Некоторые из этих понятий и терминов включают:
1. Квантовая система: Квантовая система представляет собой физическую систему, чье поведение и состояния описываются квантовыми законами вместо классической механики.
2. Состояние: Состояние квантовой системы определяет ее характеристики, такие как энергия, момент импульса и спин. Состояние может быть описано волновой функцией или квантовым состоянием.
3. Волновая функция: Волновая функция является математическим описанием состояния квантовой системы в рамках уравнения Шредингера. Она представляет собой комплексную функцию, которая зависит от координаты и времени.
4. Энергетические уровни: В квантовой системе энергетические уровни являются дискретными значениями энергии, которые система может принимать. Энергетические уровни определяются математическими операторами, такими как гамильтониан.
5. Вероятность: Вероятность в квантовой механике используется для определения вероятности того, что квантовая система окажется в определенном состоянии при измерении определенной характеристики.
6. Операторы: Операторы в квантовой механике представляют собой математические объекты, которые действуют на волновую функцию и позволяют измерить определенные характеристики квантовой системы, такие как энергия, момент импульса или спин.
7. Принцип неопределенности Хайзенберга: Принцип неопределенности Хайзенберга гласит, что нельзя одновременно точно измерить значение двух сопряженных характеристик (например, координаты и импульса) квантовой частицы.
8. Интерференция: Интерференция в квантовой механике является явлением, при котором волновые функции квантовой системы суперпозируются и взаимодействуют между собой, приводя к формированию интерференционной картины.
Обзор этих основных понятий и терминов в квантовой механике позволяет понять основные принципы и концепции этой науки и является важным для полного понимания формулы для энергии квантовой системы с периодическим потенциалом и внешним полем.
Примеры массы частицы и длины периодического потенциала:
1. Постоянная Планка (h): Постоянная Планка является фундаментальной постоянной в квантовой механике. Ее физическое значение заключается в том, что она определяет соотношение между энергией и частотой связанной с частицей. Формула, связывающая энергию (E) и частоту (ν), выражается как E = hν. Таким образом, постоянная Планка связывает энергетический и волновой аспекты частиц в квантовой механике. Значение постоянной Планка составляет приблизительно 6,62607015 × 10^ (-34) Дж·с или 4,135667696 × 10^ (-15) эВ·с.
2. Масса частицы (m): Масса частицы указывает на массу, которую имеет частица, находящаяся в квантовой системе. Масса является фундаментальной характеристикой частицы и определяет ее инерцию и влияние на динамику системы. Различные частицы имеют различные массы, и их значение массы может быть выражено в килограммах (кг). Например, в электронике и физике частиц электрона имеет массу приблизительно 9,10938356 × 10^ (-31) кг.
3. Длина периодического потенциала (L): Длина периодического потенциала является характерным размером или периодом повторения структуры в квантовой системе. Это расстояние между соседними повторениями периодического потенциала и может иметь различные единицы измерения в зависимости от конкретной системы, такие как метры (м) или ангстремы (Å). Длина периодического потенциала влияет на энергетические уровни квантовой системы и определяет ее свойства. Например, в кристаллографии длина периодического потенциала связана с расстоянием между атомами в кристаллической решетке.
Потенциал внешнего поля в квантовой системе представляет собой функцию, которая описывает взаимодействие системы с внешним полем или средой. Это внешнее поле может быть создано другими частицами, электрическими или магнитными полями, или другими физическими воздействиями.
Взаимодействие с внешним полем может оказывать существенное влияние на свойства и поведение квантовой системы. Например, потенциал внешнего поля может изменять энергию системы, влиять на энергетические уровни, влиять на расстояния между электронами или даже изменять форму энергетической поверхности системы.