– Сегодня утром я с белкой в прятки играл, – рассказывал во время завтрака один из собравшихся за столом дома отдыха. – Вы знаете в нашем лесу круглую полянку с одинокой берёзой посредине? За этим деревом и пряталась от меня белка. Выйдя из чащи на полянку, я сразу заметил беличью мордочку с живыми глазками, уставившуюся на меня из-за ствола. Осторожно, не приближаясь, стал я обходить по краю полянки, чтобы взглянуть на зверька. Раза четыре обошёл я дерево – но плутовка отступала по стволу в обратную сторону, по-прежнему показывая только мордочку. Так и не удалось мне обойти кругом белки.
– Однако, – возразил кто-то, – сами же вы говорите, что четыре раза обошли вокруг дерева.
– Вокруг дерева, но не вокруг белки\
– Но белка-то на дереве?
– Что же из того?
– То, что вы кружились и около белки.
– Хорошо кружился, если ни разу не видел её спинки.
– При чём тут спинка? Белка в центре, вы ходите по кругу, значит, ходите кругом белки.
– Ничуть не значит. Вообразите, что я хожу около вас по кругу, а вы поворачиваетесь ко мне всё время лицом, пряча спину. Скажете вы разве, что я кружусь около вас?
– Конечно, скажу. Как же иначе?
– Кружусь, хотя не бываю позади вас, не вижу вашей спины?
– Далась вам спина! Вы замыкаете вокруг меня путь – вот в чём суть дела, а не в том, чтобы видеть спину.
– Позвольте: что значит кружиться около чего-нибудь? По-моему, это означает только одно: становиться последовательно в такие места, чтобы видеть предмет со всех сторон. Ведь правильно, профессор? – обратился спорящий к сидевшему за столом старику.
– Спор идёт у вас, в сущности, о словах, – ответил учёный. – А в таких случаях надо начинать всегда с того, о чём вы сейчас только завели речь: надо договориться о значении слов. Как понимать слова: «двигаться вокруг предмета»? Смысл их может быть двоякий. Можно, во-первых, разуметь под ними перемещение по замкнутой линии, внутри которой находится предмет. Это одно понимание. Другое: двигаться по отношению к предмету так, чтобы видеть его со всех сторон. Держась первого понимания, вы должны признать, что четыре раза обошли вокруг белки. Придерживаясь же второго, обязаны заключить, что не обошли вокруг неё ни разу. Поводов для спора здесь, как видите, нет, если обе стороны говорят на одном языке, понимают слова одинаково.
– Прекрасно, можно допустить двоякое понимание. Но какое всё же правильнее?
– Так ставить вопрос не приходится. Условливаться можно о чём угодно. Уместно только спросить, что более согласно с общепринятым пониманием. Я сказал бы, что лучше вяжется с духом языка первое понимание, и вот почему. Солнце, как известно, делает полный оборот кругом своей оси в 26 суток…
– Солнце вертится?
Рис. 1. «Плутовка отступала в обратную сторону»
– Конечно, как и Земля вокруг оси. Вообразите, однако, что вращение Солнца совершается медленнее, а именно что оно делает один оборот не в 26 суток, а в 365¼ суток, то есть в год. Тогда Солнце было бы обращено к Земле всегда одной и той же своей стороной; противоположной половины, «спины» Солнца, мы никогда не видели бы. Но разве стал бы кто-нибудь утверждать из-за этого, что Земля не кружится вокруг Солнца?
– Да, теперь ясно, что я всё-таки кружился вокруг белки.
– Есть предложение, товарищи! Не расходиться, – сказал один из слушавших спор. – Так как в дождь гулять никто не пойдёт, а перестанет дождик, видно, не скоро, то давайте проведём здесь время за головоломками. Начало сделано. Пусть каждый по очереди придумает или припомнит какую-нибудь головоломку. Вы же, профессор, явитесь нашим верховным судьёй.
– Если головоломки будут с алгеброй или с геометрией, то я должна отказаться, – заявила молодая женщина.
– И я тоже, – присоединился кто-то.
– Нет, нет, участвовать должны все! А мы попросим присутствующих не привлекать ни алгебры, ни геометрии, разве только самые начатки. Возражений не имеется?
– Тогда я согласна и готова первая предложить головоломку.
– Прекрасно, просим! – донеслось с разных сторон. – Начинайте.
– Головоломка моя зародилась в обстановке коммунальной квартиры. Задача, так сказать, бытовая. Жилица – назову её для удобства Тройкиной – положила в общую плиту 3 полена своих дров, жилица Пятёркина – 5 поленьев, жилец Бестопливный, у которого, как вы догадываетесь, не было своих дров, получил от обеих гражданок разрешение сварить обед на общем огне. В возмещение расходов он уплатил соседкам 8 рублей. Как должны они поделить между собой эту плату?
– Пополам, – поспешил заявить кто-то. – Бестопливный пользовался их огнём в равной мере.
– Ну нет, – возразил другой, – надо принять в соображение, как участвовали в этом огне дровяные вложения гражданок. Кто дал 3 полена, должен получить 3 рубля; кто дал 5 поленьев, получает 5 рублей. Вот это будет справедливый делёж.
Рис. 2. «В возмещение расходов он уплатил соседкам 8 рублей»
– Товарищи, – взял слово тот, кто затеял игру и считался теперь председателем собрания. – Окончательные решения головоломок давайте пока не объявлять. Пусть каждый ещё подумает над ними. Правильные ответы судья огласит нам за ужином. Теперь следующий. Очередь за вами, товарищ пионер!
– В нашей школе, – начал пионер, – имеется 5 кружков: политкружок, военный, фотографический, шахматный и хоровой. Политкружок занимается через день, военный – через 2 дня на 3-й, фотографический – каждый 4-й день, шахматный – каждый 5-й день и хоровой – каждый 6-й день. 1 января собрались в школе все 5 кружков, а затем занятия велись в назначенные по плану дни, без отступлений от расписания. Вопрос состоит в том, сколько в первом квартале было ещё вечеров, когда собирались в школе все 5 кружков.
– А год был простой или високосный? – осведомились у пионера.
– Простой.
– Значит, первый квартал – январь, февраль, март – надо считать за 90 дней?
– Очевидно.
– Позвольте к вопросу вашей головоломки присоединить ещё один, – сказал профессор. – А именно: сколько в том же квартале года было таких вечеров, когда кружковых занятий в школе вовсе не происходило?
– Ага, понимаю! – раздался возглас. – Задача с подвохом. Ни одного дня не будет больше с 5 кружками и ни одного дня без всяких кружков. Это уж ясно!
– Почему? – спросил председатель.
– Объяснить не могу, но чувствую, что отгадчика хотят поймать впросак.
– Ну, это не довод. Вечером выяснится, правильно ли ваше предчувствие. За вами очередь, товарищ!
– Двое считали в течение часа всех, кто проходил мимо них на тротуаре. Один стоял у ворот дома, другой прохаживался взад и вперёд по тротуару. Кто насчитал больше прохожих?
– Идя, больше насчитаешь, ясное дело, – донеслось с другого конца стола.
– Ответ узнаем за ужином, – объявил председатель. – Следующий!
– То, о чём я скажу, происходило в 1932 году. Мне было тогда ровно столько лет, сколько выражают последние две цифры года моего рождения. Когда я об этом соотношении рассказал деду, он удивил меня заявлением, что с его возрастом выходит то же самое. Мне это показалось невозможным…
– Разумеется, невозможно, – вставил чей-то голос.
– Представьте, что вполне возможно. Дед доказал мне это. Сколько же лет было каждому из нас?
Рис. 3. «Продаю железнодорожные билеты»
– Я – железнодорожная кассирша, продаю билеты, – начала следующая участница игры. – Многим это кажется очень простым делом. Не подозревают, с каким большим числом билетов приходится иметь дело кассиру даже маленькой станции. Ведь необходимо, чтобы пассажиры могли получить билеты от данной станции до любой другой на той же дороге, притом в обоих направлениях. Я служу на дороге с 25 станциями. Сколько же, по-вашему, различных образцов билетов заготовлено железной дорогой для всех её касс?
– Ваша очередь, товарищ лётчик, – провозгласил председатель.
– Из Ленинграда вылетел прямо на север дирижабль. Пролетев в северном направлении 500 км, он повернул на восток. Пролетев в эту сторону 500 км, дирижабль сделал новый поворот – на юг и прошёл в южном направлении 500 км. Затем он повернул на запад и, пролетев 500 км, опустился на землю. Спрашивается: где расположено место спуска дирижабля относительно Ленинграда – к западу, к востоку, к северу или к югу?
– На простака рассчитываете, – сказал кто-то. – 500 шагов вперёд, 500 вправо, 500 назад да 500 влево – куда придём? Откуда вышли, туда и придём!
– Итак, где, по-вашему, спустился дирижабль?
– На том же ленинградском аэродроме, откуда поднялся. Не так разве?
– Именно не так.
– В таком случае я ничего не понимаю!
– В самом деле, здесь что-то неладно, – вступил в разговор сосед. – Разве дирижабль спустился не в Ленинграде?.. Нельзя ли повторить задачу?
Лётчик охотно исполнил просьбу. Его внимательно выслушали и с недоумением переглянулись.
– Ладно, – объявил председатель. – До ужина успеем подумать об этой задаче, а сейчас будем продолжать.
– Позвольте мне, – сказал очередной загадчик, – взять сюжетом головоломки тот же дирижабль. Что длиннее: дирижабль или его полная тень?
– В этом и вся головоломка?
– Вся.
– Тень, конечно, длиннее дирижабля: ведь лучи солнца расходятся веером, – последовало сразу решение.
– Я бы сказал, – возразил кто-то, – что, напротив, лучи солнца параллельны; тень и дирижабль одной длины.
– Что вы? Разве не случалось вам видеть расходящиеся лучи от спрятанного за облаком солнца? Тогда можно воочию убедиться, как сильно расходятся солнечные лучи. Тень дирижабля должна быть значительно больше дирижабля, как тень облака больше самого облака.
Рис. 4. Расходящиеся лучи от спрятанного за облаком солнца
– Почему же обычно принимают, что лучи солнца параллельны? Моряки, астрономы – все так считают…
Председатель не дал спору разгореться и предоставил слово следующему загадчику.
Очередной оратор высыпал на стол все спички из коробка и стал распределять их в три кучки.
– Костёр собираетесь раскладывать? – шутили слушатели.
– Головоломка, – объяснил загадчик, – будет со спичками. Вот их три неравные кучки. Во всех вместе 48 штук. Сколько в каждой, я вам не сообщаю. Зато отметьте следующее: если из первой кучи я переложу во вторую столько спичек, сколько в этой второй куче имелось, затем из второй в третью переложу столько, сколько в этой третьей перед тем будет находиться, и, наконец, из третьей переложу в первую столько спичек, сколько в этой первой куче будет тогда иметься, – если, говорю, всё это проделать, то число спичек во всех кучках станет одинаково. Сколько же было в каждой кучке первоначально?
– Головоломка эта, – начал сосед последнего загадчика, – напоминает задачу, которую давно как-то задал мне деревенский математик. Это был целый рассказ, довольно забавный. Повстречал крестьянин в лесу незнакомого старика. Разговорились. Старик внимательно оглядел крестьянина и сказал:
– Известен мне в леску этом пенёчек один удивительный. Очень в нужде помогает.
– Как помогает? Вылечивает?
– Лечить не лечит, а деньги удваивает. Положишь под него кошель с деньгами, досчитаешь до ста – и готово: деньги, какие были в кошельке, удвоились. Такое свойство имеет. Замечательный пень!
– Вот бы мне испробовать, – мечтательно сказал крестьянин.
– Это можно. Отчего же? Заплатить только надо.
– Кому платить? И много ли?
– Тому платить, кто дорогу укажет. Мне, значит. А много ли, о том особый разговор.
Стали торговаться. Узнав, что у крестьянина в кошельке денег мало, старик согласился получать после каждого удвоения по 1 руб. 20 коп. На том и порешили.
Старик повёл крестьянина в глубь леса, долго бродил с ним и наконец разыскал в кустах старый, покрытый мохом еловый пень. Взяв из рук крестьянина кошелёк, он засунул его между корнями пня. Досчитали до ста. Старик снова стал шарить и возиться у основания пня, наконец извлёк оттуда кошелёк и подал крестьянину.
Заглянул крестьянин в кошелёк, и что же? – деньги в самом деле удвоились! Отсчитал из них старику обещанные 1 руб. 20 коп. и попросил засунуть кошелёк вторично под чудодейственный пень.
Рис. 5. Старик повёл крестьянина в глубь леса
Снова досчитали до ста, снова старик стал возиться в кустах у пня, и снова совершилось диво: деньги в кошельке удвоились. Старик вторично получил из кошелька обусловленные 1 руб. 20 коп.
В третий раз спрятали кошель под пень. Деньги удвоились и на этот раз. Но когда крестьянин уплатил старику обещанное вознаграждение, в кошельке не осталось больше ни одной копейки. Бедняга потерял на этой комбинации все свои деньги. Удваивать дальше было уже нечего, и крестьянин уныло побрёл из лесу.
Секрет волшебного удвоения денег вам, конечно, ясен: старик недаром, отыскивая кошелёк, мешкал в зарослях у пня. Но можете ли вы ответить на другой вопрос: сколько было у крестьянина денег до злополучных опытов с коварным пнём?
– Я, товарищи, языковед, от всякой математики далёк, – начал пожилой человек, которому пришёл черёд задавать головоломку. – Не ждите от меня поэтому математической задачи. Могу только предложить вопрос из знакомой мне области. Разрешите задать календарную головоломку?
– Просим!
– Двенадцатый месяц называется у нас «декабрь». А вы знаете, что, собственно, значит «декабрь»? Слово это происходит от греческого слова «дека» – десять, отсюда также слова «декалитр» – 10 литров, «декада» – 10 дней и др. Выходит, что месяц декабрь носит название «десятый». Чем объяснить такое несоответствие?
– Ну, теперь осталась только одна головоломка, – произнёс председатель.
– Мне приходится выступать последним, двенадцатым. Для разнообразия покажу вам арифметический фокус и попрошу раскрыть его секрет. Пусть кто-нибудь из вас, хотя бы вы, товарищ председатель, напишет на бумажке, тайно от меня, любое трёхзначное число.
– Могут быть и нули в этом числе?
– Не ставлю никаких ограничений. Любое трёхзначное число, какое пожелаете.
– Написал. Что теперь?
– Припишите к нему это же число ещё раз. У вас получится, конечно, шестизначное число.
– Есть. Шестизначное число.
– Передайте бумажку соседу, что сидит подальше от меня. А он пусть разделит это шестизначное число на 7.
– Легко сказать: разделить на 7! Может, и не разделится.
– Не беспокойтесь, поделится без остатка.
– Числа не знаете, а уверены, что поделится.
– Сначала разделите, потом будем говорить.
– На ваше счастье, разделилось.
– Результат вручите своему соседу, не сообщая мне. Он разделит его на 11.
– Думаете, опять повезёт – разделится?
– Делите, остатка не получится.
– В самом деле без остатка! Теперь что?
– Передайте результат дальше. Разделим его… ну, скажем, на 13.
– Нехорошо выбрали. Без остатка на 13 мало чисел делится… Ан нет, разделилось нацело. Везёт же вам!
– Дайте мне бумажку с результатом; только сложите её, чтобы я не видел числа.
Не развёртывая листа бумаги, «фокусник» вручил его председателю.
– Извольте получить задуманное вами число. Правильно?
– Совершенно верно! – с удивлением ответил тот, взглянув на бумажку. – Именно это я и задумал… теперь, так как список ораторов исчерпан, позвольте закрыть наше собрание, благо и дождь успел пройти. Разгадки всех головоломок будут оглашены сегодня же, после ужина. Записки с решениями можете подавать мне.
1. Головоломка с белкой на поляне рассмотрена была полностью раньше. Переходим к следующей.
2. Нельзя считать, как многие делают, что 8 руб. уплачено за 8 поленьев, по 1 руб. за полено. Деньги эти уплачены только за третью часть от 8 поленьев, потому что огнём пользовались трое в одинаковой мере. Отсюда следует, что все 8 поленьев оценены были в 8 × 3, то есть в 24 руб., и цена одного полена – 3 руб.
Теперь легко сообразить, сколько причитается каждому. Пятёркиной за её 5 поленьев следует 15 руб.; но она сама воспользовалась плитой на 8 руб.; значит, ей остаётся дополучить ещё 15 – 8, то есть 7 руб. Тройкина за три своих полена должна получить 9 руб., а если вычесть 8 руб., причитающиеся с неё за пользование плитой, то следовать ей будет всего только 9–8, то есть 1 руб.
Итак, при правильном дележе Пятёркина должна получить 7 руб., Тройкина – 1 руб.
3. На первый вопрос – через сколько дней в школе соберутся одновременно все 5 кружков – мы легко ответим, если сумеем разыскать наименьшее из всех чисел, которое делится без остатка на 2, на 3, на 4, на 5 и на 6. Нетрудно сообразить, что число это 60. Значит, на 61-й день соберутся снова 5 кружков: политический – через 30 двухдневных промежутков, военный – через 20 трёхдневных, фотокружок – через 15 четырёхдневных, шахматный – через 12 пятидневок и хоровой – через 10 шестидневок. Раньше чем через 60 дней такого вечера не будет. Следующий подобный же вечер будет ещё через 60 дней, то есть уже во втором квартале.
Итак, в течение первого квартала окажется только один вечер, когда в клубе снова соберутся для занятий все 5 кружков.
Хлопотливее найти ответ на второй вопрос задачи: сколько будет вечеров, свободных от кружковых занятий? Чтобы разыскать такие дни, надо выписать по порядку все числа от 1 до 90 и зачеркнуть в этом ряду дни работы политкружка, то есть числа 1, 3, 5, 7, 9 и т. д. Потом зачеркнуть дни работы военного кружка: 4-й, 10-й и т. д. После того как зачеркнём затем дни занятий фотокружка, шахматного и хорового, у нас останутся незачёркнутыми те дни первого квартала, когда ни один кружок не работал.
Кто проделает эту работу, тот убедится, что вечеров, свободных от занятий, в течение первого квартала будет довольно много: 24. В январе их 8, а именно: 2-го, 8-го, 12-го, 14-го, 18-го, 20-го, 24-го и 30-го. В феврале насчитывается 7 таких дней, в марте – 9.
4. Оба насчитали одинаковое число прохожих. Хотя тот, кто стоял у ворот, считал проходивших в обе стороны, зато тот, кто ходил, видел вдвое больше встречных людей.
5. С первого взгляда может действительно показаться, что задача неправильно составлена: выходит как будто, что внук и дед одного возраста. Однако требование задачи, как сейчас увидим, легко удовлетворяется.
Внук, очевидно, родился в XX столетии. Первые две цифры года его рождения, следовательно, 19: таково число сотен. Число, выражаемое остальными цифрами, будучи сложено с самим собою, должно составить 32. Значит, это число 16: год рождения внука 1916, и ему в 1932 году было 16 лет.
Дед его родился, конечно, в XIX столетии; первые две цифры года его рождения 18. Удвоенное число, выражаемое остальными цифрами, должно составить 132. Значит, само это число равно половине 132, то есть 66. Дед родился в 1866 году, и ему в 1932 году было 66 лет.
Таким образом, и внуку, и деду в 1932 году было столько лет, сколько выражают последние две цифры годов их рождения.
6. На каждой из 25 станций пассажиры могут требовать билет до любой станции, то есть на 24 пункта. Значит, разных билетов надо напечатать 25 × 24 = 600 образцов.
7. Задача эта никакого противоречия не содержит. Не следует думать, что дирижабль летел по контуру квадрата: надо принять в расчёт шарообразную форму Земли. Дело в том, что меридианы к северу сближаются (рис. 6); поэтому, пройдя 500 км по параллельному кругу, расположенному на 500 км севернее широты Ленинграда, дирижабль отошёл к востоку на большее число градусов, чем пролетел потом в обратном направлении, очутившись снова на широте Ленинграда. В результате дирижабль, закончив полёт, оказался восточнее Ленинграда.
Рис. 6
На сколько именно? Это можно рассчитать. На рис. 6 вы видите маршрут дирижабля: АВСВЕ. Точка N —