Вы изучите основные понятия в физике; поймёте, чем квантовая физика отличается от классической; узнаете, что такое квант и как можно совершать «квантовые скачки’».
Чтобы изучать законы квантовой физики, нужно понимать её основные термины. Из этой главы вы узнаете, что такое частицы, волны и поля. Что‑то вы вспомните из школьной программы, а что‑то будет новым. Не пролистывайте этот материал, ведь на полученных знаниях основывается вся книга!
Греческий философ Демокрит (460–370 гг. до н. э.) первым предположил, что существуют атомы.
Атом (др. – греч.) означает «неделимый».
Атомы – это кирпичики, из которых строится любое вещество. Во времена Демокрита атомы считались неделимыми, самыми малыми частицами, но сейчас мы знаем, что это не так. У атома есть строение.
Атом состоит из ядра и электронов. Ядро атома тоже является делимым – оно состоит из протонов и нейтронов. У нейтронов нет заряда. У протонов положительный заряд, а у электронов – отрицательный. Обычно количество протонов и электронов в атоме одинаковое. Поэтому общий заряд атома равен нулю.
В школе вам говорили, что эти частицы (протоны, нейтроны и электроны) и есть самые малые частицы. Но это не так. Только электрон неделим, а протоны и нейтроны состоят из кварков, и по-настоящему элементарные частицы – это кварки.
Кварков существует шесть типов, и у них очень забавные названия: странный, очарованный, нижний, верхний, прелестный, истинный. Да, у физиков хорошее чувство юмора.
В книге я не буду подробно останавливаться на классификации элементарных частиц, это не столь важно для понимания законов квантовой физики.
Интересно, что масса ядра атома составляет более 99,9 % массы атома. Поэтому масса атома сосредоточена в его ядре. А электроны очень лёгкие.
Если возьмём 1 грамм электронов и расположим каждый из них на прямой линии рядом друг с другом, то они образуют цепочку длиной в 4 миллиарда километров!
Все существующие электроны абсолютно идентичны. Вы не найдёте различий, если я поменяю два из них местами. Мои электроны точно такие же, как и ваши, а те идентичны электронам, например, Марса.
Как понять, сколько электронов в атоме?
Надо посмотреть в таблице Менделеева. В ней у каждого элемента есть порядковый номер, он написан в правом верхнем углу. Число протонов и число электронов в атоме равны порядковому номеру элемента. Вверху слева – массовое число, т. е. число нуклонов в ядре (протоны + нейтроны); внизу слева – заряд ядра, т. е. число протонов.
Кстати, в других странах таблицу Менделеева называют просто периодической таблицей элементов, и многие даже не слышали о том, что её изобрёл русский учёный Дмитрий Менделеев. Считаю это большой несправедливостью.
Теперь перейдём к размеру атома.
Вы знаете, что атомы маленькие. Но насколько они маленькие?
Если увеличить монетку в пять копеек до размера Земли, то атом в монетке будет равен по размерам настоящим пяти копейкам.
Или можно сказать так: в одном стакане воды содержится больше атомов, чем число стаканов воды, необходимое для наполнения всех морей и океанов мира.
Какие размеры у частиц атома?
Размер ядра атома более чем в 10 тысяч раз меньше самого атома. А размер электрона и того меньше. Если рассматривать электроны, протоны и нейтроны как частицы, то атом практически пуст.
Почти всё вокруг состоит только из электронов, протонов и нейтронов.
Если бы мы убрали всё пустое пространство между элементарными частицами внутри людей, то мы все – всё человечество – поместились бы в мандарине.
Мы – люди и все предметы вокруг – представляем собой практически пустое пространство. Мы призраки.
Волны – это процесс распространения колебаний с течением времени.
Параметры волн:
• амплитуда (А) – это максимальное отклонение от положения равновесия (например, амплитуда морской волны – это её высота);
• период (Т) – это время полного колебания;
• частота – это число колебаний в единицу времени.
Важно помнить: волны переносят энергию, но не переносят вещество.
Например, на поверхности воды лежит небольшой листок с дерева. Если бросить в воду камень, от него во все стороны начнут распространяться волны. Дойдя до листка, они не потянут его в направлении движения волн, а просто заставят совершать колебательные движения вверх и вниз. Форма воды будет меняться благодаря энергии от удара камня, но течение не возникнет.
Примеры волновых процессов в природе: колебание струны, дрожание желе, звук и, конечно, электромагнитные волны.
Идею прослушивать пациенток через трубку (это звуковые волны) пришла в голову врачу Рене Лаэннеку в 1816 году, потому что он стеснялся прижиматься к женской груди на каждом приёме.
Электромагнитные волны пронизывают всё пространство вокруг. Очень многие физические процессы отличаются друг от друга всего лишь длиной волны. Это радиоволны, инфракрасное и ультрафиолетовое излучения и ещё опасные для человека рентгеновское излучение и гамма-излучение.
Низкочастотные волны и радиоволны используются для радиосвязи, космической связи, телепередач.
Инфракрасное излучение – это тепловое излучение, без которого не было бы жизни. Его основной источник – Солнце, как и для ультрафиолетового излучения. В больших дозах эти излучения могут быть опасными.
И по-настоящему опасные волны – рентгеновское излучение и гамма-излучение.
Рентген используют в криптографии, а ещё с его помощью можно увидеть, что находится внутри человека.
Гамма-излучение образуется при ядерных реакциях, у него высокая проникающая способность из-за малой длины волны. При авариях на АЭС именно оно причиняет так много вреда окружающему пространству.
На рисунке есть тонкая полосочка – это видимое излучение. Мы видим очень малую часть того, что происходит вокруг. Многие другие живые существа видят гораздо больше нас. Например, орлы и пчёлы видят ультрафиолетовый спектр.
В детстве я задумывалась: как бы выглядела наша жизнь, если бы мы видели все длины электромагнитных волн? Помогло бы нам это или нет? Большой вопрос.
#физикишутят
Один из создателей термодинамики (наука о передаче тепла), Вальтер Нернст, в часы досуга разводил карпов.
Однажды кто‑то глубокомысленно заметил:
– Странный выбор. Кур разводить и то интересней.
Нернст невозмутимо ответил:
– Я развожу таких животных, которые находятся в термодинамическом равновесии с окружающей средой. Разводить теплокровных – значит, обогревать на свои деньги мировое пространство.
А у вас есть не связанное с работой увлечение, которое демонстрирует вашу экспертность?
Взаимодействие – это вообще главное, что изучает физика. Исследуя вещество, явление или предмет, мы всегда сталкиваемся с тем, что они взаимодействуют с окружающим миром.
Вместо «Я мыслю, следовательно, я существую» физик бы сказал: «Я взаимодействую, следовательно, я существую».
Даже когда мы просто смотрим на предмет, он облучается фотонами (волной света). Фотоны от него отражаются и попадают нам в глаз. И наш глаз по углу отражения и длине волны может составить представление о форме этого предмета и о его цвете. Помните, что цвет предметов – это лишь длина волны, которую предмет отразил, а мы уловили.
В мире существует всего четыре вида взаимодействий.
Хотя это самая слабая сила, она наиболее нам знакома. Из-за неё люди могут находиться на Земле, а планеты – вращаться по орбите вокруг Солнца.
Сила гравитации любого объекта пропорциональна его массе. Поскольку Земля – ближайший к нам из самых крупных объектов, то все предметы притягиваются к ней.
Если бы не было гравитационного взаимодействия, то из-за отсутствия центростремительной силы люди оторвались бы от Земли и улетели бы в открытый космос со скоростью 436 м/с. Огромная скорость, не правда ли? Гравитация играет важнейшую роль в нашей Вселенной, в нашей жизни вообще. И вместе с тем это самое слабое взаимодействие (посмотрите на таблицу!).
Фундаментальные физические взаимодействия
Гравитационное взаимодействие объясняет теория относительности. А квантовая теория описывает три оставшихся вида взаимодействий.
Участники сильного взаимодействия – протоны и нейтроны. Это та сила, которая удерживает вместе составляющие этих частиц (кварки) и всё ядро атома. Это мощное, самое сильное взаимодействие. Оно работает только на очень коротких расстояниях, крошечных, как ядро атома. И всё же иногда сильного взаимодействия не хватает, чтобы удержать ядро, и оно разваливается на части. Это называется радиоактивным распадом.
В большинстве атомов вокруг нас ядра устойчивые и никогда не развалятся. Некоторые атомы радиоактивны, однако в большинстве случаев это для нас не опасно. Например, банан содержит калий‑40, в грамме которого происходит 32 ядерных распада в секунду. Природный уровень радиации выше среднего у картофеля, орехов и семечек подсолнечника.
В атомной бомбе «Малыш», которая была сброшена на Хиросиму, содержалось около 700 граммов урана‑235. И всего лишь 0,6 грамма вещества было превращено в энергию, создавшую такие ужасные разрушения. Представьте, насколько мощным является сильное взаимодействие.
#физикишутят
Забавно, что люди благодаря философии «в жизни надо попробовать всё» начинают пробовать наркотики, а не изучать ядерную физику, например.
Электромагнитное взаимодействие – это взаимодействие электрически заряженных частиц. Носители этого взаимодействия – фотоны.
Фотоны – это безмассовые частицы, которые двигаются со скоростью света и являются самыми распространёнными частицами во Вселенной. Луч света (это поток фотонов) доходит от Солнца до Земли за 8 минут, а от Полярной звезды до Земли – за 472 года, т. е. мы видим сейчас Полярную звезду такой, какой она была во времена Колумба. И вообще, то, что мы видим в ночном небе, – это давно прошедшие события.
Электромагнитное взаимодействие, как и гравитационное, работает на бесконечно больших расстояниях. Оно намного сильнее гравитационного, но не проявляется в космических масштабах, поскольку материя электрически нейтральна (в каждой области Вселенной количество положительных и отрицательных зарядов примерно одинаково).
В обычной жизни мы постоянно сталкиваемся с электромагнитным взаимодействием. Действие большинства современных приборов и бытовой техники основано на электромагнитном взаимодействии.