1833 Роберт Броун описывает ядра в клетках орхидей.
1866 Грегор Мендель публикует «Опыты над растительными гибридами».
1868 Фридрих Мишер открывает нуклеин (ДНК) в клетках гноя.
1878 Альбрехт Коссель выделяет «дрожжевой нуклеин» (впоследствии было показано, что это РНК).
1880 Вальтер Флемминг описывает нуклеиновые нити, образующиеся из хроматина во время деления клетки (митоза) у саламандр.
1882 Флемминг выдвигает гипотезу об идентичности хроматина и нуклеина.
1885 Коссель выделяет два основания – гуанин и аденин – из нуклеина тимуса (зобной железы), а позднее – тимин (1893 год), цитозин (1894 год) и урацил (1900 год).
1888 Вильгельм Вальдейер переименовывает нити Флемминга в «хромосомы».
1889 Рихард Альтманн переименовывает нуклеин в «нуклеиновую кислоту».
1900 Труды Менделя заново открываются Карлом Корренсом, Хуго де Фризом и Эрихом фон Чермаком.
1903 Уолтер Саттон формулирует «хромосомную теорию наследственности».
1904 Уильям Бэтсон начинает отстаивать принципы Менделя и вводит термин «генетика».
1909 Вильгельм Иогансен вводит термины «ген», «генотип» и «фенотип».
Феб Левен идентифицирует сахар в дрожжевой нуклеиновой кислоте (РНК) как рибозу.
1912 Левен выдвигает предположение, что нуклеиновые кислоты представляют собой маленькие «тетрануклеотиды», содержащие по одному все четыре основания.
Макс фон Лауэ делает первый рентгеновский снимок кристалла.
1914 Лоренс Брэгг формулирует закон Брэгга о рентгеновской кристаллографии; совместно со своим отцом Уильямом разрабатывает «новую кристаллографию».
1915 Томас Хант Морган публикует книгу «Механизм менделевской наследственности», описывающую мутации у дрозофил.
1927 Фред Гриффит демонстрирует, что мертвые бактерии-пневмококки могут трансформировать (изменять генетически) живые пневмококки при их инъекции в живых мышей.
1928 Левен и Коссель заявляют, что гены состоят из белка, а не из нуклеиновой кислоты.
1929 Левен идентифицирует сахар в тимусной нуклеиновой кислоте (ДНК) как дезоксирибозу.
Мартин Доусон из лаборатории Освальда Эвери в Рокфеллеровском университете подтвердил данные Гриффита о трансформации пневмококков, также на живых мышах.
1931 Доусон и Ричард Сиа получают трансформацию в искусственных условиях (in vitro).
1932 Лионель Эллоуэй в лаборатории Эвери выделяет «трансформирующее начало», ответственное за трансформации, но не может описать его с химической точки зрения.
1937 Торбьёрн Касперссон выводит, что молекулы ДНК представляют собой очень длинные тонкие цилиндры и что они гораздо больше, чем один «тетрануклеид».
1938 Флоренс Белл делает рентгеновские снимки ДНК; вместе с Биллом Астбери она высказывает предположение, что основания в молекуле ДНК уложены друг на друга «как стопка монет».
1940 Колин Маклауд из лаборатории Эвери выявляет ДНК в «трансформирующем начале», но не идет дальше этого наблюдения.
1941 Альфред Мирски выделяет «хромозин» (ДНК со связанным белком) из клеточных ядер.
1942 Маклин Маккарти и Эвери демонстрируют, что «трансформирующее начало» состоит из ДНК с очень небольшим содержанием контаминирующего белка.
1944 Эрвин Шрёдингер в своей книге «Что такое жизнь?» выдвигает предположение, что гены представляют собой «апериодические кристаллы».
Эвери, Маклауд и Маккарти публикуют свою эпохальную работу, демонстрирующую, что ДНК является «трансформирующим началом» и генетическим материалом в пневмококках.
Мирски настаивает, что белок, а не ДНК, лежит в основе трансформации и является генетическим материалом.
1947 Роллин Хотчкисс демонстрирует, что ДНК содержит неравные количества четырех оснований, таким образом исключив возможность гипотетического тетрануклеотида.
Андре Буавен доказывает, что ДНК трансформирует также другие бактерии (E. coli).
Мэссон Гулланд выдвигает предположение, что молекула ДНК удерживается благодаря водородным связям между основаниями.
Аспирант Гулланда Майкл Крит выдвигает гипотезу о том, что ДНК состоит из двух прямых нитей ДНК, соединенных водородными связями между основаниями в противоположных нитях.
1948 Эрвин Чаргафф сообщает о том, что количества аденина и тимина равны друг другу, так же как равны друг другу количества цитозина и гуанина, в разных источниках ДНК.
Лайнус Полинг открывает альфа-спираль, которая играет главную роль в формировании молекул белка.
1949 Свен Ферберг определил, что основания лежат перпендикулярно к остову ДНК, и выдвинул гипотезу об однонитевой спиральной структуре ДНК.
1950 Рэй Гослинг из Королевского колледжа делает рентгеновский снимок, на котором видна правильная «кристаллическая» форма ДНК (А-форма).
1951 Январь: Розалинд Франклин устраивается в Отделение биофизики Королевского колледжа, чтобы работать над рентгеновским анализом структуры ДНК.
Май: Уилкинс демонстрирует кристаллическую структуру ДНК на встрече в Неаполе и вдохновляет Джима Уотсона разобраться в ее строении.
Элвин Бейтон из Лидса делает рентгеновский снимок, на котором видны спиральные характеристики ДНК (B-форма). Снимок игнорируется.
Июль: Уилкинс демонстрирует структуры ДНК на заседании в Кембридже, и Франклин советует ему прекратить работать над ДНК.
Алек Стокс из Королевского колледжа прогнозирует рентгенограмму спиральной молекулы.
Октябрь: Джим Уотсон начинает работать с Фрэнсисом Криком в Кавендишской лаборатории в Кембридже и убеждает его заняться поисками структуры ДНК.
Ноябрь: Уилкинс встречается с Уотсоном и Криком и говорит им, что наиболее вероятная структура содержит три спиральные нити ДНК.
Уотсон посещает коллоквиум в Королевском колледже, где Уилкинс и Франклин представляют свою работу по ДНК.
Брюс Фрейзер из Королевского колледжа создает модель ДНК, содержащую три спиральные нити, которую Уилкинс отвергает.
Декабрь: используя данные Королевского колледжа, Крик и Уотсон создают трехнитевую модель ДНК, которая в корне неверна; Уилкинс прекращает сотрудничество с ними.
1952 Январь: Франклин и Гослинг описывают A-форму и B-форму ДНК.
Апрель: Джон Гриффит в Кембридже вычисляет, что за счет водородных связей аденин будет притягиваться к тимину, а цитозин – к гуанину.
Май: Гослинг делает Фотографию 51, на которой видны спиральные характеристики ДНК (B-форма).
Июль: Франклин решает, что «кристаллическая» ДНК (A-форма) не может быть спиралью, так что Уилкинс начинает сомневаться в спиральной природе ДНК в целом.
Декабрь: Полинг предлагает модель ДНК с тремя спиральными нитями, которая также в корне неверна.
1953 Февраль: Уотсон приезжает в Королевский колледж; Уилкинс показывает ему Фотографию 51, на которой Уотсон видит диагностические признаки спиральной структуры.
Март: Франклин оставляет Королевский колледж, чтобы заняться изучением структуры вирусов в Колледже Биркбек, Лондон.
Уотсон понимает, что попарное соединение оснований на противоположных нитях – это ключ к структуре ДНК. Используя данные Франклин без ее ведома, он вместе с Криком создают двойную спираль.
Апрель: в журнале Nature выходят три работы по двойной спирали – Уотсона и Крика; Уилкинса et al.; и Франклин и Гослинга.
Июль: Уотсон и Крик публикуют в журнале Nature продолжение своей работы, где говорится о самоудвоении ДНК.
1958 16 апреля: Розалинд Франклин умирает от рака яичника в возрасте 38 лет.
1962 Уотсон, Крик и Уилкинс разделяют Нобелевскую премию по физиологии и медицине.
1968 Уотсон публикует «Двойную спираль» (The Double Helix).
2001 Независимый научный суд снимает с Грегора Менделя обвинение в фальсификации своих данных.