I. Если заслуженный, но пожилой ученый утверждает, что некое явление возможно, он наверняка прав. Если он утверждает, что некое явление невозможно, он, весьма вероятно, ошибается.
II. Единственный способ определить пределы возможного – это набраться смелости и проникнуть на ту строну, в невозможное.
III. Любая достаточно развитая технология неотличима от волшебства.
«Поднять щиты!» – так звучит первый приказ, который в бесконечном сериале «Звездный путь» отдает резким голосом капитан Кирк своему экипажу; послушный приказу экипаж включает силовые поля, призванные защитить космический корабль «Энтерпрайз» от огня противника.
В сюжете «Звездного пути» силовые поля настолько важны, что их состояние вполне может определить исход сражения. Стоит энергии силового поля истощиться, и корпус «Энтерпрайза» начинает получать удары, чем дальше, тем сокрушительнее; в конце концов поражение становится неизбежным.
Так что же такое защитное силовое поле? В научной фантастике это обманчиво простая штука: тонкий невидимый, но при этом непроницаемый барьер, способный одинаково легко отражать лазерные лучи и ракеты. На первый взгляд силовое поле представляется настолько простым, что создание – и скорое – боевых щитов на его основе кажется неминуемым. Так и ждешь, что не сегодня-завтра какой-нибудь предприимчивый изобретатель объявит, что ему удалось получить защитное силовое поле. Но истина гораздо сложнее.
Подобно лампочке Эдисона, которая коренным образом изменила современную цивилизацию, силовое поле способно глубоко затронуть все без исключения стороны нашей жизни. Военные воспользовались бы силовым полем, чтобы стать неуязвимыми, создали бы на его основе непроницаемый щит от вражеских ракет и пуль. В теории можно было бы создавать мосты, великолепные шоссе и дороги одним нажатием кнопки. Целые города возникали бы в пустыне словно по мановению волшебной палочки; все в них, вплоть до небоскребов, строилось бы исключительно из силовых полей. Купола силовых полей над городами позволили бы их обитателям произвольно управлять погодными явлениями – штормовыми ветрами, снежными бурями, торнадо. Под надежным пологом силового поля можно было бы строить города даже на дне океанов. От стекла, стали и бетона можно было бы вообще отказаться, заменив все строительные материалы силовыми полями.
Но, как ни странно, силовое поле оказывается одним из тех явлений, которые чрезвычайно сложно воспроизвести в лаборатории. Некоторые физики даже полагают, что это вообще не удастся сделать без изменения его свойств.
Концепция физического поля берет начало в работах великого британского ученого XIX в. Майкла Фарадея.
Родители Фарадея принадлежали к рабочему классу (его отец был кузнецом). Сам он в начале 1800-х гг. состоял в подмастерьях у переплетчика и влачил достаточно жалкое существование. Но юный Фарадей был зачарован недавним гигантским прорывом в науке – открытием таинственных свойств двух новых сил, электричества и магнетизма. Он жадно поглощал всю доступную ему информацию по этим вопросам и посещал лекции профессора Хамфри Дэви из Королевского института в Лондоне.
Однажды профессор Дэви серьезно повредил глаза во время неудачного химического эксперимента; понадобился секретарь, и он взял на эту должность Фарадея. Постепенно молодой человек завоевал доверие ученых Королевского института и получил возможность проводить собственные важные эксперименты, хотя нередко ему приходилось терпеть и пренебрежительное отношение. С годами профессор Дэви все ревнивее относился к успехам своего талантливого молодого помощника, который поначалу считался в кругах экспериментаторов восходящей звездой, а со временем затмил славу самого Дэви. Только после смерти Дэви в 1829 г. Фарадей получил научную свободу и осуществил целую серию поразительных открытий. Результатом их стало создание электрических генераторов, обеспечивших энергией целые города и изменивших ход мировой цивилизации.
Ключом к величайшим открытиям Фарадея стали силовые, или физические, поля. Если поместить железные опилки над магнитом и встряхнуть, выяснится, что опилки укладываются в рисунок, напоминающий паутину и занимающий все пространство вокруг магнита. «Нити паутины» – это и есть фарадеевы силовые линии. Они наглядно показывают, как распределяются в пространстве электрическое и магнитное поля. К примеру, если изобразить графически магнитное поле Земли, то обнаружится, что линии исходят откуда-то из области Северного полюса, а затем возвращаются и снова уходят в землю в области Южного полюса. Аналогично, если изобразить силовые линии электрического поля молнии во время грозы, выяснится, что они сходятся на кончике молнии.
Пустое пространство для Фарадея вовсе не было пустым; оно было заполнено силовыми линиями, при помощи которых можно было заставить отдаленные предметы двигаться. (Бедная юность не позволила Фарадею получить систематическое образование, и он практически не разбирался в математике; вследствие этого его записные книжки были заполнены не уравнениями и формулами, а нарисованными от руки диаграммами силовых линий. По иронии судьбы именно недостаток математического образования заставил его разработать великолепные диаграммы силовых линий, которые сегодня можно увидеть в любом учебнике физики. Физическая картина в науке нередко более важна, чем математический аппарат, который используется для ее описания.)
Историки выдвинули немало предположений о том, что именно привело Фарадея к открытию физических полей – одного из важнейших понятий в истории всей мировой науки. Фактически вся без исключения современная физика написана на языке фарадеевых полей. В 1831 г. Фарадей совершил ключевое открытие в области физических полей, навсегда изменившее нашу цивилизацию. Однажды, пронося магнит – детскую игрушку – над проволочной рамкой, он заметил, что в рамке возникает электрический ток, хотя магнит с ней не соприкасается. Это означало, что невидимое поле магнита способно на расстоянии заставить электроны двигаться, создавая ток.
Силовые поля Фарадея, которые до этого момента считались бесполезными картинками, плодом досужей фантазии, оказались реальной материальной силой, способной двигать объекты и генерировать энергию. Сегодня можно сказать наверняка: источник света, которым вы пользуетесь, чтобы прочесть эту страницу, получает энергию благодаря открытиям Фарадея в области электромагнетизма. Вращающийся магнит создает поле, которое толкает электроны в проводнике и заставляет их двигаться, рождая электрический ток, который затем можно использовать для питания лампочки. На этом принципе основаны генераторы электричества, обеспечивающие энергией города всего мира. К примеру, поток воды, падающий с плотины, заставляет вращаться гигантский магнит в турбине; магнит толкает электроны в проводе, формируя электрический ток; ток, в свою очередь, течет по высоковольтным проводам в наши дома.
Другими словами, силовые поля Майкла Фарадея и есть те самые силы, что движут современной цивилизацией, всеми ее проявлениями – от электровозов до новейших вычислительных систем, Интернета и карманных компьютеров.
Полтора столетия фарадеевы физические поля вдохновляли физиков на дальнейшие исследования. На Эйнштейна, к примеру, они оказали такое сильное воздействие, что он сформулировал свою теорию гравитации на языке физических полей. На меня тоже работы Фарадея произвели сильнейшее впечатление. Несколько лет назад я успешно сформулировал теорию струн в терминах физических полей Фарадея, заложив таким образом фундамент для полевой теории струн. В физике сказать про кого-то, что он мыслит силовыми линиями, означает сделать этому человеку серьезный комплимент.
Одним из величайших достижений физики за последние два тысячелетия стало выделение и определение четырех видов взаимодействия, которые правят вселенной. Все они могут быть описаны на языке полей, которым мы обязаны Фарадею. К несчастью, однако, ни один из четырех видов не обладает в полной мере свойствами силовых полей, описанных в большинстве фантастических произведений. Перечислим эти виды взаимодействия.
1. Гравитация. Безмолвная сила, не позволяющая нашим ногам оторваться от опоры. Она не дает рассыпаться Земле и звездам, помогает сохранить целостность Солнечной системы и Галактики. Без гравитации вращение планеты вышвырнуло бы нас с Земли в космос со скоростью 1000 миль в час. Проблема в том, что свойства гравитации в точности противоположны свойствам фантастических силовых полей. Гравитация – сила притяжения, а не отталкивания; она чрезвычайно слаба – относительно, разумеется; она работает на громадных, астрономических расстояниях. Другими словами, являет собой почти полную противоположность плоскому, тонкому, непроницаемому барьеру, который можно встретить едва ли не в любом фантастическом романе или фильме. К примеру, перышко к полу притягивает целая планета – Земля, но мы легко можем преодолеть притяжение Земли и поднять перышко одним пальцем. Воздействие одного нашего пальца способно преодолеть силу притяжения целой планеты, которая весит больше шести триллионов килограммов.
2. Электромагнетизм (ЭМ). Сила, освещающая наши города. Лазеры, радио, телевидение, современная электроника, компьютеры, Интернет, электричество, магнетизм – все это следствия проявления электромагнитного взаимодействия. Возможно, это самая полезная сила, которую удалось обуздать человечеству на протяжении всей его истории. В отличие от гравитации она может работать и на притяжение, и на отталкивание. Однако и она не годится на роль силового поля по нескольким причинам. Во-первых, ее можно легко нейтрализовать. К примеру, пластик или любой другой непроводящий материал без труда проникнет в мощное электрическое или магнитное поле. Кусок пластика, брошенный в магнитное поле, свободно пролетит его насквозь. Во-вторых, электромагнетизм действует на больших расстояниях, его непросто сосредоточить в плоскости. Законы ЭМ-взаимодействия описываются уравнениями Джеймса Клерка Максвелла, и похоже, силовые поля не являются решением этих уравнений.
3 и 4. Сильные и слабые ядерные взаимодействия. Слабое взаимодействие – это сила радиоактивного распада, та, что разогревает радиоактивное ядро Земли. Эта сила стоит за извержениями вулканов, землетрясениями и дрейфом континентальных плит. Сильное взаимодействие не дает рассыпаться ядрам атомов; оно обеспечивает энергией солнце и звезды и отвечает за освещение Вселенной. Проблема в том, что ядерное взаимодействие работает только на очень маленьких расстояниях, в основном в пределах атомного ядра. Оно так прочно связано со свойствами самого ядра, что управлять им чрезвычайно трудно. В настоящее время нам известно только два способа влиять на это взаимодействие: мы можем разбить субатомную частицу на части в ускорителе или взорвать атомную бомбу.
Хотя защитные поля в научной фантастике и не подчиняются известным законам физики, все же существуют лазейки, которые в будущем, вероятно, сделают создание силового поля возможным. Во-первых, существует, возможно, пятый вид фундаментального взаимодействия, который никому до сих пор не удалось увидеть в лаборатории. Может оказаться, к примеру, что это взаимодействие работает только на расстояниях от нескольких дюймов до фута – а не на астрономических расстояниях. (Правда, первые попытки обнаружить пятый вид взаимодействия дали отрицательные результаты.)
Во-вторых, нам, возможно, удастся заставить плазму имитировать некоторые свойства силового поля. Плазма – это «четвертое состояние вещества». Три первые, привычные нам состояния вещества, – твердое, жидкое и газообразное; тем не менее самой распространенной формой вещества во вселенной является плазма: газ, состоящий из ионизированных атомов. Атомы в плазме не связаны между собой и лишены электронов, а потому обладают электрическим зарядом. Ими можно без труда управлять при помощи электрического и магнитного полей.
Видимое вещество вселенной существует по большей части в форме различного рода плазмы; из нее образованы солнце, звезды и межзвездный газ. В обычной жизни мы почти не сталкиваемся с плазмой, потому что на Земле это явление редкое; тем не менее плазму можно увидеть. Для этого достаточно взглянуть на молнию, солнце или экран плазменного телевизора.
Как уже отмечалось выше, если нагреть газ до достаточно высокой температуры и получить таким образом плазму, то при помощи магнитного и электрического полей можно будет ее удерживать и придавать ей форму. К примеру, плазме можно придать форму листа или оконного стекла. Более того, такое «плазменное окно» можно использовать в качестве перегородки между вакуумом и обычным воздухом. В принципе, таким образом можно было бы удерживать воздух внутри космического корабля, не давая ему улетучиться в пространство; плазма в этом случае образует удобную прозрачную оболочку, границу между открытым космосом и кораблем.
В сериале «Звездный путь» силовое поле используется, в частности, для того, чтобы изолировать отсек, где находится и откуда стартует небольшой космический челнок, от космического пространства. И это не просто хитрая уловка, призванная сэкономить деньги на декорациях; такая прозрачная невидимая пленка может быть создана.
Плазменное окно придумал в 1995 г. физик Эди Гершкович в Брукхейвенской национальной лаборатории (Лонг-Айленд, штат Нью-Йорк). Это устройство было разработано в процессе решения другой задачи – задачи сварки металлов при помощи электронного луча. Ацетиленовая горелка сварщика плавит металл потоком раскаленного газа, а затем уже соединяет куски металла воедино. При этом известно, что пучок электронов способен сваривать металлы быстрее, чище и дешевле, чем получается при обычных методах сварки. Главная проблема метода электронной сварки состоит в том, что осуществлять ее необходимо в вакууме. Это требование создает большие неудобства, поскольку означает сооружение вакуумной камеры – размером, возможно, с целую комнату.
Для решения этой проблемы д-р Гершкович изобрел плазменное окно. Это устройство размером всего 3 фута в высоту и 1 фут в диаметре; оно нагревает газ до температуры 6500 °C и тем самым создает плазму, которая сразу же попадает в ловушку электрического и магнитного полей. Частицы плазмы, как частицы любого газа, оказывают давление, которое не дает воздуху ворваться и заполнить собой вакуумную камеру. (Если использовать в плазменном окне аргон, он испускает голубоватое свечение, совсем как силовое поле в «Звездном пути».)
Плазменное окно, очевидно, найдет широкое применение в космической отрасли и промышленности. Даже в промышленности для микрообработки и сухого травления часто необходим вакуум, но применение его в производственном процессе может оказаться очень дорогим. Но теперь, с изобретением плазменного окна, удерживать вакуум одним нажатием кнопки станет несложно и недорого.
Но можно ли использовать плазменное окно как непроницаемый щит? Защитит ли оно от выстрела из пушки? Можно вообразить появление в будущем плазменных окон, обладающих гораздо большей энергией и температурой, достаточной для испарения попадающих в него объектов. Но для создания более реалистичного силового поля с известными по фантастическим произведениям характеристиками потребуется многослойная комбинация нескольких технологий. Возможно, каждый слой сам по себе не будет достаточно прочным, чтобы остановить пушечное ядро, но вместе нескольких слоев может оказаться достаточно.
Попробуем представить себе структуру такого силового поля. Внешний слой, к примеру сверхзаряженное плазменное окно, разогретое до температуры, достаточной для испарения металлов. Вторым слоем может оказаться завеса из высокоэнергетических лазерных лучей. Такая завеса из тысяч перекрещивающихся лазерных лучей создавала бы пространственную решетку, которая нагревала бы проходящие через нее объекты и эффективно испаряла их. Более подробно мы поговорим о лазерах в следующей главе.
Далее, за лазерной завесой, можно вообразить себе пространственную решетку из «углеродных нанотрубок» – крохотных трубочек, состоящих из отдельных атомов углерода, со стенками толщиной в один атом. Таким трубки во много раз прочнее стали. На данный момент самая длинная из полученных в мире углеродных нанотрубок имеет длину всего около 15 мм, но можно уже предвидеть день, когда мы сможем создавать углеродные нанотрубки произвольной длины. Предположим, что из углеродных нанотрубок можно будет сплести пространственную сеть; в этом случае мы получим чрезвычайно прочный экран, способный отразить большинство объектов. Экран этот будет невидим, так как каждая отдельная нанотрубка по толщине сравнима с атомом, но пространственная сеть из углеродных нанотрубок превзойдет по прочности любой другой материал.
Итак, мы имеем основания предположить, что сочетание плазменного окна, лазерной завесы и экрана из углеродных нанотрубок может послужить основой для создания почти непроницаемой невидимой стены.
Но даже такой многослойный щит будет не в состоянии продемонстрировать все свойства, которые научная фантастика приписывает силовому полю. Так, он будет прозрачен, а значит, не сможет остановить лазерный луч. В битве с применением лазерных пушек наши многослойные щиты окажутся бесполезными.
Чтобы остановить лазерный луч, щит должен будет кроме перечисленного обладать сильно выраженным свойством «фотохроматичности», или переменной прозрачности. В настоящее время материалы с такими характеристиками используются при изготовлении солнечных очков, способных затемняться при воздействии УФ-излучения. Переменная прозрачность материала достигается за счет использования молекул, которые могут существовать по крайней мере в двух состояниях. При одном состоянии молекул такой материал прозрачен. Но под воздействием УФ-излучения молекулы мгновенно переходят в другое состояние и материал теряет прозрачность.
Возможно, когда-нибудь мы сможем при помощи нанотехнологии получить вещество, прочное, как углеродные нанотрубки, и способное менять свои оптические свойства под воздействием лазерного луча. Щит из такого вещества сможет останавливать не только потоки частиц или орудийные снаряды, но и лазерный удар. В настоящее время, однако, не существует материалов с переменной прозрачностью, способных остановить лазерный луч.
В научной фантастике силовые поля выполняют еще одну функцию, кроме отражения ударов из лучевого оружия, а именно служат опорой, которая позволяет преодолевать силу притяжения. В фильме «Назад в будущее» Майкл Фокс катается на «ховерборде», или «парящей доске»; эта штука во всем напоминает привычный скейтборд, вот только «ездит» по воздуху, над поверхностью земли. Физические законы – такие, какими мы их знаем на сегодняшний день, – не позволяют реализовать подобное антигравитационное устройство (как мы увидим в главе 10). Но можно представить себе в будущем создание других устройств – парящих досок и парящих автомобилей на магнитной подушке; эти машины позволят нам без труда поднимать и удерживать на весу крупные объекты. В будущем, если «сверхпроводимость при комнатной температуре» станет доступной реальностью, человек сможет поднимать в воздух предметы, используя возможности магнитных полей.
Если мы поднесем северный полюс постоянного магнита к северному же полюсу другого такого же магнита, магниты будут отталкиваться друг от друга. (Если мы перевернем один из магнитов и поднесем его южным полюсом к северному полюсу другого, два магнита будут притягиваться.) Этот же принцип – то, что одноименные полюса магнитов отталкиваются, – можно использовать для подъема с земли огромных тяжестей. Уже сейчас в нескольких странах идет строительство технически передовых поездов на магнитной подвеске. Такие поезда проносятся не по путям, а над ними на минимальном расстоянии; на весу их удерживают обычные магниты. Поезда как бы парят в воздухе и могут благодаря нулевому трению развивать рекордные скорости.
Первая в мире коммерческая автоматизированная транспортная система на магнитной подвеске была запущена в действие в 1984 г. в британском городе Бирмингеме. Она соединила терминал международного аэропорта и расположенный неподалеку железнодорожный вокзал. Поезда на магнитной подвеске действуют также в Германии, Японии и Корее, хотя большинство из них не предназначены для высоких скоростей. Первый скоростной коммерческий поезд на магнитной подвеске начал ходить по запущенному в действие участку трассы в Шанхае; этот поезд движется по трассе со скоростью до 431 км/ч. Японский поезд на магнитной подвеске в префектуре Яманаси разогнался до скорости 581 км/ч – т. е. двигался значительно быстрее, чем обычные поезда на колесах.
Но устройства на магнитной подвеске чрезвычайно дороги. Один из путей к увеличению их эффективности – использование сверхпроводников, которые при охлаждении до температур, близких к абсолютному нулю, полностью теряют электрическое сопротивление. Явление сверхпроводимости открыл в 1911 г. Хейке Камерлинг-Оннес. Суть его состояла в том, что некоторые вещества при охлаждении до температуры ниже 20 K (20° выше абсолютного нуля) теряют всякое электрическое сопротивление. Как правило, при охлаждении металла его электрическое сопротивление постепенно уменьшается. (Дело в том, что направленному движению электронов в проводнике мешают случайные колебания атомов. При уменьшении температуры размах случайных колебаний уменьшается, и электричество испытывает меньшее сопротивление.) Но Камерлинг-Оннес, к собственному изумлению, обнаружил, что сопротивление некоторых материалов при определенной критической температуре резко падает до нуля.
Физики сразу поняли важность полученного результата. При передаче на большие расстояния в линиях электропередачи теряется значительное количество электроэнергии. Но если бы сопротивление удалось устранить, электроэнергию можно было бы передавать в любое место почти даром. Вообще, возбужденный в замкнутом контуре электрический ток мог бы циркулировать в нем без потерь энергии миллионы лет. Более того, из этих необычайных токов несложно было бы создать магниты невероятной мощности. А имея такие магниты, можно было бы без усилий поднимать громадные грузы.
Несмотря на чудесные возможности сверхпроводников, применять их очень непросто. Держать большие магниты в баках с чрезвычайно холодными жидкостями очень дорого. Чтобы сохранять жидкости холодными, потребуются громадные фабрики холода, которые поднимут стоимость сверхпроводящих магнитов до заоблачных высот и сделают их использование невыгодным.
Но однажды физикам, возможно, удастся создать вещество, которое сохранит сверхпроводящие свойства даже при нагреве до комнатной температуры. Сверхпроводимость при комнатной температуре – «святой грааль» физиков-твердотельщиков. Получение таких веществ, по всей вероятности, послужит началом второй промышленной революции. Мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько дешевыми, что даже «планирующие автомобили», возможно, окажутся экономически выгодными. Очень может быть, что с изобретением сверхпроводников, сохраняющих свои свойства при комнатной температуре, фантастические летающие машины, которые мы видим в фильмах «Назад в будущее», «Особое мнение» и «Звездные войны», станут реальностью.
В принципе вполне представимо, что человек сможет надевать специальный пояс из сверхпроводящих магнитов, который позволит ему свободно левитировать над землей. С таким поясом можно было бы летать по воздуху, подобно Супермену. Вообще, сверхпроводимость при комнатной температуре явление настолько замечательное, что изобретение и использование таких сверхпроводников описано во множестве научно-фантастических романов (таких, как серия романов про Мир-Кольцо, созданная Ларри Нивеном в 1970 г.).
Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс – искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 K. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.
В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 K (–135 °C). Эта относительно высокая температура все еще очень далека от комнатной. Но и это – важный рубеж. Азот становится жидким при температуре 77 K, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)
Неприятно другое. В настоящее время не существует теории, которая объясняла бы свойства высокотемпературных сверхпроводников. Более того, предприимчивого физика, который сумеет объяснить, как они работают, ждет Нобелевская премия. (В известных высокотемпературных сверхпроводниках атомы организованы в четко выраженные слои. Многие физики предполагают, что именно слоистость керамического материала дает возможность электронам свободно передвигаться внутри каждого слоя, создавая таким образом сверхпроводимость. Но как именно и почему это происходит – по-прежнему загадка.)
Недостаток знаний вынуждает физиков искать новые высокотемпературные сверхпроводники по старинке, методом проб и ошибок. Это означает, что пресловутая сверхпроводимость при комнатной температуре может быть открыта когда угодно – завтра, через год, или вообще никогда. Никто не знает, когда будет найдено вещество с такими свойствами и будет ли оно найдено вообще.
Но если сверхпроводники при комнатной температуре будут открыты, их открытие, скорее всего, породит громадную волну новых изобретений и коммерческих приложений. Обычными, возможно, станут магнитные поля, в миллион раз более сильные, чем магнитное поле Земли (которое составляет 0,5 Гс).
Одно из свойств, присущих всем сверхпроводникам, носит название эффекта Мейснера. Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. (Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта – в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.)
Если человечество получит возможность использовать эффект Мейснера, то можно вообразить шоссе будущего с покрытием из такой специальной керамики. Тогда при помощи магнитов, размещенных у нас на поясе или на днище автомобиля, мы сможем волшебным образом парить над дорогой и нестись к месту назначения без всякого трения или потерь энергии.
Эффект Мейснера работает только с магнитными материалами, такими как металлы. Но можно использовать сверхпроводниковые магниты и для левитирования немагнитных материалов, известных как парамагнетики или диамагнетики. Эти вещества сами по себе не обладают магнитными свойствами; они обретают их только в присутствии и под воздействием внешнего магнитного поля. Парамагнетики притягиваются внешним магнитом, диамагнетики отталкиваются.
Вода, к примеру, диамагнетик. Поскольку все живые существа состоят из воды, они тоже могут левитировать в присутствии мощного магнитного поля. В поле с магнитной индукцией около 15 Т (в 30 000 раз более мощном, чем магнитное поле Земли) ученым уже удалось заставить левитировать небольших животных, таких как лягушки. Но если сверхпроводимость при комнатной температуре станет реальностью, можно будет поднимать в воздух и крупные немагнитные объекты, пользуясь их диамагнитными свойствами.
В заключение отметим, что силовые поля в том виде, в каком их обычно описывает фантастическая литература, не согласуются с описанием четырех фундаментальных взаимодействий в нашей Вселенной. Но можно предположить, что человеку удастся имитировать многие свойства этих выдуманных полей при помощи многослойных щитов, включающих в себя плазменные окна, лазерные завесы, углеродные нанотрубки и вещества с переменной прозрачностью. Но реально такой щит может быть разработан лишь через несколько десятилетий, а то и через столетие. И в случае, если сверхпроводимость при комнатной температуре будет обнаружена, у человечества появится возможность использовать мощные магнитные поля; возможно, с их помощью удастся поднять в воздух автомобили и поезда, как мы видим в фантастических фильмах.
Принимая все это во внимание, я бы отнес силовые поля к I классу невозможности, т. е. определил их как нечто невозможное для сегодняшних технологий, но реализуемое в модифицированной форме в течение ближайшего столетия или около того.
Нельзя полагаться на глаза, если расфокусировано воображение.
В сериале «Звездный путь IV: Путешествие домой» экипаж «Энтерпрайза» захватывает боевой крейсер клингонов. В отличие от кораблей Звездного флота Федерации, корабли Клингонской империи оборудованы секретным «маскирующим устройством», способным сделать их невидимыми для глаза и радара. Это устройство позволяет клингонским кораблям заходить незамеченными в хвост кораблям Федерации и безнаказанно наносить первый удар. Благодаря маскирующему устройству Клингонская империя имеет перед Федерацией планет стратегическое преимущество.
Возможно ли на самом деле такое устройство? Невидимость давно стала одним из привычных чудес научно-фантастических и фэнтезийных произведений – от «Человека-невидимки» до волшебного плаща-невидимки Гарри Поттера или кольца из «Властелина колец». Тем не менее на протяжении по крайней мере ста лет физики дружно отрицали возможность создания плащей-невидимок и однозначно заявляли, что это невозможно: плащи-де нарушают законы оптики и не согласуются ни с одним из известных свойств вещества.
Но сегодня невозможное может стать возможным. Достижения в области «метаматериалов» заставляют в значительной мере пересмотреть учебники оптики. Созданные в лаборатории рабочие образцы таких материалов вызывают живой интерес средств массовой информации, производственников и военных; всем интересно, как видимое сделать невидимым.
Невидимость, возможно, одна из самых старых концепций древней мифологии. С начала времен человек, оставшись один в пугающей тишине ночи, чувствовал присутствие невидимых существ и боялся их. Повсюду вокруг него во тьме таились духи мертвых – души тех, кто ушел до него. Греческий герой Персей, вооружившись шлемом-невидимкой, сумел убить злобную горгону Медузу. Генералы всех времен мечтали о маскирующем устройстве, которое позволило бы стать невидимым для врага. Пользуясь невидимостью, можно было бы легко проникнуть за линию обороны противника и застать его врасплох. Преступники могли бы использовать невидимость для совершения дерзких ограблений.
В теории этики и морали Платона невидимость играла главную роль. В своем философском труде «Государство» Платон поведал нам миф о кольце Гига. В этом мифе бедный, но честный пастух Гиг из Лидии проникает в тайную пещеру и находит там гробницу; у трупа на пальце он видит золотое кольцо. Далее Гиг обнаруживает, что кольцо обладает волшебной силой и может делать его невидимым. Бедный пастух буквально пьянеет от власти, которую дало ему кольцо. Пробравшись в царский дворец, Гиг при помощи кольца соблазняет царицу, затем с ее помощью убивает царя и становится следующим царем Лидии.
Мораль, которую Платон вывел из этой истории, состоит в том, что ни один человек не в состоянии устоять перед искушением брать чужое и убивать безнаказанно. Люди слабы, а мораль – социальное явление, которое необходимо насаждать и поддерживать извне. На публике человек может соблюдать нормы морали, чтобы выглядеть порядочным и честным и поддерживать собственную репутацию, но стоит дать ему возможность становиться невидимым, и он не сможет удержаться и непременно воспользуется своим новым могуществом. (Некоторые считают, что именно эта притча о морали вдохновила Дж. Р.Р. Толкина на создание трилогии «Властелин колец»; кольцо, делающее своего владельца невидимым, одновременно является источником зла.)
В научной фантастике невидимость – один из обычных движителей сюжета. В серии комиксов 1930-х гг. «Флэш Гордон» Флэш становится невидимым, чтобы скрыться от расстрельной команды негодяя Минга Безжалостного. В романах и фильмах о Гарри Поттере главный герой, накинув волшебный плащ, может незамеченным бродить по Хогвартскому замку.
Герберт Уэллс в классическом романе «Человек-невидимка» воплотил в конкретную форму примерно те же идеи. В этом романе студент-медик случайно открывает возможности четвертого измерения и становится невидимым. К несчастью, он использует полученные фантастические возможности в личных целях, совершает целую череду мелких преступлений и в конце концов погибает в отчаянной попытке уйти от полиции.
Физики получили сколько-нибудь четкое представление о законах оптики относительно недавно в результате работ шотландца Джеймса Клерка Максвелла, одного из гигантов физики XIX в. В определенном смысле Максвелл был полной противоположностью Фарадею. Если Фарадей обладал великолепным чутьем экспериментатора, но не имел никакого формального образования, то его современник Максвелл был магистром высшей математики. Он с отличием прошел обучение по курсу математической физики в Кембридже, где за два столетия до него работал Исаак Ньютон.
Ньютон придумал дифференциальное исчисление – оно описывает на языке дифференциальных уравнений, как объекты непрерывно претерпевают бесконечно малые изменения во времени и пространстве. Движение океанских волн, жидкостей, газов и пушечных ядер – все это может быть описано на языке дифференциальных уравнений. Максвелл начал работать, перед собой ясную цель: выразить революционные открытия Фарадея и его физические поля при помощи точных дифференциальных уравнений.
Максвелл начал с утверждения Фарадея о том, что электрические поля могут превращаться в магнитные и наоборот. Он взял нарисованные Фарадеем картины физических полей и записал их на точном языке дифференциальных уравнений. В результате была получена одна из важнейших в современной науке систем уравнений. Это система из восьми дифференциальных уравнений довольно жуткого вида. Каждому физику и инженеру в мире пришлось в свое время попотеть над ними, осваивая в институте электромагнетизм.
Далее Максвелл задал себе судьбоносный вопрос: если магнитное поле может превращаться в электрическое и наоборот, то что происходит, если они постоянно переходят одно в другое в бесконечной череде превращений? Максвелл обнаружил, что такое электромагнитное поле породит волну, подобную океанской. Он вычислил скорость движения таких волн и, к собственному изумлению, обнаружил, что она равняется скорости света! В 1864 г., обнаружив данный факт, он пророчески написал: «Эта скорость настолько близка к скорости света, что мы, по всей видимости, имеем все основания сделать вывод о том, что сам свет… представляет собой электромагнитное возмущение».
Это открытие стало, возможно, одним из величайших в истории человечества – была наконец раскрыта тайна света! Максвелл внезапно понял, что все – и сияние летнего восхода, и яростные лучи заходящего солнца, и ослепительные цвета радуги, и звезды на ночном небосклоне – можно описать при помощи волн, которые он небрежно изобразил на клочке бумаги. Сегодня мы понимаем, что весь электромагнитный спектр: сигналы радаров, микроволновое излучение и телевизионные волны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские и гамма-лучи – это не что иное, как максвелловы волны; а те, в свою очередь, представляют собой вибрации фарадеевых физических полей.
Говоря о значении уравнений Максвелла, Эйнштейн писал, что это «самое глубокое и плодотворное, что довелось испытать физике со времен Ньютона».
(Трагично, но Максвелл, один из величайших физиков XIX столетия, умер достаточно молодым, в возрасте 48 лет, от рака желудка – вероятно, той же болезни, что убила его мать в этом же возрасте. Проживи он дольше, и возможно, ему удалось бы обнаружить, что полученные им уравнения допускают искажения пространства – времени, и это привело бы прямо к теории относительности Эйнштейна. Мысль о том, что проживи Максвелл дольше, и теория относительности могла бы появиться во времена Гражданской войны в Америке, потрясает до глубины души.)
Максвеллова теория света и атомная теория строения вещества дают оптике и невидимости простое объяснение. В твердом теле атомы плотно упакованы, тогда как в жидкости или газе расстояния между молекулами гораздо больше. Большинство твердых тел непрозрачны, так как лучи света не могут пройти через плотный строй атомов, который играет роль кирпичной стены. Многие жидкости и газы, напротив, прозрачны, потому что свету проще пройти между редкими атомами, расстояния между которыми больше, чем длина волны видимого света. К примеру, вода, спирт, аммиак, ацетон, перекись водорода, бензин и другие жидкости прозрачны, как прозрачны и газы, такие как кислород, водород, азот, углекислый газ, метан и т. п.
Из этого правила существует несколько важных исключений. Многие кристаллы одновременно твердые и прозрачные. Но атомы в кристалле располагаются в узлах правильной пространственной решетки и образуют регулярные ряды с одинаковыми интервалами между ними. В результате в кристаллической решетке всегда много путей, по которым луч света может пройти сквозь нее. Поэтому, хотя атомы в кристалле упакованы не менее плотно, чем в любом другом твердом теле, свет все же способен проникать сквозь него.
При определенных обстоятельствах даже твердый объект со случайно расположенными атомами может стать прозрачным. Такого эффекта для некоторых материалов можно добиться, если нагреть объект до высокой температуры, а затем резко охладить. К примеру, стекло – твердое тело, обладающее из-за случайного расположения атомов многими свойствами жидкости. Некоторые леденцы тоже можно таким образом сделать прозрачными.
Очевидно, свойство невидимости возникает на атомном уровне, согласно уравнениям Максвелла, и потому его чрезвычайно трудно, если вообще возможно, воспроизвести обычными методами. Чтобы сделать Гарри Поттера невидимым, его придется перевести в жидкое состояние, вскипятить и превратить в пар, кристаллизовать, нагреть и охладить – согласитесь, любое из этих действий было бы весьма затруднительным даже для волшебника.
Военные, оказавшись не в состоянии построить невидимые самолеты, попытались проделать более простую вещь: создали технологию «стелс», которая делает самолеты невидимыми для радаров. Технология «стелс», опираясь на уравнения Максвелла, проделывает серию фокусов. Реактивный истребитель «стелс» легко увидеть невооруженным глазом, зато на экране вражеского радара его изображение по размеру примерно соответствует крупной птице. (На самом деле технология «стелс» представляет собой сочетание нескольких совершенно разных фокусов. По возможности материалы конструкции истребителя заменяются на прозрачные для радара: вместо стали используются различные пластики и смолы; изменяются углы фюзеляжа; меняется конструкция сопла двигателя и т. д. В результате всех этих ухищрений можно заставить радарный луч противника, попавший в самолет, рассеиваться во всех направлениях и не возвращаться в приемное устройство. Но даже с применением этой технологии истребитель не становится совершенно невидимым; просто его корпус отклоняет и рассеивает радарный луч настолько, насколько это технически возможно.)
Возможно, самым многообещающим в плане невидимости из недавних достижений является экзотический новый материал, известный как «метаматериал»; не исключено, что когда-нибудь он сделает объекты на самом деле невидимыми. Забавно, но когда-то существование метаматериалов также считалось невозможным, поскольку они нарушают законы оптики. Но в 2006 г. исследователи из Университета Дьюка в Дарэме (штат Северная Каролина) и Имперского колледжа в Лондоне успешно опровергли это общепринятое мнение и при помощи метаматериалов сделали объект невидимым для микроволнового излучения. Препятствий на этом пути пока хватает, но впервые в истории у человечества появилась методика, позволяющая делать обычные объекты невидимыми. (Финансировало эти исследования DARPA – Агентство перспективных исследовательских проектов Минобороны США.)
Натан Мирволд, бывший главный технолог фирмы Microsoft, утверждает, что революционные возможности метаматериалов «полностью изменят наш подход к оптике и к почти всем аспектам электроники… Некоторые из метаматериалов способны на такие подвиги, которые несколько десятилетий назад показалось бы чудом».
Что представляют собой метаматериалы? Это вещества, обладающие несуществующими в природе оптическими свойствами. При создании метаматериалов в вещество внедряются крошечные имплантаты, которые вынуждают электромагнитные волны выбирать нестандартные пути. В Университете Дьюка ученые внедрили в медные ленты, уложенные плоскими концентрическими кругами (все это немного напоминает по конструкции конфорку электроплитки), множество крошечных электрических контуров. Результатом стала сложная структура из керамики, тефлона, композитных волокон и металлических компонентов. Крошечные имплантаты, присутствующие в меди, дают возможность отклонять микроволновое излучение и направлять его по заданному пути. Представьте себе, как река обтекает валун. Вода очень быстро оборачивается вокруг камня, поэтому ниже по течению его присутствие никак не сказывается и выявить его невозможно. Точно так же метаматериалы способны непрерывно изменять маршрут микроволн таким образом, чтобы они обтекали, скажем, некий цилиндр и тем самым делали все внутри этого цилиндра невидимым для радиоволн. Если метаматериал сможет к тому же устранить все отражения и тени, то объект станет полностью невидимым для этой формы излучения.
Ученые успешно продемонстрировали этот принцип при помощи устройства, состоящего из десяти колец из стекловолокна, покрытых медными элементами. Медное кольцо внутри устройства было почти невидимым для микроволнового излучения; оно лишь отбрасывало слабую тень.
Необычные свойства метаматериалов базируются на их способности управлять параметром, известным как «показатель преломления». Преломление – свойство света менять направление распространения при прохождении через прозрачный материал. Если опустить руку в воду или просто посмотреть через линзы очков, можно заметить, что вода и стекло отклоняют и искажают ход лучей обычного света.
Причина отклонения светового луча в стекле или воде состоит в том, что при входе в плотный прозрачный материал свет замедляется. Скорость света в идеальном вакууме постоянна, но в стекле или воде свет «протискивается» через скопление триллионов атомов и потому замедляется. (Отношение скорости света в вакууме к скорости света в среде называется показателем преломления. Поскольку свет в любой среде замедляется, показатель преломления всегда больше единицы.) К примеру, показатель преломления для вакуума составляет 1,00; для воздуха – 1,0003; для стекла – 1,5; для бриллианта – 2,4. Как правило, чем плотнее среда, тем сильнее она отклоняет луч света и тем больше, соответственно, показатель преломления.
Очень наглядной демонстрацией явлений, связанных с преломлением, могут послужить миражи. Если вы, проезжая по шоссе в жаркий день, будете смотреть прямо вперед, на горизонт, то дорога местами покажется вам мерцающей и создаст иллюзию сверкающей водной глади. В пустыне иногда можно увидеть на горизонте очертания далеких городов и гор. Происходит это потому, что нагретый над дорожным полотном или песком пустыни воздух имеет более низкую плотность и, соответственно, более низкий показатель преломления, чем окружающий его обычный, более прохладный воздух; поэтому свет от удаленных объектов может испытать преломление в нагретом слое воздуха и попасть после этого в глаз; при этом у вас возникает иллюзия того, что вы действительно видите удаленные объекты.
Как правило, показатель преломления – величина постоянная. Узкий луч света, проникая в стекло, меняет направление, а затем продолжает двигаться по прямой. Но предположим на мгновение, что мы в состоянии управлять показателем преломления, так чтобы в каждой точке стекла он мог постоянно изменяться заданным образом. Свет, двигаясь в таком новом материале, мог бы произвольным образом менять направление; путь луча в этой среде извивался бы, подобно змее.
Если бы можно было управлять показателем преломления в метаматериале так, чтобы свет огибал некий объект, то объект этот станет невидимым. Для получения такого эффекта показатель преломления в метаматериале должен быть отрицательным, но в любом учебнике оптики сказано, что это невозможно.
(Впервые метаматериалы были теоретически предсказаны в работе советского физика Виктора Веселаго в 1967 г. Именно Веселаго показал, что эти материалы должны обладать такими необычными оптическими свойствами, как отрицательный показатель преломления и обратный эффект Доплера. Метаматериалы представляются настолько странными и даже нелепыми, что первое время их практическая реализация считалась попросту невозможной. Однако в последние несколько лет метаматериалы были-таки получены в лаборатории, что вынудило физиков заняться переписыванием учебников по оптике.)
Исследователям, которые занимаются метаматериалами, постоянно докучают журналисты с вопросом: когда на рынке появятся наконец плащи-невидимки? Ответ можно сформулировать очень просто: не скоро.
Дэвид Смит из Университета Дьюка рассказывает: «Репортеры звонят и умоляют хотя бы назвать срок. Через сколько месяцев или, скажем, лет это произойдет. Они давят, давят и давят, и ты в конце концов не выдерживаешь и говоришь, что лет, может, через пятнадцать. И тут же – газетный заголовок, да? Пятнадцать лет до плаща Гарри Поттера». Вот почему он теперь отказывается называть какие бы то ни было сроки.
Поклонникам Гарри Поттера или «Звездного пути», скорее всего, придется подождать. Хотя настоящий плащ-невидимка уже не противоречит известным законам природы – а с этим в настоящий момент соглашается большинство физиков, – ученым предстоит преодолеть еще много сложных технических препятствий, прежде чем эту технологию можно будет распространить на работу с видимым светом, а не только с микроволновым излучением.