.nlm.nih.gov/19705407/

1323

Burkewitz K, Weir HJM, Mair WB. AMPK as a pro-longevity target. In: Cordero MD, Viollet B, eds. AMP-Activated Protein Kinase. Experientia Supplementum. Vol 107. Springer; 2016:227–56. https://pubmed.ncbi.nlm.nih.gov/27812983/

1324

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1325

Fuster V, Sweeny JM. Aspirin: a historical and contemporary therapeutic overview. Circulation. 2011;123(7):768–78. https://pubmed.ncbi.nlm.nih.gov/21343593/

1326

Saad M, Abdelaziz HK, Mehta JL. Aspirin for primary prevention in the elderly. Aging (Albany NY). 2019;11(17):6618–9. https://pubmed.ncbi.nlm.nih.gov/31492828/

1327

Patrono C, Baigent C. Role of aspirin in primary prevention of cardiovascular disease. Nat Rev Cardiol. 2019;16(11):675–86. https://pubmed.ncbi.nlm.nih.gov/31243390/

1328

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1329

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1330

Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/

1331

Knutsen SF. Lifestyle and the use of health services. Am J Clin Nutr. 1994;59(5 Suppl):1171S-5S. https://pubmed.ncbi.nlm.nih.gov/8172119/

1332

McCarty MF. Dietary nitrate and reductive polyphenols may potentiate the vascular benefit and alleviate the ulcerative risk of low-dose aspirin. Med Hypotheses. 2013;80(2):186–90. https://pubmed.ncbi.nlm.nih.gov/23265354/

1333

Scheier L. Salicylic acid: one more reason to eat your fruits and vegetables. J Am Diet Assoc. 2001;101(12):1406–8. https://pubmed.ncbi.nlm.nih.gov/11762733/

1334

Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/

1335

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1336

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1337

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1338

Keszycka PK, Szkop M, Gajewska D. Overall content of salicylic acid and salicylates in food available on the European market. J Agric Food Chem. 2017;65(50):11085–91. https://pubmed.ncbi.nlm.nih.gov/29182277/

1339

Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/

1340

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1341

Malakar S, Gibson PR, Barrett JS, Muir JG. Naturally occurring dietary salicylates: a closer look at common Australian foods. J Food Compos Anal. 2017;57:31–9. https://www.sciencedirect.com/science/article/abs/pii/S0889157516302241?via%3Dihub

1342

Gajewska D, Keszycka PK, Szkop M. Dietary salicylates in herbs and spices. Food Funct. 2019;10(11):7037–41. https://pubmed.ncbi.nlm.nih.gov/31625548/

1343

Blacklock CJ, Lawrence JR, Wiles D, et al. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J Clin Pathol. 2001;54(7):553–5. https://pubmed.ncbi.nlm.nih.gov/11429429/

1344

Популярное индийское блюдо, завезенное в Гоа португальскими моряками. – Примеч. ред.

1345

Традиционные индийские блюда, приправленные куркумой, перцем чили, чесноком, кумином, кориандром, имбирем, тамариндом, лимонной кислотой, растительным маслом, уксусом и солью. – Примеч. ред.

1346

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1347

Paterson JR, Srivastava R, Baxter GJ, Graham AB, Lawrence JR. Salicylic acid content of spices and its implications. J Agric Food Chem. 2006;54(8):2891–6. https://pubmed.ncbi.nlm.nih.gov/16608205/

1348

Pasche B, Wang M, Pennison M, Jimenez H. Prevention and treatment of cancer with aspirin: where do we stand? Semin Oncol. 2014;41(3):397–401. https://pubmed.ncbi.nlm.nih.gov/25023355/

1349

Baxter GJ, Graham AB, Lawrence JR, Wiles D, Paterson JR. Salicylic acid in soups prepared from organically and non-organically grown vegetables. Eur J Nutr. 2001;40(6):289–92. https://pubmed.ncbi.nlm.nih.gov/11876493/

1350

Duthie GG, Wood AD. Natural salicylates: foods, functions and disease prevention. Food Funct. 2011;2(9):515–20. https://pubmed.ncbi.nlm.nih.gov/21879102/

1351

Pawelec G. Aging as an inflammatory disease and possible reversal strategies. J Allergy Clin Immunol. 2020;145(5):1355–6. https://pubmed.ncbi.nlm.nih.gov/32142747/

1352

Puzianowska-Kuznicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. https://pubmed.ncbi.nlm.nih.gov/27274758/

1353

Assmann KE, Adjibade M, Shivappa N, et al. The inflammatory potential of the diet at midlife is associated with later healthy aging in French adults. J Nutr. 2018;148(3):437–44. https://pubmed.ncbi.nlm.nih.gov/29546305/

1354

Pedersen BK. Anti-inflammation – just another word for anti-ageing? J Physiol. 2009;587(23):5515. https://pubmed.ncbi.nlm.nih.gov/19959548/

1355

O’Keefe JH, Bell DSH. Postprandial hyperglycemia/hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor. Am J Cardiol. 2007;100(5):899–904. https://pubmed.ncbi.nlm.nih.gov/17719342/

1356

Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721–6. https://pubmed.ncbi.nlm.nih.gov/1102508/

1357

Garza-Lombó C, Gonsebatt ME. Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front Cell Neurosci. 2016;10:157. https://pubmed.ncbi.nlm.nih.gov/27378854/

1358

Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/

1359

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1360

Blagosklonny MV. TOR-driven aging: speeding car without brakes. Cell Cycle. 2009;8(24):4055–9. https://pubmed.ncbi.nlm.nih.gov/19923900/

1361

Schmeisser K, Parker JA. Pleiotropic effects of mTOR and autophagy during development and aging. Front Cell Dev Biol. 2019;7. https://pubmed.ncbi.nlm.nih.gov/31572724/

1362

Vasunilashorn S, Finch CE, Crimmins EM, et al. Inflammatory gene variants in the Tsimane, an indigenous Bolivian population with a high infectious load. Biodemography Soc Biol. 2011;57(1):33–52. https://pubmed.ncbi.nlm.nih.gov/21845926/

1363

Huebbe P, Schloesser A, Rimbach G. A nutritional perspective on cellular rejuvenation. Oncotarget. 2015;6(16):13846–7. https://pubmed.ncbi.nlm.nih.gov/26116836/

1364

Sabatini DM. Twenty-five years of mTOR: uncovering the link from nutrients to growth. PNAS. 2017;114(45):11818–25. https://pubmed.ncbi.nlm.nih.gov/29078414/

1365

Blagosklonny MV. Does rapamycin slow down time? Oncotarget. 2018;9(54):30210–2. https://pubmed.ncbi.nlm.nih.gov/30100983/

1366

Wei Y, Zhang YJ, Cai Y. Growth or longevity: the TOR’s decision on lifespan regulation. Biogerontology. 2013;14(4):353–63. https://pubmed.ncbi.nlm.nih.gov/23740528/

1367

Swindell WR. Meta-analysis of 29 experiments evaluating the effects of rapamycin on life span in the laboratory mouse. J Gerontol A Biol Sci Med Sci. 2017;72(8):1024–32. https://pubmed.ncbi.nlm.nih.gov/27519886/

1368

Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/

1369

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/

1370

Sharp ZD, Strong R. The role of mTOR signaling in controlling mammalian life span: what a fungicide teaches us about longevity. J Gerontol A Biol Sci Med Sci. 2010;65A(6):580–9. https://pubmed.ncbi.nlm.nih.gov/20083554/

1371

Kaeberlein M, Kennedy BK. A midlife longevity drug? Nature. 2009;460(7253):331–2. https://pubmed.ncbi.nlm.nih.gov/19606132/

1372

Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019;11(19):8048–67. https://pubmed.ncbi.nlm.nih.gov/31586989/

1373

Arriola Apelo SI, Lamming DW. Rapamycin: an inhibiTOR of aging emerges from the soil of Easter Island. J Gerontol A Biol Sci Med Sci. 2016;71(7):841–9. https://pubmed.ncbi.nlm.nih.gov/27208895/

1374

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1375

Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology. 2018;64(2):127–34. https://pubmed.ncbi.nlm.nih.gov/29190625/

1376

Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med. 2005;352(13):1317–23. https://pubmed.ncbi.nlm.nih.gov/15800227/

1377

Majumder S, Caccamo A, Medina DX, et al. Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1ß and enhancing NMDA signaling. Aging Cell. 2012;11(2):326–35. https://pubmed.ncbi.nlm.nih.gov/22212527/

1378

Wilkinson JE, Burmeister L, Brooks SV, et al. Rapamycin slows aging in mice. Aging Cell. 2012;11(4):675–82. https://pubmed.ncbi.nlm.nih.gov/22587563/

1379

An JY, Kerns KA, Ouellette A, et al. Rapamycin rejuvenates oral health in aging mice. Elife. 2020;9:e54318. https://pubmed.ncbi.nlm.nih.gov/32342860/

1380

Altschuler RA, Kanicki A, Martin C, Kohrman DC, Miller RA. Rapamycin but not acarbose decreases age-related loss of outer hair cells in the mouse cochlea. Hear Res. 2018;370:11–5. https://pubmed.ncbi.nlm.nih.gov/30245283/

1381

Lesniewski LA, Seals DR, Walker AE, et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell. 2017;16(1):17–26. https://pubmed.ncbi.nlm.nih.gov/27660040/

1382

Zaseck LW, Miller RA, Brooks SV. Rapamycin attenuates age-associated changes in tibialis anterior tendon viscoelastic properties. J Gerontol A Biol Sci Med Sci. 2016;71(7):858–65. https://pubmed.ncbi.nlm.nih.gov/26809496/

1383

Dai DF, Karunadharma PP, Chiao YA, et al. Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell. 2014;13(3):529–39. https://pubmed.ncbi.nlm.nih.gov/24612461/

1384

Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent administration of rapamycin extends the life span of female C57BL/6J mice. J Gerontol A Biol Sci Med Sci. 2016;71(7):876–81. https://pubmed.ncbi.nlm.nih.gov/27091134/

1385

Bitto A, Ito TK, Pineda VV, et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. Elife. 2016;5:e16351. https://pubmed.ncbi.nlm.nih.gov/27549339/

1386

Urfer SR, Kaeberlein TL, Mailheau S, et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience. 2017;39(2):117–27. https://pubmed.ncbi.nlm.nih.gov/28374166/

1387

González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020;31(3):472–92. https://pubmed.ncbi.nlm.nih.gov/32130880/

1388

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1389

Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA. 2004;291(10):1226–30. https://pubmed.ncbi.nlm.nih.gov/15010444/

1390

Wazir U, Newbold RF, Jiang WG, Sharma AK, Mokbel K. Prognostic and therapeutic implications of mTORC1 and Rictor expression in human breast cancer. Oncol Rep. 2013;29(5):1969–74. https://pubmed.ncbi.nlm.nih.gov/23503572/

1391

Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31. https://pubmed.ncbi.nlm.nih.gov/21727255/

1392

Dar BA, Dar MA, Bashir S. Calorie restriction the fountain of youth. Food Nutr Sci. 2012;3(11):1522–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=24485

1393

Dirks AJ, Leeuwenburgh C. Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev. 2006;127(1):1–7. https://pubmed.ncbi.nlm.nih.gov/16226298/

1394

Bourzac K. Interventions: live long and prosper. Nature. 2012;492(7427):S18–20. https://pubmed.ncbi.nlm.nih.gov/23222670/

1395

Nakagawa S, Lagisz M, Hector KL, Spencer HG. Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell. 2012;11(3):401–9. https://pubmed.ncbi.nlm.nih.gov/22268691/

1396

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

1397

Ross MH. Length of life and nutrition in the rat. J Nutr. 1961;75:197–210. https://pubmed.ncbi.nlm.nih.gov/14494200/

1398

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1399

Fontana L, Partridge L, Longo VD. Extending healthy life span – from yeast to humans. Science. 2010;328(5976):321–6. https://pubmed.ncbi.nlm.nih.gov/20395504/

1400

Kitada M, Xu J, Ogura Y, Monno I, Koya D. Mechanism of activation of mechanistic target of rapamycin complex 1 by methionine. Front Cell Dev Biol. 2020;8:715. https://pubmed.ncbi.nlm.nih.gov/32850834/

1401

Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/

1402

Norton LE, Layman DK, Bunpo P, Anthony TG, Brana DV, Garlick PJ. The leucine content of a complete meal directs peak activation but not duration of skeletal muscle protein synthesis and mammalian target of rapamycin signaling in rats. J Nutr. 2009;139(6):1103–9. https://pubmed.ncbi.nlm.nih.gov/19403715/

1403

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

1404

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. Published online May 6, 2021:1–13. Accessed June 23, 2021.; https://pubmed.ncbi.nlm.nih.gov/33951994/

1405

Tantamango-Bartley Y, Jaceldo-Siegl K, Fan J, Fraser G. Vegetarian diets and the incidence of cancer in a low-risk population. Cancer Epidemiol Biomarkers Prev. 2013;22(2):286–94. https://pubmed.ncbi.nlm.nih.gov/23169929/

1406

Green CL, Lamming DW. Regulation of metabolic health by essential dietary amino acids. Mech Ageing Dev. 2019;177:186–200. https://pubmed.ncbi.nlm.nih.gov/30044947/

1407

Schmidt JA, Rinaldi S, Scalbert A, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306–12. https://pubmed.ncbi.nlm.nih.gov/26395436/

1408

Willcox BJ, Willcox DC, Todoriki H, et al. Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci. 2007;1114:434–55. https://pubmed.ncbi.nlm.nih.gov/17986602/

1409

Davinelli S, Willcox DC, Scapagnini G. Extending healthy ageing: nutrient sensitive pathway and centenarian population. Immun Ageing. 2012;9:9. https://pubmed.ncbi.nlm.nih.gov/22524452/

1410

Fraser GE, Shavlik DJ. Ten years of life: is it a matter of choice? Arch Intern Med. 2001;161(13):1645–52. https://pubmed.ncbi.nlm.nih.gov/11434797/

1411

Yasuda M, Tanaka Y, Kume S, et al. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta. 2014;1842(7):1097–108. https://pubmed.ncbi.nlm.nih.gov/24726883/

1412

Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta-analysis. Br J Nutr. 2013;109(5):785–94. https://pubmed.ncbi.nlm.nih.gov/23298782/

1413

Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J. 2017;31(2):598–609. https://pubmed.ncbi.nlm.nih.gov/28148781/

1414

Dumas SN, Lamming DW. Next generation strategies for geroprotection via mTORC1 inhibition. J Gerontol A Biol Sci Med Sci. 2020;75(1):14–23. https://pubmed.ncbi.nlm.nih.gov/30794726/

1415

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1416

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1417

Moro T, Brightwell CR, Velarde B, et al. Whey protein hydrolysate increases amino acid uptake, mTORC1 signaling, and protein synthesis in skeletal muscle of healthy young men in a randomized crossover trial. J Nutr. 2019;149(7):1149–58. https://pubmed.ncbi.nlm.nih.gov/31095313/

1418

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1419

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1420

Melnik BC. Milk – a nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 2015;16(8):17048–87. https://pubmed.ncbi.nlm.nih.gov/26225961/

1421

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1422

Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013;12:103. https://pubmed.ncbi.nlm.nih.gov/23883112/

1423

Cordain L, Lindeberg S, Hurtado M, Hill K, Eaton SB, Brand-Miller J. Acne vulgaris: a disease of Western civilization. Arch Dermatol. 2002;138(12):1584–90. https://pubmed.ncbi.nlm.nih.gov/12472346/

1424

Danby FW. Acne and milk, the diet myth, and beyond. J Am Acad Dermatol. 2005;52(2):360–2. https://pubmed.ncbi.nlm.nih.gov/15692488/

1425

Aghasi M, Golzarand M, Shab-Bidar S, Aminianfar A, Omidian M, Taheri F. Dairy intake and acne development: a meta-analysis of observational studies. Clin Nutr. 2019;38(3):1067–75. https://pubmed.ncbi.nlm.nih.gov/29778512/

1426

Melnik BC. Linking diet to acne metabolomics, inflammation, and comedogenesis: an update. Clin Cosmet Investig Dermatol. 2015;8:371–88. https://pubmed.ncbi.nlm.nih.gov/26203267/

1427

Melnik BC. Lifetime impact of cow’s milk on overactivation of mTORC1: from fetal to childhood overgrowth, acne, diabetes, cancers, and neurodegeneration. Biomolecules. 2021;11(3):404. https://pubmed.ncbi.nlm.nih.gov/33803410/

1428

Melnik BC. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32. https://pubmed.ncbi.nlm.nih.gov/22870349/

1429

Baron JA, Weiderpass E, Newcomb PA, et al. Metabolic disorders and breast cancer risk (United States). Cancer Causes Control. 2001;12(10):875–80. https://pubmed.ncbi.nlm.nih.gov/11808705/

1430

Sutcliffe S, Giovannucci E, Isaacs WB, Willett WC, Platz EA. Acne and risk of prostate cancer. Int J Cancer. 2007;121(12):2688–92. https://pubmed.ncbi.nlm.nih.gov/17724724/

1431

Melnik BC, John SM, Carrera-Bastos P, Cordain L. The impact of cow’s milk-mediated mTORC1-signaling in the initiation and progression of prostate cancer. Nutr Metab (Lond). 2012;9(1):74. https://pubmed.ncbi.nlm.nih.gov/22891897/

1432

Sargsyan A, Dubasi HB. Milk consumption and prostate cancer: a systematic review. World J Mens Health. 2021;39(3):419–28. https://pubmed.ncbi.nlm.nih.gov/32777868/

1433

Pettersson A, Kasperzyk JL, Kenfield SA, et al. Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol Biomarkers Prev. 2012;21(3):428–36. https://pubmed.ncbi.nlm.nih.gov/22315365/

1434

Tognon G, Nilsson LM, Shungin D, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. Am J Clin Nutr. 2017;105(6):1502–11. https://pubmed.ncbi.nlm.nih.gov/28490510/

1435

Melnik BC, Schmitz G. Pasteurized non-fermented cow’s milk but not fermented milk is a promoter of mTORC1-driven aging and increased mortality. Ageing Res Rev. 2021;67:101270. https://pubmed.ncbi.nlm.nih.gov/33571703/

1436

Gao X, Jia H, Chen G, Li C, Hao M. Yogurt intake reduces all-cause and cardiovascular disease mortality: a meta-analysis of eight prospective cohort studies. Chin J Integr Med. 2020;26(6):462–8. https://pubmed.ncbi.nlm.nih.gov/31970674/

1437

Sahin K, Orhan C, Tuzcu M, et al. Tomato powder modulates NF-¿B, mTOR, and Nrf2 pathways during aging in healthy rats. J Aging Res. 2019;2019:1643243. https://pubmed.ncbi.nlm.nih.gov/30719353/

1438

Takeshima M, Ono M, Higuchi T, Chen C, Hara T, Nakano S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014;105(3):252–7. https://pubmed.ncbi.nlm.nih.gov/24397737/

1439

Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3’-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev. 2016;74(7):432–43. https://pubmed.ncbi.nlm.nih.gov/27261275/

1440

Du H, Zhang X, Zeng Y, et al. A novel phytochemical, DIM, inhibits proliferation, migration, invasion and TNF-a induced inflammatory cytokine production of synovial fibroblasts from rheumatoid arthritis patients by targeting MAPK and AKT/mTOR signal pathway. Front Immunol. 2019;10:1620. https://pubmed.ncbi.nlm.nih.gov/31396207/

1441

Zhang Y, Gilmour A, Ahn YH, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. Phytomedicine. 2021;86:153062. https://pubmed.ncbi.nlm.nih.gov/31409554/

1442

Li N, Wu X, Zhuang W, et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021;360:130145. https://pubmed.ncbi.nlm.nih.gov/34034049/

1443

Sato A. mTOR, a potential target to treat autism spectrum disorder. CNS Neurol Disord Drug Targets. 2016;15(5):533–43. https://pubmed.ncbi.nlm.nih.gov/27071790/

1444

Matusheski NV, Juvik JA, Jeffery EH. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry. 2004;65(9):1273–81. https://pubmed.ncbi.nlm.nih.gov/15184012/

1445

Singh K, Connors SL, Macklin EA, et al. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014;111(43):15550–5. https://pubmed.ncbi.nlm.nih.gov/25313065/

1446

Wanke V, Cameroni E, Uotila A, et al. Caffeine extends yeast lifespan by targeting TORC1. Mol Microbiol. 2008;69(1):277–85. https://pubmed.ncbi.nlm.nih.gov/18513215/

1447

Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition. 2017;38:1–8. https://pubmed.ncbi.nlm.nih.gov/28526373/

1448

Van Aller GS, Carson JD, Tang W, et al. Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun. 2011;406(2):194–9. https://pubmed.ncbi.nlm.nih.gov/21300025/

1449

Elsaie ML, Abdelhamid MF, Elsaaiee LT, Emam HM. The efficacy of topical 2 % green tea lotion in mild-to-moderate acne vulgaris. J Drugs Dermatol. 2009;8(4):358–64. https://pubmed.ncbi.nlm.nih.gov/19363854/

1450

Cassidy A, Chung M, Zhao N, et al. Dose – response relation between tea consumption and risk of cardiovascular disease and all-cause mortality: a systematic review and meta-analysis of population-based studies. Adv Nutr. 2020;11(4):790–814. https://pubmed.ncbi.nlm.nih.gov/32073596/

1451

Lamming DW. Inhibition of the mechanistic target of rapamycin (mTOR) – rapamycin and beyond. Cold Spring Harb Perspect Med. 2016;6(5). https://pubmed.ncbi.nlm.nih.gov/27048303/

1452

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1453

Morley JE. The mTOR conundrum: essential for muscle function, but dangerous for survival. J Am Med Dir Assoc. 2016;17(11):963–6. https://pubmed.ncbi.nlm.nih.gov/27780571/

1454

Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY). 2010;2(5):265–73. https://pubmed.ncbi.nlm.nih.gov/20519781/

1455

Markofski MM, Dickinson JM, Drummond MJ, et al. Effect of age on basal muscle protein synthesis and mTORC1 signaling in a large cohort of young and older men and women. Exp Gerontol. 2015;65:1–7. https://pubmed.ncbi.nlm.nih.gov/25735236/

1456

Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–6. https://pubmed.ncbi.nlm.nih.gov/21525248/

1457

Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75. https://pubmed.ncbi.nlm.nih.gov/19321567/

1458

Tang H, Shrager JB, Goldman D. Rapamycin protects aging muscle. Aging (Albany NY). 2019;11(16):5868–70. https://pubmed.ncbi.nlm.nih.gov/31454792/

1459

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1460

Kennedy BK, Lamming DW. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging. Cell Metab. 2016;23(6):990–1003. https://pubmed.ncbi.nlm.nih.gov/27304501/

1461

Тор (Tor) – в германо-скандинавской мифологии бог грома и молний, защищающий богов и людей от великанов и чудовищ с помощью боевого молота (hammer). – Примеч. ред.

1462

Lamming DW, Salmon AB. TORwards a victory over aging. J Gerontol A Biol Sci Med Sci. 2020;75(1):1–3. https://pubmed.ncbi.nlm.nih.gov/31544928/

1463

Caldana C, Martins MCM, Mubeen U, Urrea-Castellanos R. The magic “hammer” of TOR: the multiple faces of a single pathway in the metabolic regulation of plant growth and development. J Exp Bot. 2019;70(8):2217–25. https://pubmed.ncbi.nlm.nih.gov/30722050/

1464

Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/

1465

Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11(476):eaar4289. https://pubmed.ncbi.nlm.nih.gov/30674654/

1466

Kapahi P, Chen D, Rogers AN, et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 2010;11(6):453–65. https://pubmed.ncbi.nlm.nih.gov/20519118/

1467

Sansevero TB. The Profit Machine. Cultiva Libros; 2009.

1468

Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20(4):145–7. https://pubmed.ncbi.nlm.nih.gov/5016631/

1469

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1470

Liebman SE, Le TH. Eat your broccoli: oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients. 2021;13(1):266. https://pubmed.ncbi.nlm.nih.gov/33477669/

1471

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1472

Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–92. https://pubmed.ncbi.nlm.nih.gov/20471444/

1473

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1474

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89. https://pubmed.ncbi.nlm.nih.gov/25906193/

1475

Logan S, Royce GH, Owen D, et al. Accelerated decline in cognition in a mouse model of increased oxidative stress. GeroScience. 2019;41(5):591–607. https://pubmed.ncbi.nlm.nih.gov/31641924/

1476

Hensley K, Floyd RA. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83. https://pubmed.ncbi.nlm.nih.gov/11795897/

1477

Yeung AWK, Tzvetkov NT, El-Tawil OS, Bungau SG, Abdel-Daim MM, Atanasov AG. Antioxidants: scientific literature landscape analysis. Oxid Med Cell Longev. 2019;2019:8278454. https://pubmed.ncbi.nlm.nih.gov/30728893/

1478

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

1479

Medvedev ZA. An attempt at a rational classification of theories of ageing. Biol Rev. 1990;65(3):375–98. https://pubmed.ncbi.nlm.nih.gov/2205304/

1480

Fusco D, Colloca G, Lo Monaco MR, Cesari M. Effects of antioxidant supplementation on the aging process. Clin Interv Aging. 2007;2(3):377–87. https://pubmed.ncbi.nlm.nih.gov/18044188/

1481

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1482

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1483

Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11(3):298–300. https://pubmed.ncbi.nlm.nih.gov/13332224/

1484

Biesalski HK. Free radical theory of aging. Curr Opin Clin Nutr Metab Care. 2002;5(1):5–10. https://pubmed.ncbi.nlm.nih.gov/11790942/

1485

Keane M, Semeiks J, Webb AE, et al. Insights into the evolution of longevity from the bowhead whale genome. Cell Rep. 2015;10(1):112–22. https://pubmed.ncbi.nlm.nih.gov/25565328/

1486

.

1487

Butler PG, Wanamaker AD Jr, Scourse JD, Richardson CA, Reynolds DJ. Variability of marine climate on the North Icelandic shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2013;373:141–51. https://www.sciencedirect.com/science/article/abs/pii/S0031018212000302?via%3Dihub

1488

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1489

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1490

Capt C, Passamonti M, Breton S. The human mitochondrial genome may code for more than 13 proteins. Mitochondrial DNA Part A. 2016;27(5):3098–101. https://pubmed.ncbi.nlm.nih.gov/25630734/

1491

Willyard C. New human gene tally reignites debate. Nature. 2018;558(7710):354–5. https://pubmed.ncbi.nlm.nih.gov/29921859/

1492

Venditti P, Masullo P, Di Meo S. Effect of training on H2O2 release by mitochondria from rat skeletal muscle. Arch Biochem Biophys. 1999;372(2):315–20. https://pubmed.ncbi.nlm.nih.gov/10600170/

1493

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1494

Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R. Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev. 2005;126(10):1106–14. https://pubmed.ncbi.nlm.nih.gov/15955547/

1495

Gomez J, Sanchez-Roman I, Gomez A, et al. Methionine and homocysteine modulate the rate of ROS generation of isolated mitochondria in vitro. J Bioenerg Biomembr. 2011;43(4):377–86. https://pubmed.ncbi.nlm.nih.gov/21748404/

1496

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1497

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1498

Sanz A, Stefanatos RKA. The mitochondrial free radical theory of aging: a critical view. Curr Aging Sci. 2008;1(1):10–21. https://pubmed.ncbi.nlm.nih.gov/20021368/

1499

Sanz A, Caro P, Ayala V, Portero-Otin M, Pamplona R, Barja G. Methionine restriction decreases mitochondrial oxygen radical generation and leak as well as oxidative damage to mitochondrial DNA and proteins. FASEB J. 2006;20(8):1064–73. https://pubmed.ncbi.nlm.nih.gov/16770005/

1500

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1501

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1502

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1503

What we eat in America, NHANES 2017–2018. Agricultural Research Service, United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/tables_1–36%20and%2041–56_2017–2018.pdf. Published 2020. Accessed July 6, 2021.; https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/1718/wweia_2017_2018_data.pdf

1504

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1505

Fontana L, Cummings NE, Arriola Apelo SI, et al. Decreased consumption of branched-chain amino acids improves metabolic health. Cell Rep. 2016;16(2):520–30. https://pubmed.ncbi.nlm.nih.gov/27346343/

1506

Barja G. The mitochondrial free radical theory of aging. Prog Mol Biol Transl Sci. 2014;127:1–27. https://pubmed.ncbi.nlm.nih.gov/25149212/

1507

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

1508

Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13(2):217–20. https://pubmed.ncbi.nlm.nih.gov/15228991/

1509

Buettner D. The Blue Zones: 9 Lessons for Living Longer from the People Who’ve Lived the Longest. 2nd ed. National Geographic Books; 2012. https://www.worldcat.org/title/777659970

1510

McCarty MF, Barroso-Aranda J, Contreras F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med Hypotheses. 2009;72(2):125–8. https://pubmed.ncbi.nlm.nih.gov/18789600/

1511

Scudellari M. Myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1512

Stuart JA, Maddalena LA, Merilovich M, Robb EL. A midlife crisis for the mitochondrial free radical theory of aging. Longev Healthspan. 2014;3(1):4. https://pubmed.ncbi.nlm.nih.gov/24690218/

1513

Golubev A, Hanson AD, Gladyshev VN. A tale of two concepts: harmonizing the free radical and antagonistic pleiotropy theories of aging. Antioxid Redox Signal. 2018;29(10):1003–17. https://pubmed.ncbi.nlm.nih.gov/28874059/

1514

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements and mortality. Curr Opin Clin Nutr Metab Care. 2014;17(1):40–4. https://pubmed.ncbi.nlm.nih.gov/24241129/

1515

Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet. 2004;364(9441):1219–28. https://pubmed.ncbi.nlm.nih.gov/15464182/

1516

Serafini M, Jakszyn P, Luján-Barroso L, et al. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer. 2012;131(4):E544–54. https://pubmed.ncbi.nlm.nih.gov/22072493/

1517

Jacobs DR, Tapsell LC. Food synergy: the key to a healthy diet. Proc Nutr Soc. 2013;72(2):200–6. https://pubmed.ncbi.nlm.nih.gov/23312372/

1518

Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int. 2018;105:76–93. https://pubmed.ncbi.nlm.nih.gov/29433271/

1519

Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420–45. https://pubmed.ncbi.nlm.nih.gov/23642158/

1520

Chial H, Craig J. mtDNA and mitochondrial diseases. Nature Education. 2008;1(1):217. https://www.nature.com/scitable/topicpage/mtdna-and-mitochondrial-diseases-903/

1521

Tubbs A, Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644–56. https://pubmed.ncbi.nlm.nih.gov/28187286/

1522

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1523

Soares JP, Cortinhas A, Bento T, et al. Aging and DNA damage in humans: a meta-analysis study. Aging (Albany NY). 2014;6(6):432–9. https://pubmed.ncbi.nlm.nih.gov/25140379/

1524

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1525

Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis. 2020;41(12):1625–34. https://pubmed.ncbi.nlm.nih.gov/33146705/

1526

Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. DNA damage – how and why we age? Elife. 2021;10:e62852. https://pubmed.ncbi.nlm.nih.gov/33512317/

1527

Liochev SI. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid Redox Signal. 2015;23(3):187–207. https://pubmed.ncbi.nlm.nih.gov/24949668/

1528

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1529

Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://pubmed.ncbi.nlm.nih.gov/29731617/

1530

Belenguer-Varea Á, Tarazona-Santabalbina FJ, Avellana-Zaragoza JA, Martínez-Reig M, Mas-Bargues C, Inglés M. Oxidative stress and exceptional human longevity: systematic review. Free Radic Biol Med. 2020;149:51–63. https://pubmed.ncbi.nlm.nih.gov/31550529/

1531

Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010;48(5):642–55. https://pubmed.ncbi.nlm.nih.gov/20036736/

1532

Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med. 2014;71:368–78. https://pubmed.ncbi.nlm.nih.gov/24704971/

1533

Cannon G. Nutritional science for this century. Public Health Nutr. 2005;8(4):344–7. https://pubmed.ncbi.nlm.nih.gov/15975178/

1534

Andrews P. Last common ancestor of apes and humans: morphology and environment. FPR. 2020;91(2):122–48. https://pubmed.ncbi.nlm.nih.gov/31533109/

1535

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1536

Milton K. Back to basics: why foods of wild primates have relevance for modern human health. Nutrition. 2000;16(7–8):480–3. https://pubmed.ncbi.nlm.nih.gov/10906529/

1537

Milton K. Hunter-gatherer diets: a different perspective. Am J Clin Nutr. 2000;71(3):665–7. https://pubmed.ncbi.nlm.nih.gov/10702155/

1538

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1539

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1540

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1541

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1542

Milton K. Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us? Nutrition. 1999;15(6):488–98. https://pubmed.ncbi.nlm.nih.gov/10378206/

1543

Milton K. Micronutrient intakes of wild primates: are humans different? Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):47–59. https://pubmed.ncbi.nlm.nih.gov/14527629/

1544

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1545

Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: focus on oxidatively generated lesions. Free Radic Biol Med. 2017;107:110–24. https://pubmed.ncbi.nlm.nih.gov/28109890/

1546

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1547

Benzie IFF. Evolution of dietary antioxidants. Comp Biochem Physiol Part A Mol Integr Physiol. 2003;136(1):113–26. https://pubmed.ncbi.nlm.nih.gov/14527634/

1548

Coffey DS. Similarities of prostate and breast cancer: evolution, diet, and estrogens. Urology. 2001;57(4 Suppl 1):31–8. https://pubmed.ncbi.nlm.nih.gov/11295592/

1549

Jallinoja P, Niva M, Helakorpi S, Kahma N. Food choices, perceptions of healthiness, and eating motives of self-identified followers of a low-carbohydrate diet. Food Nutr Res. 2014;58:23552. https://pubmed.ncbi.nlm.nih.gov/25490960/

1550

Nestle M. Paleolithic diets: a sceptical view. Nutr Bull. 2000;25:43–7. https://nyuscholars.nyu.edu/en/publications/paleolithic-diets-a-sceptical-view

1551

Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev. 2020;64:101194. https://pubmed.ncbi.nlm.nih.gov/33091597/

1552

Abbasalizad Farhangi M, Vajdi M. Dietary total antioxidant capacity (TAC) significantly reduces the risk of site-specific cancers: an updated systematic review and meta-analysis. Nutr Cancer. 2021;73(5):721–39. https://pubmed.ncbi.nlm.nih.gov/32462920/

1553

Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/

1554

Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/

1555

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1556

Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/

1557

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010 Jan 22;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1558

Bastin S, Henken K. Water content of fruits and vegetables. University of Kentucky College of Agriculture Cooperative Extension Service. https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables. Published December 1997. Accessed November 11, 2021.; https://www.academia.edu/5729963/Water_Content_of_Fruits_and_Vegetables

1559

Cao G, Prior RL. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin Chem. 1998;44(6 Pt 1):1309–15. https://pubmed.ncbi.nlm.nih.gov/9625058/

1560

Halliwell B. The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol. 2013;75(3):637–44. https://pubmed.ncbi.nlm.nih.gov/22420826/

1561

van Poppel G, Poulsen H, Loft S, Verhagen H. No influence of beta carotene on oxidative DNA damage in male smokers. J Natl Cancer Inst. 1995;87(4):310–1. https://pubmed.ncbi.nlm.nih.gov/7707423/

1562

Priemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2’-deoxyguanosine excretion in smokers. Am J Clin Nutr. 1997;65(2):503–7. https://pubmed.ncbi.nlm.nih.gov/9022536/

1563

Cao G, Booth SL, Sadowski JA, Prior RL. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am J Clin Nutr. 1998;68(5):1081–7. https://pubmed.ncbi.nlm.nih.gov/9808226/

1564

Johnson SA, Feresin RG, Navaei N, et al. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre-and stage 1-hypertension: a randomized controlled trial. Food Funct. 2017;8(1):372–80. https://pubmed.ncbi.nlm.nih.gov/28059417/

1565

Verhagen H, Poulsen HE, Loft S, van Poppel G, Willems MI, van Bladeren PJ. Reduction of oxidative DNA-damage in humans by brussels sprouts. Carcinogenesis. 1995;16(4):969–70. https://pubmed.ncbi.nlm.nih.gov/7728983/

1566

Jayedi A, Rashidy-Pour A, Parohan M, Zargar MS, Shab-Bidar S. Dietary antioxidants, circulating antioxidant concentrations, total antioxidant capacity, and risk of all-cause mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Adv Nutr. 2018;9(6):701–16. https://pubmed.ncbi.nlm.nih.gov/30239557/

1567

Ha K, Kim K, Sakaki JR, Chun OK. Relative validity of dietary total antioxidant capacity for predicting all-cause mortality in comparison to diet quality indexes in US adults. Nutrients. 2020;12(5):1210. https://pubmed.ncbi.nlm.nih.gov/32344879/

1568

Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/

1569

Yang M, Chung SJ, Chung CE, et al. Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. https://pubmed.ncbi.nlm.nih.gov/21320369/

1570

Bastide N, Dartois L, Dyevre V, et al. Dietary antioxidant capacity and all-cause and cause-specific mortality in the E3N/EPIC cohort study. Eur J Nutr. 2017;56(3):1233–43. https://pubmed.ncbi.nlm.nih.gov/26887577/

1571

Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–3. https://pubmed.ncbi.nlm.nih.gov/10946914/

1572

Prior RL, Gu L, Wu X, et al. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26(2):170–81. https://pubmed.ncbi.nlm.nih.gov/17536129/

1573

Darvin ME, Patzelt A, Knorr F, Blume-Peytavi U, Sterry W, Lademann J. One-year study on the variation of carotenoid antioxidant substances in living human skin: influence of dietary supplementation and stress factors. J Biomed Opt. 2008;13(4):044028. https://pubmed.ncbi.nlm.nih.gov/19021355/

1574

Blacker BC, Snyder SM, Eggett DL, Parker TL. Consumption of blueberries with a high-carbohydrate, low-fat breakfast decreases postprandial serum markers of oxidation. Br J Nutr. 2013;109(9):1670–7. https://pubmed.ncbi.nlm.nih.gov/22935321/

1575

Nair AR, Mariappan N, Stull AJ, Francis J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Food Funct. 2017;8(11):4118–28. https://pubmed.ncbi.nlm.nih.gov/29019365/

1576

Del Bó C, Riso P, Campolo J, et al. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res. 2013;33(3):220–7. https://pubmed.ncbi.nlm.nih.gov/29019365/

1577

Szeto YT, Chu WK, Benzie IFF. Antioxidants in fruits and vegetables: a study of cellular availability and direct effects on human DNA. Biosci Biotechnol Biochem. 2006;70(10):2551–5. https://pubmed.ncbi.nlm.nih.gov/17031063/

1578

López-Uriarte P, Nogués R, Saez G, et al. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29(3):373–80. https://pubmed.ncbi.nlm.nih.gov/20064680/

1579

Porrini M, Riso P. Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr. 2000;130(2):189–92. https://pubmed.ncbi.nlm.nih.gov/10720168/

1580

Porrini M, Riso P, Oriani G. Spinach and tomato consumption increases lymphocyte DNA resistance to oxidative stress but this is not related to cell carotenoid concentrations. Eur J Nutr. 2002;41(3):95–100. https://pubmed.ncbi.nlm.nih.gov/12111045/

1581

Frugé AD, Smith KS, Riviere AJ, et al. A dietary intervention high in green leafy vegetables reduces oxidative DNA damage in adults at increased risk of colorectal cancer: biological outcomes of the randomized controlled meat and three greens (M3G) feasibility trial. Nutrients. 2021;13(4):1220. https://pubmed.ncbi.nlm.nih.gov/33917165/

1582

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1583

Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/

1584

Fogarty MC, Hughes CM, Burke G, Brown JC, Davison GW. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation. Br J Nutr. 2013;109(2):293–301. https://pubmed.ncbi.nlm.nih.gov/22475430/

1585

Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/

1586

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1587

Szeto YT, To TL, Pak SC, Kalle W. A study of DNA protective effect of orange juice supplementation. Appl Physiol Nutr Metab. 2013;38(5):533–6. https://pubmed.ncbi.nlm.nih.gov/23668761/

1588

Guarnieri S, Riso P, Porrini M. Orange juice vs vitamin C: effect on hydrogen peroxide-induced DNA damage in mononuclear blood cells. Br J Nutr. 2007;97(4):639–43. https://pubmed.ncbi.nlm.nih.gov/17349075/

1589

Pool-Zobel BL, Bub A, Müller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first results of a human intervention trial with carotenoid-rich foods. Carcinogenesis. 1997;18(9):1847–50. https://pubmed.ncbi.nlm.nih.gov/9328185/

1590

Collins BH, Horská A, Hotten PM, Riddoch C, Collins AR. Kiwifruit protects against oxidative DNA damage in human cells and in vitro. Nutr Cancer. 2001;39(1):148–53. https://pubmed.ncbi.nlm.nih.gov/11588897/

1591

Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/

1592

Collins AR, Harrington V, Drew J, Melvin R. Nutritional modulation of DNA repair in a human intervention study. Carcinogenesis. 2003;24(3):511–5. https://pubmed.ncbi.nlm.nih.gov/12663512/

1593

Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/

1594

Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/

1595

Collins AR, Azqueta A, Langie SAS. Effects of micronutrients on DNA repair. Eur J Nutr. 2012;51(3):261–79. https://pubmed.ncbi.nlm.nih.gov/22362552/

1596

Astley SB, Elliott RM, Archer DB, Southon S. Evidence that dietary supplementation with carotenoids and carotenoid-rich foods modulates the DNA damage: repair balance in human lymphocytes. Br J Nutr. 2004;91(1):63–72. https://pubmed.ncbi.nlm.nih.gov/14748939/

1597

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

1598

Wang J, Deng N, Wang H, et al. Effects of orange extracts on longevity, healthspan, and stress resistance in Caenorhabditis elegans. Molecules. 2020;25(2):351. https://pubmed.ncbi.nlm.nih.gov/31952185/

1599

Wang E, Wink M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ. 2016;4:e1879. https://pubmed.ncbi.nlm.nih.gov/27077003/

1600

Salehi B, Azzini E, Zucca P, et al. Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl Sci. 2020;10(3):947. https://www.mdpi.com/2076-3417/10/3/947

1601

Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod. 2011;74(8):1713–20. https://pubmed.ncbi.nlm.nih.gov/21805983/

1602

Ferk F, Chakraborty A, Jäger W, et al. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments. Mutat Res. 2011;715(1–2):61–71. https://pubmed.ncbi.nlm.nih.gov/21827773/

1603

Ferk F, Kundi M, Brath H, et al. Gallic acid improves health-associated biochemical parameters and prevents oxidative damage of DNA in type 2 diabetes patients: results of a placebo-controlled pilot study. Mol Nutr Food Res. 2018;62(4). https://pubmed.ncbi.nlm.nih.gov/29193677/

1604

Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods. 2013;5(3):1236–43. https://pubmed.ncbi.nlm.nih.gov/23878618/

1605

Kampkötter A, Timpel C, Zurawski RF, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol. 2008;149(2):314–23. https://pubmed.ncbi.nlm.nih.gov/18024103/

1606

Shimizu C, Wakita Y, Inoue T, et al. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep. 2019;9(1):3671. https://pubmed.ncbi.nlm.nih.gov/30842523/

1607

Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/

1608

Chattopadhyay D, Thirumurugan K. Longevity promoting efficacies of different plant extracts in lower model organisms. Mech Ageing Dev. 2018;171:47–57. https://pubmed.ncbi.nlm.nih.gov/29526449/

1609

Bahadorani S, Hilliker AJ. Cocoa confers life span extension in Drosophila melanogaster. Nutr Res. 2008;28(6):377–82. https://pubmed.ncbi.nlm.nih.gov/19083435/

1610

Rawal S, Singh P, Gupta A, Mohanty S. Dietary intake of Curcuma longa and Emblica officinalis increases life span in Drosophila melanogaster. Biomed Res Int. 2014;2014:910290. https://pubmed.ncbi.nlm.nih.gov/24967413/

1611

Parohan M, Anjom-Shoae J, Nasiri M, Khodadost M, Khatibi SR, Sadeghi O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Nutr. 2019;58(6):2175–89. https://pubmed.ncbi.nlm.nih.gov/30756144/

1612

Percival SS, Vanden Heuvel JP, Nieves CJ, Montero C, Migliaccio AJ, Meadors J. Bioavailability of herbs and spices in humans as determined by ex vivo inflammatory suppression and DNA strand breaks. J Am Coll Nutr. 2012;31(4):288–94. https://pubmed.ncbi.nlm.nih.gov/23378457/

1613

Kapoor MP, Suzuki K, Derek T, Ozeki M, Okubo T. Clinical evaluation of Emblica Officinalis Gatertn (Amla) in healthy human subjects: health benefits and safety results from a randomized, double-blind, crossover placebo-controlled study. Contemp Clin Trials Commun. 2020;17:100499. https://pubmed.ncbi.nlm.nih.gov/31890983/

1614

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1615

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1616

Zhu C, Yan H, Zheng Y, Santos HO, Macit MS, Zhao K. Impact of cinnamon supplementation on cardiometabolic biomarkers of inflammation and oxidative stress: a systematic review and meta-analysis of randomized controlled trials. Complement Ther Med. 2020;53:102517. https://pubmed.ncbi.nlm.nih.gov/33066854/

1617

Ninfali P, Mea G, Giorgini S, Rocchi M, Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr. 2005;93(2):257–66. https://pubmed.ncbi.nlm.nih.gov/15788119/

1618

Morvaridzadeh M, Sadeghi E, Agah S, et al. Effect of ginger (Zingiber officinale) supplementation on oxidative stress parameters: a systematic review and meta-analysis. J Food Biochem. 2021;45(2):e13612. https://pubmed.ncbi.nlm.nih.gov/33458848/

1619

Askari M, Mozaffari H, Darooghegi Mofrad M, et al. Effects of garlic supplementation on oxidative stress and antioxidative capacity biomarkers: a systematic review and meta-analysis of randomized controlled trials. Phytother Res. 2021;35(6):3032–45. https://pubmed.ncbi.nlm.nih.gov/33484037/

1620

Carlsen MH, Halvorsen BL, Holte K, et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J. 2010;9:3. https://pubmed.ncbi.nlm.nih.gov/20096093/

1621

Mehrabani S, Arab A, Mohammadi H, Amani R. The effect of cocoa consumption on markers of oxidative stress: a systematic review and meta-analysis of interventional studies. Complement Ther Med. 2020;48:102240. https://pubmed.ncbi.nlm.nih.gov/31987247/

1622

Grassi D, Desideri G, Necozione S, et al. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens. 2015;33(2):294–303. https://pubmed.ncbi.nlm.nih.gov/25380152/

1623

Taubert D, Berkels R, Roesen R, Klaus W. Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. JAMA. 2003;290(8):1029–30. https://pubmed.ncbi.nlm.nih.gov/12941673/

1624

Carnevale R, Loffredo L, Pignatelli P, et al. Dark chocolate inhibits platelet isoprostanes via NOX2 down-regulation in smokers. J Thromb Haemost. 2012;10(1):125–32. https://pubmed.ncbi.nlm.nih.gov/22066819/

1625

Parsaeyan N, Mozaffari-Khosravi H, Absalan A, Mozayan MR. Beneficial effects of cocoa on lipid peroxidation and inflammatory markers in type 2 diabetic patients and investigation of probable interactions of cocoa active ingredients with prostaglandin synthase-2 (PTGS-2/COX-2) using virtual analysis. J Diabetes Metab Disord. 2014;13(1):30. https://pubmed.ncbi.nlm.nih.gov/24495354/

1626

Onuegbu AJ, Olisekodiaka JM, Irogue SE, et al. Consumption of soymilk reduces lipid peroxidation but may lower micronutrient status in apparently healthy individuals. J Med Food. 2018;21(5):506–10. https://pubmed.ncbi.nlm.nih.gov/29432056/

1627

Ballard KD, Mah E, Guo Y, Pei R, Volek JS, Bruno RS. Low-fat milk ingestion prevents postprandial hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic syndrome. J Nutr. 2013;143(10):1602–10. https://pubmed.ncbi.nlm.nih.gov/23966328/

1628

Dickinson KM, Clifton PM, Keogh JB. Endothelial function is impaired after a high-salt meal in healthy subjects. Am J Clin Nutr. 2011;93(3):500–5. https://pubmed.ncbi.nlm.nih.gov/21228265/

1629

Jablonski KL, Racine ML, Geolfos CJ, et al. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure. J Am Coll Cardiol. 2013;61(3):335–43. https://pubmed.ncbi.nlm.nih.gov/23141486/

1630

McCord JM. Analysis of superoxide dismutase activity. Curr Protoc Toxicol. 2001;Chapter 7:Unit 7.3. https://pubmed.ncbi.nlm.nih.gov/23045062/

1631

Chai SC, Davis K, Zhang Z, Zha L, Kirschner KF. Effects of tart cherry juice on biomarkers of inflammation and oxidative stress in older adults. Nutrients. 2019;11(2):228. https://pubmed.ncbi.nlm.nih.gov/30678193/

1632

Dourado GKZS, Cesar TB. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects. Food Nutr Res. 2015;59(1):28147. https://pubmed.ncbi.nlm.nih.gov/26490535/

1633

Shema-Didi L, Sela S, Ore L, et al. One year of pomegranate juice intake decreases oxidative stress, inflammation, and incidence of infections in hemodialysis patients: a randomized placebo-controlled trial. Free Radic Biol Med. 2012;53(2):297–304. https://pubmed.ncbi.nlm.nih.gov/22609423/

1634

Ghavipour M, Sotoudeh G, Ghorbani M. Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr. 2015;34(5):805–9. https://pubmed.ncbi.nlm.nih.gov/25466953/

1635

Shyam R, Singh SN, Vats P, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. J Altern Complement Med. 2007;13(8):789–91. https://pubmed.ncbi.nlm.nih.gov/17983333/

1636

Basu A, Betts NM, Ortiz J, Simmons B, Wu M, Lyons TJ. Low-calorie cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr Res. 2011;31(3):190–6. https://pubmed.ncbi.nlm.nih.gov/21481712/

1637

de Lima Tavares Toscano L, Silva AS, de França ACL, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr. 2020;59(7):2997–3007. https://pubmed.ncbi.nlm.nih.gov/31732851/

1638

Cao G, Russell RM, Lischner N, Prior RL. Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly women. J Nutr. 1998;128(12):2383–90. https://pubmed.ncbi.nlm.nih.gov/9868185/

1639

Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25(2):250–2. https://pubmed.ncbi.nlm.nih.gov/9667503/

1640

Caccetta RAA, Burke V, Mori TA, Beilin LJ, Puddey IB, Croft KD. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic Biol Med. 2001;30(6):636–42. https://pubmed.ncbi.nlm.nih.gov/11295361/

1641

Meagher EA, Barry OP, Burke A, et al. Alcohol-induced generation of lipid peroxidation products in humans. J Clin Invest. 1999;104(6):805–13. https://pubmed.ncbi.nlm.nih.gov/10491416/

1642

Xue KX, Wang S, Ma GJ, et al. Micronucleus formation in peripheral-blood lymphocytes from smokers and the influence of alcohol- and tea-drinking habits. Int J Cancer. 1992;50(5):702–5. https://pubmed.ncbi.nlm.nih.gov/1544703/

1643

Bloomer RJ, Trepanowski JF, Farney TM. Influence of acute coffee consumption on postprandial oxidative stress. Nutr Metab Insights. 2013;6:35–42. https://pubmed.ncbi.nlm.nih.gov/23935371/

1644

Takahashi M, Miyashita M, Suzuki K, et al. Acute ingestion of catechin-rich green tea improves postprandial glucose status and increases serum thioredoxin concentrations in postmenopausal women. Br J Nutr. 2014;112(9):1542–50. https://pubmed.ncbi.nlm.nih.gov/25230741/

1645

Leenen R, Roodenburg AJ, Tijburg LB, Wiseman SA. A single dose of tea with or without milk increases plasma antioxidant activity in humans. Eur J Clin Nutr. 2000;54(1):87–92. https://pubmed.ncbi.nlm.nih.gov/10694777/

1646

Rashidinejad A, Birch EJ, Sun-Waterhouse D, Everett DW. Addition of milk to tea infusions: helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Crit Rev Food Sci Nutr. 2017;57(15):3188–96. https://pubmed.ncbi.nlm.nih.gov/26517348/

1647

Ho CK, Choi SW, Siu PM, Benzie IFF. Effects of single dose and regular intake of green tea (Camellia sinensis) on DNA damage, DNA repair, and heme oxygenase-1 expression in a randomized controlled human supplementation study. Mol Nutr Food Res. 2014;58(6):1379–83. https://pubmed.ncbi.nlm.nih.gov/24585444/

1648

Han KC, Wong WC, Benzie IFF. Genoprotective effects of green tea (Camellia sinensis) in human subjects: results of a controlled supplementation trial. Br J Nutr. 2011;105(2):171–9. https://pubmed.ncbi.nlm.nih.gov/20807462/

1649

Dias TR, Alves MG, Tomás GD, Socorro S, Silva BM, Oliveira PF. White tea as a promising antioxidant medium additive for sperm storage at room temperature: a comparative study with green tea. J Agric Food Chem. 2014;62(3):608–17. https://pubmed.ncbi.nlm.nih.gov/24372402/

1650

Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis. 2015;30(1):129–37. https://pubmed.ncbi.nlm.nih.gov/25527735/

1651

Leaf DA, Kleinman MT, Hamilton M, Deitrick RW. The exercise-induced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci. 1999;317(5):295–300. https://pubmed.ncbi.nlm.nih.gov/10334116/

1652

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

1653

Vollaard NBJ, Shearman JP, Cooper CE. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Med. 2005;35(12):1045–62. https://pubmed.ncbi.nlm.nih.gov/16336008/

1654

Mastaloudis A, Yu TW, O’Donnell RP, Frei B, Dashwood RH, Traber MG. Endurance exercise results in DNA damage as detected by the comet assay. Free Radic Biol Med. 2004;36(8):966–75. https://pubmed.ncbi.nlm.nih.gov/15059637/

1655

Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med. 2009;8:1. https://pubmed.ncbi.nlm.nih.gov/19144121/

1656

Ristow M, Zarse K, Oberbach A, et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A. 2009;106(21):8665–70. https://pubmed.ncbi.nlm.nih.gov/19433800/

1657

Braakhuis AJ. Effect of vitamin C supplements on physical performance. Curr Sports Med Rep. 2012;11(4):180–4. https://pubmed.ncbi.nlm.nih.gov/22777327/

1658

Kashi DS, Shabir A, Da Boit M, Bailey SJ, Higgins MF. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients. 2019;11(10):E2389. https://pubmed.ncbi.nlm.nih.gov/31591287/

1659

Van der Avoort CMT, Van Loon LJC, Hopman MTE, Verdijk LB. Increasing vegetable intake to obtain the health promoting and ergogenic effects of dietary nitrate. Eur J Clin Nutr. 2018;72(11):1485–9. https://pubmed.ncbi.nlm.nih.gov/29559721/

1660

Trapp D, Knez W, Sinclair W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J Sports Sci. 2010;28(12):1261–8. https://pubmed.ncbi.nlm.nih.gov/20845212/

1661

Lyall KA, Hurst SM, Cooney J, et al. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am J Physiol Regul Integr Comp Physiol. 2009;297(1):R70–81. https://pubmed.ncbi.nlm.nih.gov/19403859/

1662

Funes L, Carrera-Quintanar L, Cerdán-Calero M, et al. Effect of lemon verbena supplementation on muscular damage markers, proinflammatory cytokines release and neutrophils’ oxidative stress in chronic exercise. Eur J Appl Physiol. 2011;111(4):695–705. https://pubmed.ncbi.nlm.nih.gov/20967458/

1663

Ghezzi P, Jaquet V, Marcucci F, Schmidt HHHW. The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol. 2017;174(12):1784–96. https://pubmed.ncbi.nlm.nih.gov/27425643/

1664

Scudellari M. The science myths that will not die. Nature. 2015;528(7582):322–5. https://pubmed.ncbi.nlm.nih.gov/26672537/

1665

Peng C, Wang X, Chen J, et al. Biology of ageing and role of dietary antioxidants. Biomed Res Int. 2014;2014:831841. https://pubmed.ncbi.nlm.nih.gov/24804252/

1666

Milisav I, Ribaric S, Poljsak B. Antioxidant vitamins and ageing. Subcell Biochem. 2018;90:1–23. https://pubmed.ncbi.nlm.nih.gov/30779004/

1667

Smejkal GB, Kakumanu S. Enzymes and their turnover numbers. Expert Rev Proteom. 2019;16(7):543–4. https://pubmed.ncbi.nlm.nih.gov/31220960/

1668

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1669

Zang H, Mathew RO, Cui T. The dark side of Nrf2 in the heart. Front Physiol. 2020;11:722. https://pubmed.ncbi.nlm.nih.gov/32733266/

1670

Brandes MS, Gray NE. NRF2 as a therapeutic target in neurodegenerative diseases. ASN Neuro. 2020;12:1759091419899782. https://pubmed.ncbi.nlm.nih.gov/31964153/

1671

Sharma V, Kaur A, Singh TG. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother. 2020;129:110373. https://pubmed.ncbi.nlm.nih.gov/32603894/

1672

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1673

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1674

Raghunath A, Sundarraj K, Nagarajan R, et al. Antioxidant response elements: discovery, classes, regulation and potential applications. Redox Biol. 2018;17:297–314. https://pubmed.ncbi.nlm.nih.gov/29775961/

1675

Ferguson LR, Schlothauer RC. The potential role of nutritional genomics tools in validating high health foods for cancer control: broccoli as example. Mol Nutr Food Res. 2012;56(1):126–46. https://pubmed.ncbi.nlm.nih.gov/22147677/

1676

Sun Y, Yang T, Leak RK, Chen J, Zhang F. Preventive and protective roles of dietary Nrf2 activators against central nervous system diseases. CNS Neurol Disord Drug Targets. 2017;16(3):326–38. https://pubmed.ncbi.nlm.nih.gov/28042770/

1677

Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. Semin Oncol. 2016;43(1):146–53. https://pubmed.ncbi.nlm.nih.gov/26970133/

1678

Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic Biol Med. 2020;159:87–102. https://pubmed.ncbi.nlm.nih.gov/32730855/

1679

Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol. 2010;50(5):829–43. https://pubmed.ncbi.nlm.nih.gov/21031035/

1680

Tullet JMA, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38. https://pubmed.ncbi.nlm.nih.gov/18358814/

1681

Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14(1):76–85. https://pubmed.ncbi.nlm.nih.gov/18194654/

1682

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1683

Yu C, Li Y, Holmes A, et al. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice. PLoS ONE. 2011;6(11):e26729. https://pubmed.ncbi.nlm.nih.gov/22073188/

1684

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1685

Andziak B, O’Connor TP, Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech Ageing Dev. 2005;126(11):1206–12. https://pubmed.ncbi.nlm.nih.gov/16087218/

1686

Lewis KN, Wason E, Edrey YH, Kristan DM, Nevo E, Buffenstein R. Regulation of Nrf2 signaling and longevity in naturally long-lived rodents. Proc Natl Acad Sci U S A. 2015;112(12):3722–7. https://pubmed.ncbi.nlm.nih.gov/25775529/

1687

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1688

Zhou L, Zhang H, Davies KJA, Forman HJ. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 2018;14:35–40. https://pubmed.ncbi.nlm.nih.gov/28863281/

1689

Mallard AR, Spathis JG, Coombes JS. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med. 2020;160:471–9. https://pubmed.ncbi.nlm.nih.gov/32871230/

1690

Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep. 2020;37(6):797–826. https://pubmed.ncbi.nlm.nih.gov/32400766/

1691

Su X, Jiang X, Meng L, Dong X, Shen Y, Xin Y. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid Med Cell Longev. 2018;2018:5438179. https://pubmed.ncbi.nlm.nih.gov/29977456/

1692

Bose C, Alves I, Singh P, et al. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell. 2020;19(11):e13261. https://pubmed.ncbi.nlm.nih.gov/33067900/

1693

Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7:14130. https://pubmed.ncbi.nlm.nih.gov/29074861/

1694

Yuan H, Xu Y, Luo Y, Wang NX, Xiao JH. Role of Nrf2 in cell senescence regulation. Mol Cell Biochem. 2021;476(1):247–59. https://pubmed.ncbi.nlm.nih.gov/32918185/

1695

Riso P, Martini D, Møller P, et al. DNA damage and repair activity after broccoli intake in young healthy smokers. Mutagenesis. 2010;25(6):595–602. https://pubmed.ncbi.nlm.nih.gov/20713433/

1696

Hoelzl C, Glatt H, Meinl W, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://pubmed.ncbi.nlm.nih.gov/18293303/

1697

Egner PA, Chen JG, Zarth AT, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. https://pubmed.ncbi.nlm.nih.gov/24913818/

1698

Heber D, Li Z, Garcia-Lloret M, et al. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles. Food Funct. 2014;5(1):35–41. https://pubmed.ncbi.nlm.nih.gov/24287881/

1699

Eagles SK, Gross AS, McLachlan AJ. The effects of cruciferous vegetable-enriched diets on drug metabolism: a systematic review and meta-analysis of dietary intervention trials in humans. Clin Pharmacol Ther. 2020;108(2):212–27. https://pubmed.ncbi.nlm.nih.gov/32086800/

1700

Knatko EV, Ibbotson SH, Zhang Y, et al. Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans. Cancer Prev Res (Phila). 2015;8(6):475–86. https://pubmed.ncbi.nlm.nih.gov/25804610/

1701

Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxid Med Cell Longev. 2016;2016:7857186. https://pubmed.ncbi.nlm.nih.gov/26881038/

1702

Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality – a systematic review and dose-response meta-analysis of prospective studies. Int J Epidemiol. 2017;46(3):1029–56. https://pubmed.ncbi.nlm.nih.gov/28338764/

1703

Mori N, Shimazu T, Charvat H, et al. Cruciferous vegetable intake and mortality in middle-aged adults: a prospective cohort study. Clin Nutr. 2019;38(2):631–43. https://pubmed.ncbi.nlm.nih.gov/29739681/

1704

Grünwald S, Stellzig J, Adam IV, et al. Longevity in the red flour beetle Tribolium castaneum is enhanced by broccoli and depends on nrf-2, jnk-1 and foxo-1 homologous genes. Genes Nutr. 2013;8(5):439–48. https://pubmed.ncbi.nlm.nih.gov/23321956/

1705

Hanschen FS. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020;321:126694. https://pubmed.ncbi.nlm.nih.gov/32244140/

1706

Hernández-Ruiz Á, García-Villanova B, Guerra-Hernández E, Amiano P, Ruiz-Canela M, Molina-Montes E. A review of a priori defined oxidative balance scores relative to their components and impact on health outcomes. Nutrients. 2019;11(4):774. https://pubmed.ncbi.nlm.nih.gov/30987200/

1707

Holland RD, Gehring T, Taylor J, Lake BG, Gooderham NJ, Turesky RJ. Formation of a mutagenic heterocyclic aromatic amine from creatinine in urine of meat eaters and vegetarians. Chem Res Toxicol. 2005;18(3):579–90. https://pubmed.ncbi.nlm.nih.gov/15777097/

1708

Carvalho AM, Miranda AM, Santos FA, Loureiro APM, Fisberg RM, Marchioni DM. High intake of heterocyclic amines from meat is associated with oxidative stress. Br J Nutr. 2015;113(8):1301–7. https://pubmed.ncbi.nlm.nih.gov/25812604/

1709

Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/

1710

Kanner J, Lapidot T. The stomach as a bioreactor: dietary lipid peroxidation in the gastric fluid and the effects of plant-derived antioxidants. Free Radic Biol Med. 2001;31(11):1388–95. https://pubmed.ncbi.nlm.nih.gov/11728810/

1711

Mohamed B, Mohamed I. The effects of residual blood of carcasses on poultry technological quality. Food Nutri Sci. 2012;03(10):1382–6. https://www.scirp.org/journal/paperinformation.aspx?paperid=23386

1712

Alvarado CZ, Richards MP, O’Keefe SF, Wang H. The effect of blood removal on oxidation and shelf life of broiler breast meat. Poult Sci. 2007;86(1):156–61. https://pubmed.ncbi.nlm.nih.gov/17179431/

1713

Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/

1714

Gorelik S, Kanner J, Schurr D, Kohen R. A rational approach to prevent postprandial modification of LDL by dietary polyphenols. J Funct Foods. 2013;5(1):163–9. https://www.sciencedirect.com/science/article/pii/S1756464612001466?via%3Dihub

1715

Jafari S, Hezaveh E, Jalilpiran Y, et al. Plant-based diets and risk of disease mortality: a systematic review and meta-analysis of cohort studies. Crit Rev Food Sci Nutr. https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628. Published May 6, 2021. Accessed July 10, 2021.; https://www.tandfonline.com/doi/full/10.1080/10408398.2021.1918628

1716

Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Curr Opin Lipidol. 2002;13(1):19–24. https://pubmed.ncbi.nlm.nih.gov/11790959/

1717

Edalati S, Bagherzadeh F, Asghari Jafarabadi M, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr. 2021;125(5):568–76. https://pubmed.ncbi.nlm.nih.gov/32513316/

1718

Macho-González A, Garcimartín A, López-Oliva ME, et al. Can meat and meat-products induce oxidative stress? Antioxidants (Basel). 2020;9(7):638. https://pubmed.ncbi.nlm.nih.gov/32698505/

1719

Aleksandrova K, Koelman L, Rodrigues CE. Dietary patterns and biomarkers of oxidative stress and inflammation: a systematic review of observational and intervention studies. Redox Biol. 2021;42:101869. https://pubmed.ncbi.nlm.nih.gov/33541846/

1720

Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal. 2010;13(10):1575–91. https://pubmed.ncbi.nlm.nih.gov/20222825/

1721

Burri BJ. Antioxidant status in vegetarians versus omnivores: a mechanism for longer life? Nutrition. 2000;16(2):149–50. https://pubmed.ncbi.nlm.nih.gov/10755825/

1722

Krajcovicová-Kudlácková M, Šimoncic R, Béderová A, Klvanová J, Brtková A, Grancicová E. Lipid and antioxidant blood levels in vegetarians. Nahrung. 1996;40(1):17–20. https://pubmed.ncbi.nlm.nih.gov/8975140/

1723

Kováciková Z, Cerhata D, Kadrabová J, Madaric A, Ginter E. Antioxidant status in vegetarians and nonvegetarians in Bratislava region (Slovakia). Z Ernahrungswiss. 1998;37(2):178–82. https://pubmed.ncbi.nlm.nih.gov/9698645/

1724

Nagyová A, Kudlácková M, Grancicová E, Magálová T. LDL oxidizability and antioxidative status of plasma in vegetarians. Ann Nutr Metab. 1998;42(6):328–32. https://pubmed.ncbi.nlm.nih.gov/9895420/

1725

Boanca MM, Colosi HA, Craciun EC. The impact of the lacto-ovo vegetarian diet on the erythrocyte superoxide dismutase activity: a study in the Romanian population. Eur J Clin Nutr. 2014;68(2):184–8. https://pubmed.ncbi.nlm.nih.gov/24105324/

1726

Krajcovicová-Kudlácková M, Valachovicová M, Pauková V, Dušinská M. Effects of diet and age on oxidative damage products in healthy subjects. Physiol Res. 2008;57(4):647–51. https://pubmed.ncbi.nlm.nih.gov/17705666/

1727

Somannavar MS, Kodliwadmath MV. Correlation between oxidative stress and antioxidant defence in South Indian urban vegetarians and non-vegetarians. Eur Rev Med Pharmacol Sci. 2012;16(3):351–4. https://pubmed.ncbi.nlm.nih.gov/22530352/

1728

Manjari V, Suresh Y, Sailaja Devi MM, Das UN. Oxidant stress, anti-oxidants and essential fatty acids in South Indian vegetarians and non-vegetarians. Prostaglandins Leukot Essent Fatty Acids. 2001;64(1):53–9. https://pubmed.ncbi.nlm.nih.gov/11161585/

1729

Kim MK, Cho SW, Park YK. Long-term vegetarians have low oxidative stress, body fat, and cholesterol levels. Nutr Res Pract. 2012;6(2):155–61. https://pubmed.ncbi.nlm.nih.gov/22586505/

1730

Szeto YT, Kwok TCY, Benzie IFF. Effects of a long-term vegetarian diet on biomarkers of antioxidant status and cardiovascular disease risk. Nutrition. 2004;20(10):863–6. https://pubmed.ncbi.nlm.nih.gov/15474873/

1731

Gajski G, Geric M, Vucic Lovrencic M, et al. Analysis of health-related biomarkers between vegetarians and non-vegetarians: a multi-biomarker approach. J Funct Foods. 2018;48:643–53. https://www.sciencedirect.com/science/article/abs/pii/S1756464618304109?via%3Dihub

1732

Poornima K, Cariappa M, Asha K, Kedilaya HP, Nandini M. Oxidant and antioxidant status in vegetarians and fish eaters. Indian J Clin Biochem. 2003;18(2):197–205. https://pubmed.ncbi.nlm.nih.gov/23105412/

1733

Krajcovicová-Kudlácková M, Šimoncic R, Babinská K, Béderová A. Levels of lipid peroxidation and antioxidants in vegetarians. Eur J Epidemiol. 1995;11(2):207–11. https://pubmed.ncbi.nlm.nih.gov/7672077/

1734

Nadimi H, Yousefinejad A, Djazayery A, Hosseini M, Hosseini S. Association of vegan diet with RMR, body composition and oxidative stress. Acta Sci Pol Technol Aliment. 2013;12(3):311–8. https://pubmed.ncbi.nlm.nih.gov/24584960/

1735

Herrmann W, Schorr H, Purschwitz K, Rassoul F, Richter V. Total homocysteine, vitamin B12, and total antioxidant status in vegetarians. Clin Chem. 2001;47(6):1094–101. https://pubmed.ncbi.nlm.nih.gov/11375297/

1736

van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;11(2):E482. https://pubmed.ncbi.nlm.nih.gov/30823595/

1737

Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr. 2014;68(5):541–8. https://pubmed.ncbi.nlm.nih.gov/24667752/

1738

Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/

1739

Wellington CL, Frikke-Schmidt R. Relation between plasma and brain lipids. Curr Opin Lipidol. 2016;27(3):225–32. https://pubmed.ncbi.nlm.nih.gov/27149391/

1740

Poli G, Biasi F, Leonarduzzi G. Oxysterols in the pathogenesis of major chronic diseases. Redox Biol. 2013;1:125–30. https://pubmed.ncbi.nlm.nih.gov/24024145/

1741

Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G. Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci. 2015;7. https://pubmed.ncbi.nlm.nih.gov/26150787/

1742

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1743

Iuliano L, Micheletta F, Natoli S, et al. Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem. 2003;312(2):217–23. https://pubmed.ncbi.nlm.nih.gov/12531208/

1744

Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/

1745

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1746

Zarrouk A, Vejux A, Mackrill J, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–62. https://pubmed.ncbi.nlm.nih.gov/25305550/

1747

Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/

1748

Si R, Qu K, Jiang Z, Yang X, Gao P. Egg consumption and breast cancer risk: a meta-analysis. Breast Cancer. 2014;21(3):251–61. https://pubmed.ncbi.nlm.nih.gov/24504557/

1749

Li C, Yang L, Zhang D, Jiang W. Systematic review and meta-analysis suggest that dietary cholesterol intake increases risk of breast cancer. Nutr Res. 2016;36(7):627–35. https://pubmed.ncbi.nlm.nih.gov/27333953/

1750

Asghari A, Umetani M. Obesity and cancer: 27-hydroxycholesterol, the missing link. Int J Mol Sci. 2020;21(14):4822. https://pubmed.ncbi.nlm.nih.gov/32650428/

1751

Nelson ER, Chang C, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol & Metab. 2014;25(12):649–55. https://pubmed.ncbi.nlm.nih.gov/25458418/

1752

Kaiser J. Cholesterol forges link between obesity and breast cancer. Science. 2013;342(6162):1028. https://pubmed.ncbi.nlm.nih.gov/24288308/

1753

Staprans I, Pan XM, Rapp JH, Feingold KR. Oxidized cholesterol in the diet is a source of oxidized lipoproteins in human serum. J Lipid Res. 2003;44(4):705–15. https://pubmed.ncbi.nlm.nih.gov/12562864/

1754

Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x

1755

Natella F, Macone A, Ramberti A, et al. Red wine prevents the postprandial increase in plasma cholesterol oxidation products: a pilot study. Br J Nutr. 2011;105(12):1718–23. https://pubmed.ncbi.nlm.nih.gov/21294933/

1756

Lordan S, Mackrill JJ, O’Brien NM. Oxysterols and mechanisms of apoptotic signaling: implications in the pathology of degenerative diseases. J Nutr Biochem. 2009;20(5):321–36. https://pubmed.ncbi.nlm.nih.gov/19345313/

1757

Emanuel HA, Hassel CA, Addis PB, Bergmann SD, Zavoral JH. Plasma cholesterol oxidation products (oxysterols) in human subjects fed a meal rich in oxysterols. J Food Sci. 1991;56(3):843–7. https://ift.onlinelibrary.wiley.com/doi/10.1111/j.1365–2621.1991.tb05396.x

1758

Khan MI, Min JS, Lee SO, et al. Cooking, storage, and reheating effect on the formation of cholesterol oxidation products in processed meat products. Lipids Health Dis. 2015;14:89. https://pubmed.ncbi.nlm.nih.gov/26260472/

1759

Min JS, Lee SO, Khan MI, et al. Monitoring the formation of cholesterol oxidation products in model systems using response surface methodology. Lipids Health Dis. 2015;14:77. https://pubmed.ncbi.nlm.nih.gov/26201850/

1760

Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products

1761

Echarte M, Ansorena D, Astiasarán I. Consequences of microwave heating and frying on the lipid fraction of chicken and beef patties. J Agric Food Chem. 2003;51(20):5941–5. https://pubmed.ncbi.nlm.nih.gov/13129298/

1762

Hur SJ, Park GB, Joo ST. Formation of cholesterol oxidation products (COPs) in animal products. Food Control. 2007;18(8):939–47. https://www.researchgate.net/publication/248511669_Formation_of_cholesterol_oxidation_products_COPS_in_animal_products

1763

Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol. 2018;118:908–39. https://pubmed.ncbi.nlm.nih.gov/29940280/

1764

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1765

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1766

Otaegui-Arrazola A, Menéndez-Carreño M, Ansorena D, Astiasarán I. Oxysterols: a world to explore. Food Chem Toxicol. 2010;48(12):3289–303. https://pubmed.ncbi.nlm.nih.gov/20870006/

1767

Savage GP, Dutta PC, Rodriguez-Estrada MT. Cholesterol oxides: their occurrence and methods to prevent their generation in foods. Asia Pac J Clin Nutr. 2002;11(1):72–8. https://pubmed.ncbi.nlm.nih.gov/11890642/

1768

Jacobson MS. Cholesterol oxides in Indian ghee: possible cause of unexplained high risk of atherosclerosis in Indian immigrant populations. Lancet. 1987;2(8560):656–8. https://pubmed.ncbi.nlm.nih.gov/2887943/

1769

Raheja BS. Ghee, cholesterol, and heart disease. Lancet. 1987;2(8568):1144–5. https://pubmed.ncbi.nlm.nih.gov/2890036/

1770

Connor JM. Global Price Fixing. 2nd ed. Springer-Verlag; 2008. https://worldcat.org/title/238586901

1771

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013;310(11):1178–9. https://pubmed.ncbi.nlm.nih.gov/24045742/

1772

Sadowska-Bartosz I, Bartosz G. Effect of antioxidants supplementation on aging and longevity. Biomed Res Int. 2014;2014:404680. https://pubmed.ncbi.nlm.nih.gov/24783202/

1773

Bast A, Haenen GRMM. Ten misconceptions about antioxidants. Trends Pharmacol Sci. 2013;34(8):430–6. https://pubmed.ncbi.nlm.nih.gov/23806765/

1774

Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract. 2020;74(6):e13493. https://pubmed.ncbi.nlm.nih.gov/32091656/

1775

de Barcelos IP, Haas RH. CoQ10 and aging. Biology (Basel). 2019;8(2):28. https://pubmed.ncbi.nlm.nih.gov/31083534/

1776

Raizner AE, Quiñones MA. Coenzyme Q10 for patients with cardiovascular disease: JAAC Focus Seminar. J Am Coll Cardiol. 2021;77(5):609–19. https://pubmed.ncbi.nlm.nih.gov/33538259/

1777

Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/

1778

Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr. 2018;63(2):129–36. https://pubmed.ncbi.nlm.nih.gov/30279624/

1779

Varela-López A, Giampieri F, Battino M, Quiles JL. Coenzyme Q and its role in the dietary therapy against aging. Molecules. 2016;21(3):373. https://pubmed.ncbi.nlm.nih.gov/26999099/

1780

Asencio C, Rodríguez-Aguilera JC, Ruiz-Ferrer M, Vela J, Navas P. Silencing of ubiquinone biosynthesis genes extends life span in Caenorhabditis elegans. FASEB J. 2003;17(9):1135–7. https://pubmed.ncbi.nlm.nih.gov/12709403/

1781

Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, et al. The paradox of coenzyme Q10 in aging. Nutrients. 2019;11(9):E2221. https://pubmed.ncbi.nlm.nih.gov/31540029/

1782

Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128–36. https://pubmed.ncbi.nlm.nih.gov/28179205/

1783

Akbari A, Mobini GR, Agah S, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020;76(11):1483–99. https://pubmed.ncbi.nlm.nih.gov/32583356/

1784

Jafari M, Mousavi SM, Asgharzadeh A, Yazdani N. Coenzyme Q10 in the treatment of heart failure: a systematic review of systematic reviews. Indian Heart J. 2018;70(Suppl 1):S111–7. https://pubmed.ncbi.nlm.nih.gov/30122240/

1785

Sazali S, Badrin S, Norhayati MN, Idris NS. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine – a meta-analysis. BMJ Open. 2021;11(1):e039358. https://pubmed.ncbi.nlm.nih.gov/33402403/

1786

Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574–94. https://pubmed.ncbi.nlm.nih.gov/33325173/

1787

Qu J, Ma L, Zhang J, Jockusch S, Washington I. Dietary chlorophyll metabolites catalyze the photoreduction of plasma ubiquinone. Photochem Photobiol. 2013;89(2):310–3. https://pubmed.ncbi.nlm.nih.gov/22928808/

1788

Littarru GP, Langsjoen P. Coenzyme Q10 and statins: biochemical and clinical implications. Mitochondrion. 2007;7S:S168–74. https://pubmed.ncbi.nlm.nih.gov/17482884/

1789

Lee TK, Johnke RM, Allison RR, O’Brien KF, Dobbs LJ. Radioprotective potential of ginseng. Mutagenesis. 2005;20(4):237–43. https://pubmed.ncbi.nlm.nih.gov/15956041/

1790

Fan S, Zhang Z, Su H, et al. Panax ginseng clinical trials: current status and future perspectives. Biomed Pharmacother. 2020;132:110832. https://pubmed.ncbi.nlm.nih.gov/33059260/

1791

Shergis JL, Zhang AL, Zhou W, Xue CC. Panax ginseng in randomised controlled trials: a systematic review. Phytother Res. 2013;27(7):949–65. https://pubmed.ncbi.nlm.nih.gov/22969004/

1792

Gui QF, Xu ZR, Xu KY, Yang YM. The efficacy of ginseng-related therapies in type 2 diabetes mellitus: an updated systematic review and meta-analysis. Medicine. 2016;95(6):e2584. https://pubmed.ncbi.nlm.nih.gov/26871778/

1793

Szeto YT, Sin YSP, Pak SC, Kalle W. American ginseng tea protects cellular DNA within 2¿h from consumption: results of a pilot study in healthy human volunteers. Int J Food Sci Nutr. 2015;66(7):815–8. https://pubmed.ncbi.nlm.nih.gov/26393910/

1794

Szeto YT, Lee LKY. Rapid but mild genoprotective effect on lymphocytic DNA with Panax notoginseng extract supplementation. J Intercult Ethnopharmacol. 2014;3(4):155–8. https://pubmed.ncbi.nlm.nih.gov/26401366/

1795

Szeto YT, Ko AW. Acute genoprotective effects on lymphocytic DNA with ginseng extract supplementation. J Aging Res Clin Practice. 2013;2(2):174–7. https://www.researchgate.net/publication/244990213_Acute_genoprotective_effects_on_lymphocytic_DNA_with_ginseng_extract_supplementation

1796

Kim HG, Yoo SR, Park HJ, et al. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol. 2011;49(9):2229–35. https://pubmed.ncbi.nlm.nih.gov/21699953/

1797

Dickman JR, Koenig RT, Ji LL. American ginseng supplementation induces an oxidative stress in postmenopausal women. J Am Coll Nutr. 2009;28(2):219–28. https://pubmed.ncbi.nlm.nih.gov/19828907/

1798

Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010;65(12):1275–84. https://pubmed.ncbi.nlm.nih.gov/20819793/

1799

Oh SI, Park JK, Park SK. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L–Cysteine in Caenorhabditis elegans. Clinics. 2015;70(5):380–6. https://pubmed.ncbi.nlm.nih.gov/26039957/

1800

Niraula P, Kim MS. N-Acetylcysteine extends lifespan of Drosophila via modulating ROS scavenger gene expression. Biogerontology. 2019;20(4):533–43. https://pubmed.ncbi.nlm.nih.gov/31115735/

1801

Zoidis E, Seremelis I, Kontopoulos N, Danezis GP. Selenium-dependent antioxidant enzymes: actions and properties of selenoproteins. Antioxidants (Basel). 2018;7(5):66. https://pubmed.ncbi.nlm.nih.gov/29758013/

1802

Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant Soil. 2020;453(1–2):245–70. https://pubmed.ncbi.nlm.nih.gov/32836404/

1803

Duarte GBS, Reis BZ, Rogero MM, et al. Consumption of Brazil nuts with high selenium levels increased inflammation biomarkers in obese women: a randomized controlled trial. Nutrition. 2019;63–64:162–8. https://pubmed.ncbi.nlm.nih.gov/31026738/

1804

Xiang S, Dai Z, Man C, Fan Y. Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res. 2020;195(1):55–62. https://pubmed.ncbi.nlm.nih.gov/31368032/

1805

Bleys J, Navas-Acien A, Guallar E. Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch Intern Med. 2008;168(4):404–10. https://pubmed.ncbi.nlm.nih.gov/18299496/

1806

Rayman MP, Winther KH, Pastor-Barriuso R, et al. Effect of long-term selenium supplementation on mortality: results from a multiple-dose, randomised controlled trial. Free Radic Biol Med. 2018;127:46–54. https://pubmed.ncbi.nlm.nih.gov/29454039/

1807

Faghihi T, Radfar M, Barmal M, et al. A randomized, placebo-controlled trial of selenium supplementation in patients with type 2 diabetes: effects on glucose homeostasis, oxidative stress, and lipid profile. Am J Ther. 2014;21(6):491–5. https://pubmed.ncbi.nlm.nih.gov/23633679/

1808

Stranges S, Marshall JR, Natarajan R, et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(4):217–23. https://pubmed.ncbi.nlm.nih.gov/17620655/

1809

Talaulikar VS, Manyonda IT. Vitamin C as an antioxidant supplement in women’s health: a myth in need of urgent burial. Eur J Obstet Gynecol Reprod Biol. 2011;157(1):10–3. https://pubmed.ncbi.nlm.nih.gov/21507551/

1810

Camarena V, Wang G. The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci. 2016;73(8):1645–58. https://pubmed.ncbi.nlm.nih.gov/26846695/

1811

Schaus R. The ascorbic acid content of human pituitary, cerebral cortex, heart, and skeletal muscle and its relation to age. Am J Clin Nutr. 1957;5(1):39–41. https://pubmed.ncbi.nlm.nih.gov/13394538/

1812

Granger M, Eck P. Dietary vitamin C in human health. Adv Food Nutr Res. 2018;83:281–310. https://pubmed.ncbi.nlm.nih.gov/29477224/

1813

Duarte TL, Lunec J. Review: When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C. Free Radic Res. 2005;39(7):671–86. https://pubmed.ncbi.nlm.nih.gov/16036346/

1814

Childs A, Jacobs C, Kaminski T, Halliwell B, Leeuwenburgh C. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53. https://pubmed.ncbi.nlm.nih.gov/11557312/

1815

Mendes-da-Silva RF, Lopes-de-Morais AAC, Bandim-da-Silva ME, et al. Prooxidant versus antioxidant brain action of ascorbic acid in well-nourished and malnourished rats as a function of dose: a cortical spreading depression and malondialdehyde analysis. Neuropharmacology. 2014;86:155–60. https://pubmed.ncbi.nlm.nih.gov/25008558/

1816

Pallauf K, Bendall JK, Scheiermann C, et al. Vitamin C and lifespan in model organisms. Food Chem Toxicol. 2013;58:255–63. https://pubmed.ncbi.nlm.nih.gov/23643700/

1817

Brauchla M, Dekker MJ, Rehm CD. Trends in vitamin C consumption in the United States: 1999–2018. Nutrients. 2021;13(2):420. https://pubmed.ncbi.nlm.nih.gov/33525516/

1818

Thomas LDK, Elinder CG, Tiselius HG, Wolk A, Åkesson A. Ascorbic acid supplements and kidney stone incidence among men: a prospective study. JAMA Intern Med. 2013;173(5):386–8. https://pubmed.ncbi.nlm.nih.gov/23381591/

1819

Fletcher RH. The risk of taking ascorbic acid. JAMA Intern Med. 2013;173(5):388. https://pubmed.ncbi.nlm.nih.gov/23381657/

1820

Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev. 2012;38(6):726–36. https://pubmed.ncbi.nlm.nih.gov/22342103/

1821

Toledo C, Saltsman K. Genetics by the numbers. Inside Life Science. National Institute of General Medical Sciences. https://www.nigms.nih.gov/education/Inside-Life-Science/Pages/genetics-by-the-numbers.aspx. Published June 12, 2012. Accessed June 28, 2021.; https://nigms.nih.gov/education/Inside-Life-Science/Pages/Genetics-by-the-Numbers.aspx

1822

Zhang F, Wang S, Gan L, et al. Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol. 2011;95(3):373–95. https://pubmed.ncbi.nlm.nih.gov/21930182/

1823

Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/

1824

Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017;18(4):447–76. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514220/

1825

Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999;13(19):2570–80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC317077/

1826

Zhao L, Cao J, Hu K, et al. Sirtuins and their biological relevance in aging and age-related diseases. Aging Dis. 2020;11(4):927–45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390530/

1827

Satoh A, Brace CS, Rensing N, et al. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013;18(3):416–30. https://pubmed.ncbi.nlm.nih.gov/24011076/

1828

Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. https://pubmed.ncbi.nlm.nih.gov/22367546/

1829

Brenner C. Sirtuins are not conserved longevity genes. Life Metabolism. Published online September 22, 2022. https://academic.oup.com/lifemeta/advance-article/doi/10.1093/lifemeta/loac025/6711379. Accessed December 27, 2022.; https://academic.oup.com/lifemeta/article/1/2/122/6711379

1830

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1831

Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14(4):312–23. https://pubmed.ncbi.nlm.nih.gov/18835033/

1832

Lee SH, Lee JH, Lee HY, Min KJ. Sirtuin signaling in cellular senescence and aging. BMB Rep. 2019;52(1):24–34. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386230/

1833

Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/

1834

Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010;191(7):1299–313. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3010065/

1835

Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med. 2013;56:133–71. https://pubmed.ncbi.nlm.nih.gov/23104101/

1836

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1837

Flachsbart F, Croucher PJP, Nikolaus S, et al. Sirtuin 1 (SIRT1) sequence variation is not associated with exceptional human longevity. Exp Gerontol. 2006;41(1):98–102. https://pubmed.ncbi.nlm.nih.gov/16257164/

1838

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. https://pubmed.ncbi.nlm.nih.gov/22395773/

1839

Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/

1840

Xu W, Deng YY, Yang L, et al. Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl Res. 2015;166(5):451–8. https://pubmed.ncbi.nlm.nih.gov/26141671/

1841

Dang W. The controversial world of sirtuins. Drug Discov Today Technol. 2014;12:e9–17. https://pubmed.ncbi.nlm.nih.gov/25027380/

1842

Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/

1843

Guerra B, Guadalupe-Grau A, Fuentes T, et al. SIRT1, AMP-activated protein kinase phosphorylation and downstream kinases in response to a single bout of sprint exercise: influence of glucose ingestion. Eur J Appl Physiol. 2010;109(4):731–43. https://pubmed.ncbi.nlm.nih.gov/20217115/

1844

Asghari S, Asghari-Jafarabadi M, Somi MH, Ghavami SM, Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Am Coll Nutr. 2018;37(3):223–33. https://pubmed.ncbi.nlm.nih.gov/29313746/

1845

Crujeiras AB, Parra D, Goyenechea E, Martínez JA. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction. Eur J Clin Invest. 2008;38(9):672–8. https://pubmed.ncbi.nlm.nih.gov/18837744/

1846

Draznin B, Wang C, Adochio R, Leitner JW, Cornier MA. Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Horm Metab Res. 2012;44(9):650–5. https://pubmed.ncbi.nlm.nih.gov/22674476/

1847

Lilja S, Stoll C, Krammer U, et al. Five days periodic fasting elevates levels of longevity related Christensenella and sirtuin expression in humans. Int J Mol Sci. 2021;22(5):2331. https://pubmed.ncbi.nlm.nih.gov/33652686/

1848

Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res. 2005;13(3):574–81. https://pubmed.ncbi.nlm.nih.gov/15833943/

1849

Mansur AP, Roggerio A, Goes MFS, et al. Serum concentrations and gene expression of sirtuin 1 in healthy and slightly overweight subjects after caloric restriction or resveratrol supplementation: a randomized trial. Int J Cardiol. 2017;227:788–94. https://pubmed.ncbi.nlm.nih.gov/28029409/

1850

Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76. https://pubmed.ncbi.nlm.nih.gov/17341128/

1851

Cantó C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://pubmed.ncbi.nlm.nih.gov/19262508/

1852

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1853

Watroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52–62. https://pubmed.ncbi.nlm.nih.gov/26521204/

1854

Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/

1855

Smoliga JM, Blanchard O. Enhancing the delivery of resveratrol in humans: if low bioavailability is the problem, what is the solution? Molecules. 2014;19(11):17154–72. https://pubmed.ncbi.nlm.nih.gov/25347459/

1856

Pezzuto JM. Resveratrol: twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019;27(1):1–14. https://pubmed.ncbi.nlm.nih.gov/30332889/

1857

Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci. 2015;1348(1):150–60. https://pubmed.ncbi.nlm.nih.gov/26099945/

1858

Сравнительно низкий уровень сердечно-сосудистых и онкологических заболеваний у жителей Франции при высококалорийном рационе питания и обилии в нем жиров. – Примеч. ред.

1859

Visioli F, Panaite SA, Tomé-Carneiro J. Wine’s phenolic compounds and health: a Pythagorean view. Molecules. 2020;25(18):4105. https://pubmed.ncbi.nlm.nih.gov/32911765/

1860

Burr ML. Explaining the French paradox. J R Soc Health. 1995;115(4):217–9. https://pubmed.ncbi.nlm.nih.gov/7562866/

1861

Vang O. What is new for resveratrol? Is a new set of recommendations necessary? Ann N Y Acad Sci. 2013;1290:1–11. https://pubmed.ncbi.nlm.nih.gov/23855460/

1862

Resveratrol. National Library of Medicine. https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol. Accessed January 18, 2023.; https://pubmed.ncbi.nlm.nih.gov/?term=resveratrol

1863

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1864

Rascón B, Hubbard BP, Sinclair DA, Amdam GV. The lifespan extension effects of resveratrol are conserved in the honey bee and may be driven by a mechanism related to caloric restriction. Aging (Albany NY). 2012;4(7):499–508. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433935/

1865

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1866

Kim E, Ansell CM, Dudycha JL. Resveratrol and food effects on lifespan and reproduction in the model crustacean Daphnia. J Exp Zool A Ecol Genet Physiol. 2014;321(1):48–56. https://pubmed.ncbi.nlm.nih.gov/24133070/

1867

Hector KL, Lagisz M, Nakagawa S. The effect of resveratrol on longevity across species: a meta-analysis. Biol Lett. 2012;8(5):790–3. https://pubmed.ncbi.nlm.nih.gov/22718956/

1868

Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11):8340–51. https://pubmed.ncbi.nlm.nih.gov/20061378/

1869

Cottart CH, Nivet-Antoine V, Beaudeux JL. Is resveratrol an imposter? Mol Nutr Food Res. 2015;59(1):7. https://pubmed.ncbi.nlm.nih.gov/25558005/

1870

Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health – promising therapeutic or hopeless illusion? Pharmacol Res. 2014;90:88–115. https://pubmed.ncbi.nlm.nih.gov/25151891/

1871

Артефакт эксперимента (от лат. arte – «искусственно» + factus – «сделанный») – эффект в эксперименте, возникающий вследствие дефектов методики проведения опыта. – Примеч. ред.

1872

Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/

1873

Roehr B. Cardiovascular researcher fabricated data in studies of red wine. BMJ. 2012;344:e406. https://pubmed.ncbi.nlm.nih.gov/22250221/

1874

Visioli F. The resveratrol fiasco. Pharmacol Res. 2014;90:87. https://pubmed.ncbi.nlm.nih.gov/25180457/

Загрузка...