Часть 1. Что определяет плодородие почв

Мир, невидимый для глаза


Недавно мой сад посетили садоводы из соседнего района, просьба была одна: «Покажи на практике результаты своих секретов, которые ты описывал в статьях в садоводческих журналах. Например, результаты применения аэрированного компостного чая или локального внесения минеральных удобрений, а также мульчирования почвы грубой органикой и мелкой щепой лиственных деревьев. Покажи, как изменилось качество твоей почвы».

Стоял теплый октябрь. Урожай показать легко, он весь убран в подвал, качество и количество и меня, и посетителей порадовало. А почва? Как ее оценить?

На улице уже были первые заморозки, а земля теплая, с приятной комковатой структурой, цвет угольно-черный. По ней идешь, как по перине, она мягкая, пружинистая. И под деревом, и на убранной грядке рука в некопаную почву входит на глубину ладони.

Часто попадаются очень жирные дождевые черви и другая живность. Невозможно поверить, что всего 10 лет назад на месте огорода у дома был безжизненный серый суглинок, а на месте сада – голый песок, без признаков гумуса.

За эти последние годы мои взгляды на основы почвенной экологии сильно поменялись, и сейчас я попытаюсь неспешно поговорить с читателем о создании Живой Почвы. И о теории, и о практике – личном опыте врача и хозяина на своей земле.

Садоводу трудно разобраться в рекомендациях, которые он встречает в популярных изданиях. Чаще всего публикуются известные приемы агротехники, которые копируются из статьи в статью, и в них описываются нормы и способы внесения минеральных удобрений.

Последние 100 лет бурно развивалась агрохимия, что видно по полкам садоводческих магазинов, заваленных минеральными удобрениями, пестицидами и прочей, как ее стали называть разочарованные садоводы, «химией в красивой упаковке».

Сейчас маятник качнулся в другую сторону, все больше садоводы тяготеют к экологическому (органическому) земледелию, к новым знаниям. Появилось много статей так называемых фанатов природного земледелия, и тут же стала раскручиваться реклама чудо-препаратов «природного типа» с недоказанной эффективностью.

Личный опыт

Я и сам, когда начал читать западную научную литературу по органическому земледелию и почвоведению, открыл для себя очень много нового и понял, что надо овладевать современными знаниями, применять их в своем саду. И описывать новые идеи популярным, доступным для простых садоводов языком.

В то же время последние 20 лет земледельческая наука сделала революционные прорывы в области органического земледелия. Не только простые садоводы, но и агрономы, которые учились 20 лет назад, не могут понять современные статьи в научных журналах по почвенной микробиологии, почвоведению и экологии почв, так как они базируются на новейших открытиях в смежных науках – генетике, молекулярной биологии и т. д.

Что меня волнует? Какие главные идеи, которые я открыл для себя за последние годы, мне хотелось бы донести до читателей?

Главное – помнить, что почва живая

В почве несметное число видимых и невидимых живых организмов. Все эти живые существа миллиарды лет эволюционировали вместе с растениями, которые мы сейчас называем культурными, и ради повышения урожайности, извлечения прибыли из почвы травим почвенную живность пестицидами и минеральными удобрениями.

Пытаемся сложнейшую отлаженную за миллионы лет экосистему заменить простыми схемами применения химических удобрений.

Что я хотел бы понять сам и рассказать читателям? Как, ни в коей мере не отрицая, не отбрасывая современную агрохимию, разобраться в роли живых существ в природных экосистемах и научиться управлять этими процессами, мягко применяя минеральные, органические удобрения и средства защиты. При этом думая не столько о прибыли и урожайности, сколько о качестве получаемых продуктов со своей земли.

Современные промышленные сельскохозяйственные технологии основаны на идеях управляемости урожаями и рентабельности производимой продукции. Это немыслимо без фундаментальных научных достижений в области агрохимии. Поэтому промышленные агропредприятия (голландские, польские) используют минеральные удобрения и пестициды без всякой меры, применяют искусственные грунты, капельный полив, автоматизированные сложнейшие системы. Они не могут себе позволить задумываться о почвенной биоте, жизнь микроорганизмов очень сложна, ранима, трудноуправляема и малопредсказуема.

Для садовода-любителя – все наоборот. Ему не по силам создавать автоматизированные агросистемы, не нужно перенасыщать свои почвы минералкой и пестицидами, а достойные урожаи очень хорошего качества он может получать, используя современные знания по биологии почв.

Простой садовод не имеет микроскопа, он не читает книги по микробиологии и почвоведению, представить реальные процессы в почве, которые он не видит простым взглядом, ему трудно.

Вообразите, что вы путешествуете по лесу с опытным ученым-лесоводом. Он вам сможет наглядно показать все сложнейшие взаимосвязи жизни леса, вы своими глазами увидите и деревья, и подлесок, и травы, и птиц, и насекомых, и крупных и мелких животных. Но увидеть живой мир ваших почв вы не можете. Поэтому садовод все многообразие этого мира подчас сводит к полезной роли дождевых червей.

Более продвинутые слышали, что очень важную роль играют грибы, вступающие в симбиоз с растениями, что есть полезные бактерии и можно применять ЭМ-препараты. А вот о роли мелких почвенных животных и о влиянии бактерий, обитающих в ризосфере, мало кто знает.

Теперь представьте себе, что мы можем изменить свои размеры и проникнуть в мир живой почвы изнутри, посмотреть на него «глазами» самих микроорганизмов и мелкой почвенной живности. Давайте разберемся, что такое плодородие почв с точки зрения почвенной живности.

Здравый смысл нам говорит, что лесная почва для пшеницы мало плодородна, а ель на ней великолепно растет, и наоборот, жирный чернозем плодороден с точки зрения пшеницы, а вот ель на такой почве будет чувствовать себя плохо.

Поэтому, когда мы говорим о плодородии, надо всегда уточнять: для каких культур? На каких почвах и в каком климате эти культуры эволюционировали? Миллиарды лет корни растений отлаживали симбиотические связи с почвенным микромиром в конкретных условиях среды обитания. Убьете грибы и бактерии почвы, и ель на песке не вырастет. А пшеница на черноземе заболеет.

Еще надо сразу понять: когда мы говорим о биологическом разнообразии жизни, прогуливаясь, например, по лесу, – это один порядок цифр и связей, когда мы перемещаемся в мир почвы, число живых существ и многообразие таких связей возрастает в сотни, в тысячи раз. Все это описать, изучить и охватить разумом ученые пока не смогли. Поэтому смиримся с тем, что нашей задачей будет лишь прикоснуться к тому новому, что выяснили ученые о жизни живой почвы, и уяснить главные механизмы, которые определяют плодородие почв.

В лесу, например, мы своими глазами видим, что разные лесные животные строят для обитания различные домики из подручных материалов. Кто-то гнезда из веточек и перьев, кто-то норки, утепленные клубком травки.

Надо понимать, что и почвенная живность создает для себя в тысячи раз более сложную и разнообразную среду обитания, используя почвенную матрицу, т. е. частицы песка, глины, ила, обломки горных пород, минералы, органические вещества разной степени разложения и воду.

На заметку

Лопата для почвы – это то же, что огонь для леса. Мы ухудшаем среду обитания почвенной живности на длительный период, и вместо того, чтобы в симбиозе с корнями повышать урожай наших растений, почвенная живность тратит время и энергию на восстановление среды обитания.

Я это подчеркиваю многократно, чтобы садоводы знали, что любое наше вмешательство в структуру почвы с целью улучшить ее (копаем, вносим удобрения) всегда приводит к обратному результату.

Когда мы закладываем сад, то в долгосрочной перспективе можем продумать, как нам исправить плохую почву, улучшить ее состав с учетом растущих культур, добавить песка или глины, органики или извести, сделать канавы на влажных участках и т. д. Но в последующие годы надо использовать только самую щадящую минимальную обработку почвы и щадящие методы добавления удобрений.

Только тогда почвенные макро- и микроорганизмы вместе с живыми корнями растений и их секретами приступят к очень быстрому и эффективному повышению плодородия наших почв. Одни будут перерабатывать почвенную матрицу, улучшать ее агрегатное состояние и добывать из нее минеральные соли. Вторые станут участвовать в кругообороте элементов питания, преобразовывать одни питательные вещества в другие, более доступные, и перемешивать слои почвы естественным образом. Третьи будут помогать корням усваивать эти элементы, вступая с ними в симбиоз. Четвертые – улучшать капиллярность почвы, увеличивая проникновение воды как сверху, так и снизу, и сохранять эту воду в коллоидном состоянии вокруг микрогранул почвы.

И главное, все это вместе будет нейтрализовать токсичные вещества, охранять растения от болезней. Такая система вырабатывалась эволюционно, неспешно, закреплялась генетически. И воссоздать ее человеческому разуму пока не по силам.

Еще одно важное замечание по плодородию почвы сада. Надо четко осознавать, чего хочет садовод, когда вносит в почву удобрения и улучшает структуру почвы. Долгосрочно – иметь приемлемые урожаи с высоким качеством продукции для своего потребления? Или краткосрочно – получить от земли высокую отдачу при минимуме затрат на ее сохранение, то есть для производства дешевой продукции на рынок?

Плохого фермера заботит сегодняшняя прибыль, плохого чиновника – только откаты и распилы. А нас, простых мудрых садоводов, должна заботить продовольственная безопасность своей семьи.

Очень важно понимать тонкие отличия между биологическими процессами в почве в нетронутой человеком природе и подобными процессами на наших грядках и в наших садах.

Дикие растения всегда растут при дефиците питательных веществ в почвах, и у них эволюционно выработалась высочайшая способность вступать в симбиоз с почвенной биотой и получать питательные вещества.

Культурные растения растеряли многие природные способности. Селекция культур была направлена на получение высоких урожаев, естественно, при повышении потребностей растений в питательных веществах.

Поэтому, говоря о заботе и сохранении микромира почв, мы говорим лишь об улучшении биологической составляющей плодородия, в дополнение к физическим и химическим компонентам. Таким образом, мы не должны слепо копировать процессы, как в дикой природе. Наша задача – научиться выявлять только те главнейшие механизмы, которые помогают повысить урожайность культур на наших грядках в долгосрочной перспективе.

Надо понимать, что садоводу легче оценить свои почвы по химическим и физическим параметрам (узнать, глинистые они или песчаные, много ли в них органики, гумуса, каково содержание азота и фосфора). Научиться оценивать биологическую составляющую плодородия очень трудно.

Научить садовода оценивать биологическую составляющую плодородия по косвенным признакам и является целью моих последующих рассказов, в которых мы поговорим детально и о грибах, и о бактериях, и о почвенных животных всех размеров, и о той роли, которую они играют в жизни растений.

Что общего между микроорганизмами человека и почвы

Я имею общебиологическое образование, поэтому, интересуясь биотой почвы, я также интересуюсь жизнью микроорганизмов в кишечнике человека и провожу параллели. На стыке разных наук можно отыскать много интересных мыслей.

На изучение микробиома человека развитые государства мира тратят намного больше денег, чем на исследования ризосферы растений. И новых открытий здесь много.

Микробиом – это то, что прежде называлось микрофлорой кишечника. Сейчас, с началом масштабных геномных исследований самых разных бактериальных сообществ (например, дна океанов, сточных вод), слово «микробиом» стало более популярным. Оно подразумевает совокупность не столько самих микробов, сколько всех микробных генов, оказывающих влияние на среду, в которой они существуют.

Оказывается, и ворсинки кишечника человека, и корневые волоски у растений взаимодействуют с окружающими их микроорганизмами по одним и тем же законам, контролируются сходными древнейшими генами.

Именно по результатам генетического анализа было установлено, что в организме человека обитает более 10 тысяч видов различных микробов. Такое обилие микробов обеспечивает жизнедеятельность человека гораздо большим количеством генов, чем может предоставить сам по себе человеческий организм. По подсчетам ученых, если в геноме человека 22 тысячи генов, кодирующих белки для обслуживания нашего метаболизма, микробиом привносит около восьми миллионов уникальных кодирующих генов, иными словами, бактериальных генов в человеке в 360 раз больше, чем собственно человеческих.

Такие же процессы происходят и в почве, в ризосфере растений, ферменты микроорганизмов кормят растения. У людей нет всех ферментов, необходимых для переваривания того, что мы едим, отмечают ученые. Большая часть белков, липидов и углеводов нашего рациона расщепляется до питательных веществ, способных всасываться кишечником, микробами, которые обитают в кишечнике. Более того, микробы производят полезные вещества вроде витаминов и противовоспалительных соединений, синтез которых наш геном обеспечить не может. Фаст-фуд, консерванты в продуктах из супермаркета угнетают наш микробиом в неменьшей степени, чем пестициды убивают микроорганизмы в почве.

Еще Аристотель говорил: «Корни растений – это кишки, вывернутые наизнанку». Но все ли знают, как правильно кормить корни или какая пища нужна человеку? То, что можно сказать о растениях и химических удобрениях, справедливо и для человека: все забыли, что наши предки жили на берегах озер Центральной Африки и были собирателями мелкой живности, обитающей в природе, а нас кормят сейчас фаст-фудом.

По сей день продолжаются дискуссии о значении микрофлоры в жизни человека, которые активно велись еще на рубеже XIX–XX вв. Л. Пастером, Р. Кохом и И. И. Мечниковым. Ученых того времени интересовал вопрос: кишечная микробиота – наш обязательный и жизненно важный спутник или же причина заболеваний и преждевременного старения?

Пастер, опираясь на знания о бактериях, живущих в симбиозе с растениями, предположил, что обитатели желудочно-кишечного тракта – симбионты нашего организма и необходимы для поддержания здоровья. Мечников же заподозрил другое: микрофлора кишечника, особенно толстого, вредна и приводит к выработке ядов и токсинов, сокращающих продолжительность жизни человека. И рекомендовал принимать полезные простокваши. В те годы среди ученых преобладали идеи главенства человека над природой, идеи антропоцентризма. Все знают знаменитые лозунги Мичурина.

Прошло 100 лет, но если сейчас опросить и простых людей, и образованных врачей, то окажется, что большинство населения считает нормальную микрофлору кишечника если не вредной, то, по крайней мере, глубоко чужеродной нам массой микробов, куда, как на грядку, можно подсаживать недостающие бифидобактерии или лактобациллы. Одни медики ратуют за исследование состава микрофлоры кишечника и борьбу с дисбактериозом (или дисбиозом). Другие не считают дисбактериоз патологией и предпочитают его игнорировать. Третьи настойчиво объясняют, что «дисбактериоза не существует», что анализ кала на дисбактериоз не надо проводить, так как «бактерии в баночке с анализом сами по себе вырастут на столе у батареи», и что «основой кишечной микрофлоры являются не классические бактерии, а бактероиды».

А если спросить агрономов и садоводов о почве и ее обитателях? Мнения будут такими же взаимоисключающими.

Разница в мнениях нормальна, страшно другое. Мы живем в век засилия монополий, производящих препараты для лечения, с отлаженным маркетингом и рекламой. И отовсюду слышим, что и кишечник, и почву надо лечить, лечить, лечить. Обращаемся к ученым-профессионалам, а они говорят – вопросов и белых пятен куда больше, чем точных ответов. Например, до сих пор неясно, можно ли менять на длительный срок состав микрофлоры кишечника с помощью пробиотических продуктов или препаратов? Таких вопросов существует множество, и, как и во времена Мечникова, в большинстве случаев приходится ограничиваться гипотезами, концепциями, личным врачебным опытом или просто здравым смыслом.

Ученые сходятся во мнении только в том, что к настоящему времени накоплено достаточно информации, чтобы не сомневаться, что подавляющее большинство кишечной микрофлоры не относится к паразитарной, а эта флора очень даже нам нужна, как, собственно, и весь наш кишечник… Новые исследования показали, что всем известные лакто- и бифидобактерии составляют всего 1–5 % флоры кишечника, а главную роль играют бактероиды вокруг ворсинок кишечника. (Их исследовать очень трудно.) А между ними и клетками кишечника существует постоянный обмен информацией через выделения, которая меняется в динамике. Главный вывод ученых: активность кишечных ферментов находится в зависимости (по типу обратной связи) от активности кишечной микрофлоры.

Бактерии кишечника столь же активно взаимодействуют с иммунокомпетентыми клетками макроорганизма, поддерживая в рабочем состоянии систему врожденного иммунитета. Иммуномодулирующая функция микрофлоры – одна из самых интенсивно изучаемых в настоящее время проблем.

Вопрос о полезности или вредности бактерий, населяющих организм человека, который так волновал многих ученых прошлого, во многом – дань старому антропоцентрическому мышлению.

С точки зрения бактерий, мы – просто полезный термостат, поставляющий им питательные вещества. Абсолютная безвредность некоторых видов бактерий – такой же миф, как и их любовь к организму хозяина. Бактерии руководствуются лишь биологической целесообразностью и степенью патогенности, а в определенных условиях и при определенном состоянии иммунной системы организма хозяина могут приводить к тяжелым заболеваниям. Однако, на наше счастье, биологическая целесообразность для микрофлоры такова, что ей энергетически выгодно поддерживать «шагающий термостат с продуктами» в рабочем состоянии, а не убивать его в надежде отыскать нового хозяина.

На заметку

Человек как таковой не существует без своей микробиоты. На деле мы – часть комплексной системы из макроорганизма и его микромира, и слова «полезность» или «вредность», носящие эмоциональную окраску, здесь не очень уместны.

Процесс пищеварения любого организма подстроен под основные источники энергии или, другими словами, под ту пищу, которую организм чаще всего потребляет. Хорошо известно, что у травоядных существенно более длинный кишечник, чем у хищников. Микробиота травоядных также отличается от микробиоты хищников по видовому составу и по ферментативной способности, например, по способности гидролизовать целлюлозу из листьев и травы.

У человека кишечник и его микробные обитатели в процессе эволюции адаптировались к разнообразной пище, богатой животными и растительными белками. Интеллект наших недавних предков и нас самих – лишь инструмент для лучшего обеспечения такими продуктами. Наше пищевое поведение отчасти регулируется миробиотой, способной, как недавно выяснилось, синтезировать различные нейрорегуляторные вещества. Получается, что кишечная микрофлора – неотъемлемая часть нашего организма, причем ее состав и функции определяются нашим пищевым поведением. Даже видовой и количественный состав микроорганизмов в кишечнике строго индивидуален. А недавно появилась информация о том, что состав микробиоты наследуется.

Научно-техническая революция последнего столетия внесла существенные изменения в пищевое поведение человека, за которым не поспевают наша собственная физиология и наша микробиота. Мы стали потреблять меньший объем пищи, меньше клетчатки, а также меньше калорий. Нарушения обмена веществ, такие как гиперхолестеринемия, атеросклероз сосудов, диабет, а также частые аллергии, – расплата за удобства цивилизации.

Получается, что наши микроорганизмы помогли человеку стать разумным, чтобы он кормил их натуральными продуктами из своего сада и огорода, они словно кричат человеку: не ешь фастфуды и «баночки с консервантами»; протестуют, вызывая у него метеоризм, запоры и колики. Но человек, зомбированный рекламой, забыл об их существовании. Поэтому я каждый день напоминаю своим внукам и своим пациентам: накормите вначале свою полезную микрофлору, а затем потакайте своим вкусовым пристрастиям, и постепенно меняйте эти пристрастия. Полюбите продукты, полезные и вам, и вашей биоте.

А как в природе? Коллективный разум муравьев заставляет их работать, нарезать листики и кормить ими грибы в муравейнике, которые дают муравьям белковую пищу. И «коллективный разум» грибов через свои выделения-нейрорегуляторы заставляет муравьев эволюционировать в этом направлении, создавать для грибов уют, тепло, влажность. Что первично? У насекомых антропоцентризма нет. Они эволюционируют вместе и не изобретают хот-доги.

А в саду? У меня есть мусорная куча, куда я годами выбрасываю выполотые сорняки и ботву. В ней вместе эволюционируют и сорняки, и биота. На 5–10-й год «лопухи» там вырастают до небес, потому что растения своими выделениями усиленно кормят биоту, чтобы она эффективнее разлагала органику, а биота своими гормонами заставляет растение формировать огромные листья, чтобы больше получить энергии солнца. Биоте нужно больше углеводов через выделения корней и органики листового опада. Умные цветочники в свои горшки не берут «торфяной субстрат» из магазина. Они ищут в саду не тронутые человеком мусорные кучи, заросшие лопухом и крапивой, и берут оттуда грунт с особо активной ризосферной биотой. Это те садоводы, у которых мозг не отравлен «консервантами» и сохранились нейрогуморальные отношения с биотой своего кишечника.

Зачем я провожу эти параллели? Чтобы садоводы помнили: если вас заботит ваше здоровье и здоровье вашего сада, не стоит слушать советчиков, предлагающих «чудо-препараты» или дешевые примитивные агротехнологии. Начинайте с простого и учитесь всю свою жизнь. Когда кормите себя и свои растения, не забывайте, что у них есть друзья – симбионтные микроорганизмы.

Как влияет биота почвы на здоровье человека

Садоводы умеют оценивать свои почвы по химическим и физическим параметрам, знают, глинистые они или песчаные, много ли в них органики, гумуса, каково содержание азота и фосфора. А вот представить биологическую составляющую плодородия своих почв садоводу очень трудно, плохо учат этому даже студентов в сельскохозяйственных вузах и мало рассказывают в книгах по земледелию.

Итак, попытаемся разобраться в этой невидимой биологической составляющей. Раньше почвенные микроорганизмы ученые изучали с помощью микроскопов и размножали в чашках Петри. Последние пару десятков лет появилась новая наука – молекулярная генетика. И оказалось, что с помощью генетического анализа можно обнаружить в почве на два порядка больше микроорганизмов, чем предполагали раньше.

Ученые, основываясь на методах молекулярной генетики, пришли к единому мнению, что в одном грамме хорошей почвы, хорошего компоста или вермикомпоста может содержаться 1 млрд. бактерий и 1 млн. грибов, не считая другие группы микроорганизмов.

Современным биологам стало понятно, что экологические взаимодействия между этими группами организмов очень сложны и многообразны. Они осознали проблему, что подавляющее большинство из них (по некоторым оценкам, это не менее 99,9 %) не могут быть выделены, выращены и идентифицированы при их культивировании даже с помощью современных лабораторных методов.

В западной литературе уже не пишут просто о бактериях, а пишут всегда о бактериях и археях (археи не могут быть идентифицированы при их культивировании, они не имеют ядра, имеют свою независимую эволюцию и характеризуются многими особенностями биохимии, отличающими их от других форм жизни).

Другими словами, мы знаем, что в почве живут и взаимодействуют между собой миллиарды живых существ, но мы только начинаем понимать, что всего лишь 0,1 % из этих миллиардов микроорганизмов действительно что-то делают в почвенной экосистеме.

Наука экология нам подсказывает, что чем больше индивидуальных цепочек «хищник – жертва» содержится в почве, тем сильнее они будут подавлять фитопатогены и защищать наши растения, это показывает практика. Ученые знают также, что в экологии существует важное понятие о том, что целое больше, чем сумма его частей.

Будучи врачом и интересуясь жизнью микроорганизмов почвы, я невольно сравниваю их с микроорганизмами в кишечнике человека. Чтобы увлечь читателей этой интереснейшей темой, приведу небольшую выдержку из научного журнала.

Личный опыт

Потребляя растения с более разнообразным сообществом бактерий, я формирую и свой микробиом. Адаптирую кишечную флору к своему образу жизни и системе питания. Даю возможность обмениваться с помощью горизонтального переноса генами этим двум микробиомам. Делаю свой организм более богатым генами, обслуживающими мой метаболизм. Это лучшая профилактика различных заболеваний.

«В пищеварительном тракте человека углеводы расщепляются группой ферментов под общим названием гликозидазы, которая насчитывает более 260 веществ. Эти ферменты не производятся клетками нашего организма, а вырабатываются микрофлорой кишечника, в том числе бактериями рода Bacteroides.

Каждый из таких ферментов расщепляет определенный вид углеводов, поступающих в организм с растительной пищей.

Гликозидазы, участвующие в переваривании морских красных водорослей, были выделены у бактерий Zobellagalactanivorans, которые обитают на поверхности этих растений. Французские специалисты провели сравнительный анализ генома указанных бактерий, а также представителей микрофлоры кишечника.

В ходе анализа гены ферментов для переваривания водорослей были обнаружены у бактерий Bacteroides plebeius, населяющих пищеварительный тракт жителей Японии, тогда как у аналогичных бактерий, живущих в кишечнике североамериканцев, эти ферменты отсутствовали.

По мнению исследователей, представители микрофлоры кишечника японцев получили эти гены в результате обмена наследственной информацией с бактериями, обитающими на водорослях, которые используются в приготовлении многих блюд японской кухни, в том числе различных видов суши. Когда именно произошел обмен генами между бактериями, исследователи не уточняют…»

Поэтому многие годы я высаживаю на своей земле не только стандартный набор из десятка культур, а стараюсь вырастить сотни сортов и видов зелени, плодов, ягод, корнеплодов и других вкусностей.

Почва как среда обитания

Повторюсь, главный ресурс почвы, определяющий плодородие, – это не только гумус и доступные NPK, а биоразнообразие живых существ, ее населяющих. Чем выше биоразнообразие почвенной биоты, тем лучше формируются микрогранулы почвы, строятся микрогалереи, повышается пористость, увеличивается в сотни раз площадь внутренней поверхности почвенных частиц и, естественно, площадь обитания микроорганизмов. Все это формирует разные экологические ниши для микробов и, как следствие, контролирует болезни и вредителей.

Поговорим на эту тему подробнее. Почвы на наших грядках отличаются по составу (глина, песок), по размерам частиц, по степени выветривания, по слоям (профилю) – чем выше слой, тем больше органики и кислорода. Это надо знать садоводу, чтобы понимать, как управлять процессами в почве.

Ведь структура почвы, размер частиц, степень разложения органики определяют размер почвенных стабильных агрегатов, размер пор и, как следствие, площадь пленок воды, где сосредоточена жизнь микробов и корней.

Почва в процессе эксплуатации всегда меняется. Качество этих изменений зависит от садовода. Остановимся на этом чуть подробнее. Бактерии и грибы всегда прячутся от почвенных хищников в мелких порах и в глубине гранул. Как только мы лопатой нарушили их убежища, все, что оказалось вне убежищ, тут же съедается ползающими коллемболами, амебами и другими хищниками. Бактерии и грибы поэтому обычно живут оседло, колониями. Прикрепляют себя к глинистым и перегнойным частицам жгутиками, полисахаридными смолами, грибницей. Чем больше глинистых частиц, тем тоньше поры, куда нет ходу хищникам. И наоборот, слишком плотная глина непроходима даже для мелких бактерий, поэтому органика в ней не разлагается годами и недоступна корням.

Но вот на грядки приходят черви, клещи, многоножки, нематоды, они прокладывают норки, заглатывают органику вместе с глиной и песком, в их полостях работают более быстрые микроорганизмы, переваривая и разлагая с огромной скоростью почвенные частицы и попутно переваривая микроорганизмы, выделяя копролиты в почвенных ходах, куда устремляются воздух, влага и корни.

Управлять этими процессами можно. Не следует переворачивать почву «с ног на голову», надо просто регулярно насыпать сверху органику с правильным соотношением азота к углероду и увлажнять почву.

Если садовод научен смотреть на органику как на питание (NPK) для корней, толку бывает мало. Такой садовод свежий навоз закапывает в грядки, делает слой органики в «теплых грядках» иногда метровой толщины, под растение насыпает толстый слой свежих сорняков, которые после дождя гниют. Рано или поздно и эта органика принесет пользу, но вначале она нарушит и структуру почвы, и жизнь биоты, особенно быстро уничтожив почвенных хищников.

Поэтому важно знать, в каких условиях быстрее всего заводятся почвенные мелкие животные, и вносить именно такую рыхлую органику, с соотношением азотистых и углеродистых отходов 1/30, с целью создания условий жизни мелким хищникам. А они обязательно и накормят, и защитят ваши растения. Крики соседей, что в рыхлой органике много всяких вредных жучков, червячков и улиток, которые съедят корни, и надо их всех убить и закопать, – это вредный миф.

Главное – постоянство. Понемногу, в течение всего года, много лет подряд мульчируйте землю тем, что можно найти рядом или недорого привезти, при этом внимательно коррегируя азот или углерод. В любых постоянных условиях наладится свой биоценоз, лишь бы была энергия доступного углерода для бактерий и грибов.

Надо помнить всегда следующее: чем больше корней культурных растений и дикоросов пронизывает почву, чем больше органики корневых выделений и отмерших корней туда поступает, тем быстрее и в большем объеме нарастает почвенная биота.

Микробиота научится вырабатывать необходимые ферменты для разложения имеющихся энергетических продуктов, прежде всего целлюлозу, секретами привлечет азотофиксаторов, которые добавят в пищевые цепочки почвы соли азота.

Чем лучше будет соотношение глины, песка и гумуса, чем меньше поры, тем больше почвенных бактерий спрячутся от хищников, быстрее и лучше переработают вносимую органику, накормят растения. А если вы мульчей сохраните влагу и поры для воздуха – то и для корней, и для биоты наступят райские условия жизни, сформируется стабильная экосистема.

Попытаемся поразмышлять дальше, какие превращения происходят в почве, если сложилась стабильная почвенная экосистема. Вспомним, что такое органическое вещество почвы.

Органическое вещество почвы состоит из углеродсодержащих соединений, образующихся в результате биологических процессов. Стоит помнить о двух главных направлениях: разложение опада и разложение почвенных организмов, которые размножились на секретах корней и опаде корней. Поэтому органика почвы – это всегда разная степень разложения клеточной структуры растений и животных. Медленней всего разлагаются лигнин и хитин.

Но кроме мертвой органики в почве всегда есть живые корни, живые микроорганизмы и крупные почвенные животные. Чем их больше, тем почвы обычно плодородней и лучше противостоят стрессам.

Растения получают углерод только из атмосферы, эволюционно они не могут усваивать огромные запасы углерода в виде СО2 и глюкозы из почвы. Спекуляции на этот счет наукой не подтверждены. Опыты с СО2 и корнями в экспериментах в реальной почве не играют никакой важной роли в жизни растений. Есть много промышленных теплиц, где с поливной водой вносят в почву СО2 в огромной концентрации, корни его не всасывают, просто он медленно поднимается вверх и всасывается листьями через устьица, повышая фотосинтез и урожай. Урожай в теплицах при прочих равных условиях всегда зависит от содержания СО2 в воздухе и не зависит от его содержания в почве.

В теплицах, где не вносят дополнительный СО2, в летний солнечный день листья быстро его «выедают», содержание падает ниже 0,01 % и фотосинтез прекращается, а в почве днем концентрация СО2 очень высока из-за разложения органики, но корни ее почти не усваивают. В растения углерод поступает всегда из воздуха, в листьях (и в корнях) синтезируются более сложные органические соединения. Эти соединения поступают в почву и разлагаются гетеротрофными микроорганизмами.

Получается, сколько органики растение синтезирует и отдает почве, столько и поступает энергии для жизни биоты. Но садовод может внести в почву дополнительную органику, чем резко ускорит процессы почвообразования, или неразумно внести минералку и пестициды, тем самым замедлит эти процессы.

Правильнее именно фотосинтез, точнее, производство растением органических веществ рассматривать как основной процесс, а далее смотреть, что улучшает ситуацию. Например, продолжительность и интенсивность света, содержание СО2 в воздухе, точнее, поднос ветерком к листьям СО2, его содержание в микрозонах устьиц. Наличие и доступность питательных веществ в почве, а также влаги и тепла. Наличие симбионтной биоты в почве со своими нужными растениям гормонами и витаминами.

Приведу примеры, чтобы оттенить важную мысль. Внесите в виде мульчи на одну грядку траву люцерны или льна, на другую – траву лебеды. Стебель люцерны очень прочный. Он состоит из сложных прочных молекул лигнина, при этом вместе с целлюлозой этот лигнин включен в прочнейшие стенки клеток растения. Разорвать эти связи способны ферменты редких грибов. Поэтому гумус из этого лигнина сохраняется в почве сотни лет и определяет ее пористость.

Лебеда состоит из простых белков, сахаров и небольшого количества целлюлозы. Разлагается очень быстро, почти не оставляя гумуса, сразу включаясь в пищевые цепочки микроорганизмов, поставляет растениям много азота. Микроорганизмы так же быстро или умирают, или поедаются хищниками и кормят азотом растения, а вот гумуса после себя почти не оставляют, потому что они не содержат структурно сложных молекул, таких как лигнин и целлюлоза. На первой грядке растения вырастут слабее, а гумуса станет больше, на второй растения будут жировать, а содержание гумуса падать.

Лигнин появился в растениях в процессе эволюции не сразу, а только тогда, когда в них появились сосуды. В отличие от целлюлозы, которая состоит из линейных цепочек сахаров, лигнин состоит из молекул с трехмерной закольцованной структурой.

Грибы (бактерии) своими ферментами легко разрушают целлюлозу и черпают из нее энергию, для разложения же лигнина ферментов и энергии надо затратить больше, а так как в лигнине практически нет азота и других дефицитных элементов, то ради одной энергии углерода биота с ним «не связывается».

Сосудистые растения приспособились утилизировать лигнин, с помощью него укрепляя стенку проводящих сосудов. Как только в природе появился опад сосудистых растений, то есть образовалось много лигнина, появились и грибы базидиомицеты, которые его переводят в гумус.

В почве гумус включился в дальнейшие цепочки почвообразования и сыграл ведущую роль для «строительства домов и городов» для почвенной биоты, определяя структуру почвы и ее способность делать доступными для корней дефицитные минералы почвы.

Почитаем, что пишут ученые, как образовался гумус черноземных степей:

«Максимальное накопление гумуса в мощных тучных черноземах связано с разложением большого количества корневых остатков в условиях весеннего максимума влаги при ограниченном сквозном промачивании гумусового горизонта.

Сухой летний период играет важную роль в образовании и накоплении гумуса черноземов по следующей причине: недостаток влаги в почве к концу лета подавляет жизнедеятельность микроорганизмов, разлагающих и минерализующих растительные остатки, но в это время продолжают интенсивно работать ферменты, играющие существенную роль в процессах собственно гумификации.

Личный опыт

В последние годы я все свои земли стал опрыскивать гуматами весной и осенью («Агровит-Кор»), их еще называют катализаторами почвообразования, поэтому за лето у меня гумуса разрушается менее 1,5 % и прибывает к осени выше 2,5 %. Почва становится темнее и структурнее, в сентябре – теплой и мягкой как перина.

В течение вегетационного периода содержание гумуса в типичном черноземе под целинной степью закономерно изменяется, уменьшаясь приблизительно к концу июня и снова повышаясь в сентябре. Гумус обильно снабжает элементами минерального питания интенсивно вегетирующую в это время растительность.

В конце же лета, она как бы отдает почве новое синтезированное органическое вещество взамен старого, израсходованного почвой на минерализацию в период бурного роста вегетативной массы.

В самом верхнем наиболее корнеобитаемом слое чернозема (0–5 см) сезонные изменения содержания гумуса достигают 2 %: содержание гумуса сначала уменьшается с 10–11 до 8–9 %, а к осени более или менее восстанавливается до первоначального уровня. Потеря 1–2 % гумуса – это 25–30 т/га.

Невозможно предположить, что такое количество гумуса за 2–3 месяца может восстановить опад корней. Самих корней в верхнем 20-сантиметровом слое чернозема содержится 18 т/га. Откуда же берется органический материал – источник пополнения гумуса в черноземе к концу вегетационного периода?

Этим источником являются не только опад корней и не только надземная масса степных трав после ее отмирания, но и прижизненные корневые выделения, которые тоже подчинены сезонной ритмике и достаточно обильны в целинно-степных черноземах…»

Я хочу подчеркнуть, что даже в степях, в дикой природе гумус прирастает очень медленно, тысячи лет. А вот падает в периоде вегетации растений летом на 2 %. Посадка сидератов не меняет скорости накопления гумуса. Да, сидераты осенью дадут прибавку 1–2 % гумуса, но ведь за лето они и съедят эти 1–2 %. Без внесения щепы из сладких веточек или другой дополнительной органики нам не обойтись.

Теперь вам стала понятна роль гумуса в эволюции растений? Нет? Поговорим еще.

В свежем опаде находится много разных органических молекул, некоторые из них быстрее перерабатываются почвенными организмами, чем лигнин или целлюлоза. Например, крахмал и аминокислоты – это простые органические молекулы, первыми вступающие в процесс разложения. Очень много почвенных бактерий и грибов имеют ферменты, необходимые для этого процесса. Все видели, как быстро скисает мясной бульон или ягодный сок.

Разложение крахмала и аминокислот обеспечивает большую часть энергетических потребностей микроорганизмов почвы. Поэтому так эффективны подкормки растений настоями, например крапивы или окопника, где много сахаров и белка.

В противоположность этому фенольные соединения, воски и лигнин состоят из более сложных органических молекул, в почве не деградируют в течение очень длительного периода времени. Но бактерии, грибы, черви с клещами перерабатывают органику, если есть влага, воздух, нужный уровень pH и температура. Об этом часто забывают начинающие. Органика, тонким слоем положенная на песок, высохнет, закопанная глубоко – заплесневеет, сгниет. Опилки без азота закислят почву, пищевые отходы и зеленые листья из-за избытка азота загниют.

Процесс разложения органических веществ называется минерализацией. Во время минерализации элементы, которые были частью структуры органических молекул, пройдя серию пищевых цепочек, постепенно окисляются до менее сложных форм, в конечном счете превращаясь в неорганические молекулы, которые и усваиваются корнями.

Цель у микробов чисто утилитарная – забрать из органики энергию углерода, NPK и микроэлементы и построить свои тела, прежде всего нуклеиновые кислоты, белки и клеточные стенки. Главный дефицит для них – это углерод с его энергией, второй лимитирующий фактор – азот, хотя в почве, богатой биотой, при достатке энергии сахаров дефицита азота нет, аммоний синтезируется из воздуха.

Таким образом, при разложении органики, в которой обычно много азота и фосфора, в богатой гумусом почве быстро создается избыток этих главных элементов, больше, чем требуется для дальнейшего роста микроорганизма, излишки связываются минералами почвы или накапливаются в клетках микроорганизмов. На почвах, бедных глиной и биотой, все это уходит в реки. Если в органике достаточно лигнина, то образующийся гумус иммобилизует избыточные азот и фосфор, и почва быстро наращивает плодородие.

Целинные черноземы – бесценное богатство России. Моя Живая Земля, где содержание гумуса быстро прирастает, – мое бесценное богатство.

Наряду с процессом минерализации идет и процесс иммобилизации, то есть происходит накопление питательных веществ в клетках организмов почвы, и эти вещества становятся временно недоступны для растений. Таким образом, питательные вещества в начале разложения органики накапливаются в микробной биомассе грунта.

Иммобилизация азота почвенными организмами часто представляет значительную проблему для растений. Азот является важным элементом для всех организмов, за него всегда идет борьба между биотой и растением. Дикие растения имеют множество способов отнимать азот у микробов, привлекают хищных амеб, вступают в симбиоз с азотофиксаторами, секретируют много сахаров в почву.

На заметку

Понимание происходящих в почве процессов приходит к садоводу не сразу. Умение вносить органику с нужным соотношением С/N – сродни умению ездить на велосипеде. Набьете шишек – научитесь.

Культурные растения не сохранили эти приемы, так что садовод должен следить за процессами в этой конкурентной борьбе и подкармливать растения азотом, но помнить, что лишний азот угнетает биоту, нарушает почвенные пищевые цепочки. А перекормленные азотом растения привлекают вредителей. Поэтому иногда подкормки компостными чаями с микроорганизмами работают намного мягче и эффективней, чем подкормки минеральными солями.

Поговорим о соотношении углерода к азоту (C/N) в органическом веществе. Разные растения имеют разные соотношения углерода к азоту в составе своих клеток. Например, бобовые имеют более высокую долю азота, чем злаковые травы.

Различие в C/N растительного опада влияет на круговорот азота (и других питательных веществ) в почве. Органическое вещество с высоким C/N не может удовлетворить потребности микроорганизмов в азоте для своего роста. А опад из растений с низким C/N, таких как бобовые, обеспечивает быстрый рост микроорганизмов.

Если почвы окультурены, гумуса много, доступного азота в почве достаточно для удовлетворения роста растений, то минерализация органического вещества, даже бедного азотом, не повлияет на рост растений в краткосрочной перспективе.

Наоборот, на бедных почвах внесение соломы и опилок вызывает острую нехватку азота у растений. Такие почвы надо мульчировать вначале готовым компостом и постепенно добавлять грубую углеродистую мульчу, сочетая ее с богатыми азотом зелеными травами.

Ученые доказали, что регулярное внесение органики с высоким содержанием азота часто не меняет общее содержание углерода в почве, гумус не накапливается, а плодородие растет. Почему? Оказывается, весь вносимый углерод входит в состав живых почвенных микроорганизмов, гумуса при избытке азота становится меньше, а биомасса микробов нарастает. И наоборот, при регулярном мульчировании почвы щепой лиственных веточек, в которых много лигнина и сахаров, содержание стабильного гумуса нарастает. При этом и биомасса микроорганизмов тоже может возрастать. Это сохраняет плодородие почвы в долгосрочной перспективе.

В природе подобные процессы происходят на Сахалине. Горные ручьи выносят в долины глинистые частицы, песок и ил, на них вырастают гигантские широколиственные травы. Появление таких трав – это маркер хорошего соотношения ила, песка и глины в наносных почвах. Опад зарослей гигантских горцев и борщевика содержит много лигнина, много сахаров и достаточно белка. В почвах быстро накапливается одновременно и гумус, и почвенная биота. Формируется особое очень активное почвенное сообщество с очень сложными и стабильными трофическими цепями. Разнообразие микроорганизмов и почвенных животных в этой системе очень высокое. В таких почвах обнаружены «высокоскоростные» марганцевые бактерии, которые перерабатывают органику с высокой скоростью.

Перенос подобной почвы на грядки и в сад приводит к гигантизму культурных растений в течение 2–3 лет. А если продолжать мульчировать эти грядки опадом горцев и не убивать биоту химией и лопатой, то стабильные урожаи без болезней можно получать очень долго.

Все ли знают, кто такие археи?

Итак, попытаемся разобраться в этой невидимой биологической составляющей. Раньше почвенные микроорганизмы ученые изучали с помощью микроскопов и размножали в чашках Петри. Последние пару десятков лет появилась новая наука – молекулярная генетика. И оказалось, что с помощью генетического анализа можно обнаружить в почве на два порядка больше микроорганизмов, чем предполагали раньше. Ученые, основываясь на методах молекулярной генетики, пришли к единому мнению, что в одном грамме хорошей почвы, хорошего компоста или вермикомпоста может содержаться миллиард бактерий и миллион грибов, не считая другие группы микроорганизмов.

Современным биологам стало понятно, что экологические взаимодействия между этими группами организмов очень сложны и многообразны. Они осознали проблему, что подавляющее большинство из микроорганизмов (по некоторым оценкам это не менее 99,9 %) не могут быть выделены, выращены и идентифицированы при их культивировании даже с помощью современных лабораторных методов.

В западной литературе уже не пишут просто о бактериях, а всегда пишут «бактерии и археи» (археи не могут быть идентифицированы при их культивировании, они не обладают ядром, имеют свою независимую эволюцию и характеризуются многими особенностями биохимии, отличающими их от других форм жизни). Другими словами, мы знаем, что в почве живут и взаимодействуют между собой миллиарды живых существ, но мы только начинаем понимать, чем всего лишь 0,1 % из этих миллиардов микроорганизмов действительно занимается в почвенной экосистеме.

Наука экология нам подсказывает, что чем больше индивидуальных цепочек «хищник – жертва» содержится в почве, тем сильнее они будут подавлять фитопатогены и защищать наши растения. Это показывает и практика.

Почвенные грибы в жизни растений

О роли грибов в жизни растений сейчас в популярной садоводческой литературе написано очень много. Еще больше распространено мифов о важности грибов для культурных растений. Попытаюсь помочь простым садоводам в этом разобраться. Думаю, стоит начать с простых примеров, с обычной практики.

Вы посадили, например, гладиолусы на четырех грядках. В почву первой внесли плохо перепревший навоз и растительные остатки типа картофельной ботвы. Итог плачевный – луковицы сгниют. В такой свежей органике много болезнетворных грибов. Вывод: в почве, в органике всегда много грибов вредных, запомним хотя бы один из них: гриб фузариум – главный враг всех цветоводов.

В почву второй грядки вносим свежий конский навоз и в навоз высаживаем луковицы. Осенью даже больные луковицы становятся здоровыми. Лошадей кормят овсом. В их навозе много остатков зерна, это великолепная среда для развития полезных грибов типа триходермы. Триходерма питается также и злым грибом фузариумом и «лечит» почву и луковицы. Вывод: в почве и органике есть много полезных грибов, вытесняющих патогены.

В почву третьей грядки вносим старый компост, пролежавший в мусорной куче пару лет. Осенью мы также получаем здоровые луковицы. Вывод: лучшая почва (лучший компост) – это целинная почва, где много лет росли травы-аборигены и не росли культурные растения со своими болезнями. В старой залежной почве соотношение полезных грибов к бактериям всегда выше, чем на окультуренных грядках. При перекопке почвы, при внесении минеральных удобрений и пестицидов почвенные грибы погибают в первую очередь, и на их место приходят вредные фузариумы из свежей органики.

Почву четвертой грядки с гладиолусами замульчируем щепой с лиственных деревьев (я иногда еще подсыпаю кроличью подстилку с остатками зерновых кормов). Эту сладкую щепу, если ее держать влажной, быстро пронизывают гифы белой плесени и превращают ее в великолепный гумус, попутно выделяя антибиотики и биостимуляторы. На таких грядках вырастают чистые здоровые луковицы.

Сделаем и пятый, комбинированный опыт. Найдем грядку, где не росли цветы и картофель, прольем ее гуматами, затем внесем в бороздки старый компост, посадим гладиолусы, замульчируем щепой и все лето будем поливать землю и листву АКЧ из хорошего компоста.

Осенью пригласим всех соседей и поразим их прекрасными выставочными экземплярами цветов. А потом удивим гигантскими оздоровленными луковицами и деткой.

Стало понятно, что грибы грибам рознь, без знаний нам не обойтись.

Пару слов о мифах. Любой грибник знает в лесу укромные уголки, куда мало ступает нога человека. Именно там он находит лучшие свои трофеи. А теперь представьте, что будет, если кто-то решит удвоить урожай грибов в лесу, внесет в лес навоз, уничтожит травы гербицидами, опрыскает деревья медным купоросом, подкормит их минералкой?! Так и в наших садах. Без свежего навоза под перекопку, минеральных подкормок и пестицидов ну никак не обойтись большинству садоводов.

Поэтому если вам предложат высаживать в садах лесные шляпочные грибы, станут вести теоретические разговоры о роли микоризы, напомните всем золотое правило знатоков грибов: грибы растут не там, где мы хотим, а там, где они сами хотят.

Если вы держите сад под лугом, вносите органику локально, минералку в лунки и постоянно рассыпаете по саду дробленую щепу и листву деревьев, да еще и орошаете почву регулярно, то у вас микоризы в почве будет очень много.

Но не той, что вы подсадите, а своей, аборигенной. Есть корм – целлюлоза и сахара из веточек и листвы – вырастут и сотни различных грибов. Не верьте мифам, не верьте в ненаучные микобиотехнологии.

Появился свежий миф после распространения в интернете книги Ф. Ю. Гельцер. Книга произвела фурор в умах любителей органического земледелия. Если коротко, то, по ее мнению, у каждого вида растения есть свой симбионтный вид грибов, гифы которого находятся во всех тканях растения. Даже при попадании пыльцы на рыльце пестика под действием его гормонов начинается прорастание клеток гриба в ткань будущего семени растения. Так эти грибы и переносятся от растения к растению, спор они не образуют.

Эти симбионтные грибы выполняют азотофиксирующую функцию, снабжают растение макро- и микроэлементами (часто в дополнительном симбиозе с бактериями), витаминами и стимуляторами роста, играют роль иммунной системы растения.

В зависимости от количества гифов и везикул этих грибов в растении Гельцер определяет количественный критерий – степень микотрофности растения. Экспериментально показано, что у иммунных и высокоурожайных сортов культур степень микотрофности наибольшая.

Но тут же коммерсанты стали предлагать различные препараты на основе грибов-симбионтов. Серьезные научные исследования показали, что действие таких «грибных» препаратов не отличается от плацебо. То, что работает при посадках деревьев в лесополосе, ну никак не работает на грядках с капустой или томатами.

А вот стимуляторы ризосферы на основе грибов-симбионтов, типа «Рибав» и «НБ101», отлично работают. Эти гормональные препараты эффективны в очень малых концентрациях, они стимулируют привлечение и размножение симбионтных грибов аборигенов в ризосфере на пользу растениям. Работают и «грибные» АКЧ, сделанные на остове старого компоста, пахнущего грибами, из миллионов видов и родов таких грибов и их спор приживаются нужные для конкретной почвы.

Теперь приступим к теоретическим рассуждениям на тему о почвенных грибах. Грибы – это микроскопические организмы, которые обычно растут в виде длинных нитей или цепей, называемых гифами. Иногда гифы объединяются и образуют массу, которую именуют мицелием. Некоторые грибы, например дрожжи, представляют собой отдельные клетки.

Если не отвлекаться на детали, то можно назвать три главные функции, которые выполняют грибы в почве.

– Грибы улучшают динамику воды, усиливают круговорот элементов питания и контролируют болезни. Чуть подробнее можно это описать таким образом: почвенные грибы вместе с бактериями, работая в разных пищевых нишах, являются важнейшими редуцентами в почвенной пищевой цепи. Они превращают трудно расщепляемые органические вещества в формы, пригодные к потреблению другими организмами.

– Гифы грибов физически связывают частицы почвы, создают устойчивые агрегаты, нормализуют инфильтрацию воды и удерживание влаги в почве. Грибы и их микориза – это своего рода трубопровод между растением и почвой, через который поступают вода и питательные вещества к растению и уходят обогащенные углеродом продукты фотосинтеза.

– Грибы занимают почти все пищевые ниши в почве. Но главная их ниша – это расщепление целлюлозы и лигнина древесины. Но так как грибы выделяют при распаде вторичные метаболиты в виде органических кислот и аминокислот, то именно они как бы синтезируют гуматы и накапливают стабильный гумус почвы. Некоторые грибы называют сахарными, поскольку они используют те же простые субстраты, что и большинство бактерий.

О патогенных грибах в этой статье говорить не будем. Не будем также касаться грибов, обеспечивающих азотом вересковые, и грибов, снабжающих углеродом проростки орхидейных растений. Попытаюсь помочь садоводам разобраться в грибах хотя бы двух видов.

– Одна из основных групп грибов – эктомикоризные (ectomycorrhizae). Они растут в верхних слоях почвы и образуют сообщества с деревьями.

– Вторая основная группа – эндомикоризные (endomycorrhizae), развиваются внутри клеток растений и, как правило, образуют сообщества со злаковыми, пропашными культурами, овощами и кустарниками.

Обе эти важнейшие группы называются микоризные грибы, и их основная роль – как бы связывать корневые клетки с частицами почвы. В обмен на получаемый от растения углерод микоризные грибы помогают растению ассимилировать прежде всего фосфор, поставляют также и другие питательные вещества почвы – азот, кальций (Са), цинк (Zn), медь (Cu) и воду.

Грибная микориза создает связь между растением, почвой и почвенными организмами, увеличивая активность ризосферных процессов, а значит, качество почвы и ее продуктивность.

Грибы любят влагу, поэтому они особенно многочисленны во влажных лесах, где много углеродистого опада. Здесь они преобладают над бактериями. Даже во время засухи, когда бактерии погибают быстрее, грибы выживают и продолжают деструкцию бедной азотом растительной органики. Влагу и азот они собирают за счет обширных сетей гиф и благодаря симбиозу с азотофиксирующими микроорганизмами.

А вот анаэробные условия грибы не любят, при застое воды погибают. Еще быстрее погибают грибы от интенсивной хозяйственной деятельности человека.

Прервем рассказ о функциях грибов в почве, чтобы напомнить, что статья о почве в целом, о ее обитателях и ее экологии.

Когда мы стоим на земле, то стоим на крыше другого мира. В почве живут не одни видимые шляпочные микоризообразующие грибы. Там всегда есть микроскопические почвенные грибки, корни растений, вирусы, бактерии, водоросли, простейшие одноклеточные, клещи, нематоды, черви, муравьи, насекомые и их личинки, а также почвенные животные. Объем живых организмов под землей намного больше, чем над землей.

Все вместе, и только вместе эти организмы ответственны за разложение органической массы, и благодаря им могут питаться растения. Совместная деятельность живых организмов стабилизирует почвенные агрегаты, создавая естественную среду почвы, улучшая ее структуру, общее состояние и продуктивность.

Поэтому, когда кто-то предлагает вам применять в саду новые агроприемы, подумайте, понимает ли автор, что почва – Живая.

Агротехнические приемы (севообороты, сидераты, запашка их, орошение, внесение органических и минеральных удобрений) всегда воздействуют на численность почвенных организмов и их разнообразие, что иногда улучшает, но чаще ухудшает качество почвы.

Канадские ученые-экологи пишут о грибах следующее: «Грибная микориза проникает в клетки корня, не причиняя растению вреда. Микроскопические гифы протягиваются в виде сети шелковых нитей из корня в почвенную массу.

Объемы, в которых растение получает питательные вещества от грибной микоризы, определяют его зависимость от микоризы.

Сильно нуждающиеся в микоризе культуры обычно имеют неразвитую, ограниченную корневую систему, толстые корни и малое количество корневых волосков.

Менее зависимые от микоризы растения отличаются большой волокнистой корневой системой, отлично приспособленной для получения питательных веществ. Однако даже менее зависимые виды растений используют микоризу при засухе.

Микориза также повышает устойчивость растения к заболеваниям корней. Если корни растения были однажды колонизированы грибной микоризой, их физиология и биохимия меняются. У растения повышается интенсивность фотосинтеза, улучшаются система использования воды и способность поставлять разные виды углеродных компонентов к корням.

Соответственно, если грибная микоризы колонизировала растения, то формируется совсем другая ризосферная общность. Это ризосфера с меньшим количеством патогенных микроорганизмов, с большим количеством нитрификаторов и другими изменениями, о которых мы пока не знаем…»

Приведу несколько научных фактов, чтобы показать, насколько непредсказуемы наши действия с почвой.

«Степень колонизации грибной микоризой и преимущества для растения может резко уменьшиться из-за использования несбалансированных севооборотов, которые включают такие несовместимые растения, как крестоцветные. При этом популяции почвенной фауны (например, дождевых червей и нематод) обычно увеличиваются под покровом крестоцветных.

Внесение удобрений, содержащих легко растворимый фосфор (включая некомпостированный навоз), значительно сокращает колонизацию грибной микоризой. Фермы, на которых применяются методы сберегающего земледелия, не используют такие удобрения. Следовательно, они имеют более высокий уровень колонизаций везикулярно-арбускулярной микоризы, чем фермы, где практикуется традиционная система земледелия.

На таких фермах растительные остатки первоначально разлагаются с помощью грибов, которые накапливают азот в гифах. В дальнейшем начинают расширяться популяции клещей, питающихся грибами. Клещи используют азот, которого в теле грибов больше, чем в теле клещей, поэтому лишний азот выделяют в почву, из которой его поглощают растения и другие организмы…»

Существует мало доказательств строгой специфичности грибов, хотя некоторые растения чаще колонизированы определенными видами. Содержание различных эндомикоризных грибов в корнях зависит от почвенных условий, развития корневой системы, характеристик грибов и степени пестицидной нагрузки.

Теперь продолжим теоретические изыскания на тему грибов в почве. Миллионы лет назад началась совместная эволюция растений и почвенных грибов. К настоящему времени самым распространенным типом микоризы является эндомикориза (арбускулярная микориза). Корни большинства сельскохозяйственных растений колонизированы одновременно несколькими видами эндомикоризных грибов, как доказала Ф. Гельцер, передающихся с семенем.

Грибы (эндомикоризные) являются «биотрофными», они не в состоянии завершить свой жизненный цикл без растения. Грибы на высушенных или замороженных корнях растений могут выживать в почве в течение длительного времени в виде спор или гиф. Они часто содержат особые бактерии, которые способствуют прорастанию грибов в благоприятных условиях.

Для культурных растений роль эндомикоризных грибов не стоит преувеличивать. Да, в дикой природе они снабжают молодые проростки растений дефицитным фосфором, медью и цинком, в первую очередь таких, как клевер, который имеет грубую корневую систему.

Эти элементы связаны с почвой прочнее, не передвигаются с почвенной влагой, как нитраты. Поэтому растение и вступает в симбиоз с грибами. А вот роль живых грибов в снабжении корней нитратами минимальна.

Травянистые растения имеют волокнистые корни и способны лучше исследовать почву в поисках фосфора. И легко выживают без грибов, особенно если в почве есть влага и доступный фосфор.

Для взрослых растений, растущих на наших грядках, необходимость присутствия грибов не доказана. Наоборот, есть много данных, что при некоторых условиях эндомикоризные грибы угнетают рост растений, возможно, потому что они перехватывают сахара, предназначенные для бактерий в ризосфере.

Да и растения при наличии фосфора в почве перестают синтезировать вещества для роста грибов, и их число резко уменьшается. Правда, тут же на их место растения своими выделениями привлекают других необходимых для питания симбионтов с новыми ферментными системами. Дефицит питания бывает всегда, чем лучше мы кормим растения одним, тем больше потребность в другом.

Но в любом случае роль микоризных грибов велика, хотя бы потому, что в почве эндомикоризные грибы образуют обширные сети гиф, которые соединяют корни многих видов растений в единую систему. Это обеспечивает пути обмена питательных веществ между различными видами растений.

Молодые растения, прорастая из почвы, содержащей сеть эндомикоризных гиф, могут сразу получить доступ к питательным веществам от взрослых растений и лучше расти. Это увеличивает их шансы на выживание.

Не забудем о второй огромной группе грибов. Эктомикоризные грибы доминируют в лесных экосистемах, вступают в симбиоз с крупными деревьями, кустарниками и многолетними травами. Гифы эктомикоризных грибов, как правило, четко видны на поверхности корней. Они усиливают корневое ветвление и ограничивают рост корней вширь. Число таких грибов огромно, мы видим лишь некоторые из них в лесах и других ненарушенных экосистемах по их плодовым телам. Животные по запаху находят и подземные тела грибов типа трюфелей.

Надо понимать, что наличие или отсутствие плодовых тел никак не связано с объемом грибницы под землей. То есть если в наших садах нет грибов, это не значит, что мало грибницы и надо ее приносить из леса.

Эктомикоризные грибы живут долго, так как сожительствуют с деревьями, живущими иногда сотни лет. Споры играют не главную роль в распространении этих грибов, молодые растения в основном колонизируются гифами, имеющимися в почве. При этом на молекулярно-генетическом уровне корень распознает совместимый с ним гриб, а гриб распознает нужный ему корень, это все происходит очень строго и видоспецифично.

Опять же доказана очень важная роль эктомикоризных грибов для роста молодых растений, а вот влияние этих грибов на взрослые растения не доказано. Поэтому и садоводу высаживать грибы во взрослом саду не имеет смысла.

А вот молодой сад эти грибы обеспечивают дополнительной влагой, фосфором, микроэлементами и защищают от болезней. Чем обширнее белковая масса грибов, чем больше этой массы съедят почвенные клещи, тем лучше выделения этих животных накормят растения. Поэтому не перекапывать молодой сад надо, а держать под многолетними травами, мульчировать грубой углеродистой органикой и увлажнять! Споры прилетят, грибы сами вырастут.

Если вы не устали от микоризных, поговорим о других почвенных грибах – деструкторах древесины.

Ученые изучали, какие грибы разрушают опад из веточек в лиственном лесу. Каждую неделю в течение теплого сезона они брали верхний слой почвы и делали посев на грибы.

Оказалось, что вырастало очень много разных видов грибов-деструкторов, и каждый раз, от недели к неделе, эти виды менялись, появлялись все новые и новые пищевые цепочки. Но ведь вместе с грибами менялись и виды бактерий, и виды хищников, от простейших до клещей.

Поэтому никогда не применяйте коммерческие препараты со спорами микрогрибов, эффект от них длится не более недели. Просто создавайте условия для их процветания, и грибы защитят ваши растения и насытят почву гумусом.

Теперь поговорим о моем сорокалетнем опыте создания Живой Почвы в деталях.

Зачем нужны мелкие почвенные хищники?

О роли бактерий и грибов для жизни почвы написано много. О функции дождевых червей знает каждый садовод. Но если спросить, кто играет роль «волка в лесу», т. е. является главным хищником в почве, ответят не все. Оказывается – это простейшие и другие мелкие почвенные хищники. Именно они определяют главный экологический тезис о том, что «целое» – всегда больше «суммы частей». Миллиарды бактерий, миллионы грибов, которые разрушают почвенный опад, контролируются гораздо меньшим числом мелких (микро-), средних (мезо-) и больших (макро-) хищников. Их размеры варьируются в диапазоне от нескольких микрометров до более метра. Список включает в себя: простейших (жгутиковые, амебы, инфузории), нематод, клещей, коллембол, моллюсков, мелких червей – энхитрей, дождевых червей, многоножек, сороконожек, изопод, муравьев, термитов, жуков, личинок двукрылых и пауков. И вот когда в эту живую почву с миллиардами живых существ проникает живой корень со своими выделениями, то система усложняется многократно.

Приведу лишь один пример, который стал известен мне совсем недавно. Концентрация азота в клетках простейших (и круглых червей) ниже, чем в бактериях, которых они поедают (соотношение углерода к азоту в клетках простейших составляет 10:1 и более, а у бактерий – от 3:1). Бактерии, потребляемые простейшими, содержат слишком много азота в соотношении с количеством углерода, необходимого им для питания. Поэтому простейшие высвобождают излишки азота в виде иона аммония (NH4+). И человек, и корова выделяют мочу, пахнущую аммиаком. Так и простейшие выделяют лишний аммиак в ризосфере корней, и это лучшая азотистая подкормка для растений. Так как концентрация бактерий и хищников с их выделениями резко повышается в миллиметровых слоях у корневой системы растения, то, хотя почвенные бактерии и другие организмы быстро перехватывают и поглощают большую часть аммиака, все же часть его потребляется и растением. Таким образом, в реальной живой почве корни не берут азот непосредственно «из трупов погибающих бактерий», а получают через выделения простейших. Задача корня сводится лишь к регулированию бактерий и простейших своими выделениями.

Еще одна роль, которую играют простейшие, – регулирование популяций бактерий. Когда простейшие поедают бактерии, они стимулируют рост их популяции (следовательно, и темпы разложения и агрегации почвы). Этот процесс можно сравнить с обрезкой дерева: если обрезать немного – это улучшает рост, переусердствовать – снижает. Простейшие к тому же – важнейшее звено в системе почвенных пищевых цепочек. Они помогают снизить заболеваемость растений, поскольку конкурируют с патогенами или питаются ими. Все это налаживалось и регулировалось миллиарды лет совместной эволюции растений и почвенных животных.

Чтобы вы поняли, насколько мир хищников почвы интересен, подробнее расскажу о коллемболах. Их больше 10 000 видов, но мало кто из садоводов рассматривал хоть один из них. Раньше их считали примитивными насекомыми, потом было установлено, что это самостоятельный класс. Размер – от одной десятой миллиметра до чудовищных гигантов в 17 мм длиной. Возникли в девоне, более 400 млн. лет назад. Живут на почве и питаются детритом. Они есть всегда в глубине лиственного опада.

Их едят все – от птиц до муравьев и мух, множество жуков только ими и питаются. У жужелиц есть особая борода из ресничек на подбородке, жужелица бежит над субстратом и как только снизу, за бороду, зацепит коллемболу – хватает челюстями и в рот.

Кто-то охотится на коллембол, догоняя их, кто-то подстерегает в засаде. Снизу под брюшком у многих ногохвосток прикреплена вилка – орган для прыжков. Если появляется опасность, вилка высвобождается из зажима на брюшке и распрямляется, коллемболу бросает в воздух на невозможную высоту. Этакие десантники.

Кроме вилки, на брюшке есть еще трубка, выделяющая липкую жидкость. Приземляется ногохвостка на брюхо и тут же приклеивается и присасывается липкой присоской, чтобы не отскакивать и не падать. Ну, а другие коллемболы без всего этого обходятся и просто ползают.

Насколько можно понять, разные группы видов приспособлены каждая к своему субстрату. Есть роды и семейства, живущие на листьях, живых и мертвых. Есть виды-«грибники», которые специализируются на поедании грибов. А есть даже виды, обитающие в основном на кладбищах и поедающие трупы.

Загрузка...