Теория

Различия между EWA и AWA

На сегодняшний день среди тех, кто использует в торговле на финансовых рынках волновой анализ, наиболее известной и чаще всего применяемой является классическая теория волн Эллиотта.

Поэтому книгу я решил начать с перечисления основных различий между теорией волн Эллиотта (EWA) и альтернативным волновым анализом (AWA).

Итак, в качестве постулатов AWA использованы следующие утверждения:



При этом базисом альтернативного волнового анализа является предположение о том, что в основе развития ценового графика финансового инструмента лежит геометрический фрактал – дерево Пифагора (Мировое Древо).

Ну или, если говорить точнее, его основа – Пифагоровы штаны, которые, как известно, во все стороны равны.



Так вот, ключевая идея альтернативного волнового анализа заключается в том, что по мере развития (усложнения структуры) ценового дерева путем вычислений мы можем точно зафиксировать только те моменты, когда происходит выполнение условия равенства площадей на разных уровнях детализации дерева Пифагора. Это и есть циклы.



Именно в эти моменты на рынке и происходит возникновении симметрии. Но симметрии не временной, а структурной (событийной), симметрии, выраженной в равенстве площадей.



Однако AWA не может прогнозировать, когда именно возникнет новый цикл, так как последовательность формирования структуры ценового дерева является по своей сути процессом хаотическим, а значит, практически не поддающимся прогнозированию.


Но, несмотря на непредсказуемый процесс формирования дерева (цены), который можно сравнить со сборкой пазла, когда мы случайным образом достаем из набора все новые и новые элементы дерева, тем не менее, площади самих фигур вычислить мы можем.


Путем расчетов у нас всегда получится определить те ключевые моменты, когда происходит выполнение условия равенства площадей для различных уровней детализации нашей фрактальной модели.


Именно эти точки и можно считать моментами возникновения симметрии. Именно в эти мгновения образуются циклы, которые рассматриваются затем как стоячие волны ценовых графиков, создающие устойчивую интерференционную картину распределения минимумов и максимумов.

При этом, в отличие от EWA, где используется 2 разновидности волновых конструкций (пятиволновка и ABC-зигзаг), в AWA используется 3 вида волновых конструкций. Условно: S-пятиволновка (±2), X-зигзаг (±2) и антиX-зигзаг (±1).



При этом AWA опирается на гармонический 32-волновой цикл, а не на классический 34-волновой цикл Эллиотта.

Более того, в альтернативном волновом анализе базовые эллиоттовские пятиволновка и ABC-зигзаг являются всего лишь разновидностями одной, общей для всех четной и полностью симметричной N-модели, представляя собой различные ее искажения вдоль спирали.



Поэтому если мы рассмотрим все возможные комбинации таких разновидностей, то обнаружим, что их может быть всего 8 (23). Отсюда и возник алфавит альтернативного волнового анализа – NASH FLEX.

Однако все модели из алфавита NASH FLEX – это только четные конструкции с параметром ±2. Но у нас есть еще нечетная модель антиX с параметром ±1.

Поэтому полная схема волновых формаций будет выглядеть следующим образом:



Все 8 четных моделей NASH FLEX плюс 1 нечетная модель антиX хорошо укладываются в 2 октавы, а сами волновые модели, по сути, представляют собой различные ноты.

Таким образом, AWA позволяет не только фиксировать волновые модели, но и записывать ценовой график в виде последовательности нот. Дальнейшее развитие теории уводит нас к такому фундаментальному физическому явлению, как интерференция волн.



Дело в том, что любая волновая модель в альтернативном волновом анализе рассматривается в качестве источника (центра) возмущения (излучения), порождающего когерентные волны, а результирующее поле в каждой точке ценового графика определяется интерференцией этих волн.



Таким образом, получается, что выделение волновых циклов в AWA является не чем иным, как анализом интерференционной картины, которая постоянно меняется по мере появления все новых и новых источников когерентных волн – волновых моделей.

Теперь становится понятным, почему играет большую роль понятие четности и нечетности моделей, пар и т. д.

Дело в том, что согласно классической физической теории:

• интерференционные минимумы возникают тогда, когда разность хода между источниками равна нечетному количеству полуволн;

• интерференционные максимумы образуются тогда, когда разность хода между источниками равна четному количеству полуволн.

Так определяется, сформирован ли сейчас узел или пучность стоячей волны.


Циклы, полуциклы и дробные циклы

Циклы, полуциклы и дробные циклы являются главными комбинациями в альтернативном волновом анализе. Все они представляют собой различные резонансы и формируют своеобразные преграды на пути движения потока, которые ему необходимо преодолеть, чтобы у него была возможность двигаться далее.

Но давайте по порядку.

Четвертый постулат AWA гласит: все волновые модели (пакеты) должны повторить друг друга (создать пару). Под созданием пары подразумевается объединение двух последовательных волновых моделей.

Кроме волновых моделей из алфавита (NASH FLEX), которые являются четными конструкциями (±2), у нас еще имеется нечетная модель антиX (±1), поэтому полученные пары также могут быть либо четными, либо нечетными.



(В дальнейшем я буду рассматривать все комбинации на примере моделей роста, то есть со знаком плюс.)


Таким образом, мы можем получить самую простую (единичную) нечетную пару, которая будет иметь вид (+2+1), либо можем получить самую простую (единичную) четную пару, которая будет иметь вид (+2+2).

Здесь необходимо еще добавить (это понадобится нам в дальнейшем).



Нечетная пара (+2+1) имеет приоритет перед четной парой (+2+2). То есть если волновой пакет представлен последовательностью (+2+2+1),



то его мы должны будем представить как (+2(+2+1)). Иначе говоря, вынести нечетную пару (+2+1) отдельно, оставив в начале незакрытую двойку.

При этом необходимо отдельно отметить, что по мере усложнения волновой структуры рынка могут образовываться следующие, гораздо более сложные комбинации пар. Их можно назвать резонансами, так как они представляют собой симметрию.



Эта таблица устроена таким образом, что считает по отдельности общее количество пар. Другими словами, учитывает число нечетных пар (+2+1) и число четных пар (+2+2). Отсюда и получаются первая, вторая, четвертая и восьмая нечетная и четная пары.

Теперь давайте вспомним, что именно в AWA считается волновым циклом.



В альтернативном волновом анализе волновой цикл – это одновременная комбинация четных и нечетных пар одного порядка.

Например, базовый волновой цикл первого ранга (R1) будет соответствовать одновременному формированию второй (21) четной и второй (21) нечетной пары.



При этом цикл второго ранга (R2) будет соответствовать одновременному формированию четвертой (22) четной и четвертой (22) нечетной пары.



Кроме обозначения ранга волнового цикла нам еще понадобится система обозначения таких участков, как полуциклы.



Основное отличие полуциклов от циклов заключается в том, что полуциклы состоят либо только из четных пар, либо только из нечетных пар. Обратите внимание на позиционную структуру полуциклов – она полностью эквивалентна позиционной структуре самих циклов.

Но вернемся к нашим волновым полуциклам.

• Нечетные пары я обозначил буквой M (Men) – мужчины.

• Четные пары я обозначил буквой W (Women) – женщины.

Вот так выглядит сводная таблица полуциклов.



Именно их мы фиксируем в волновом балансе. Ведь именно эти комбинации, являясь симметричными, представляют собой своеобразные резонансы-всплески, создающие барьеры на пути ценового потока. В AWA полуциклы характеризуют форму рельефа русла.

Дробными циклами и полуциклами считаются те же самые комбинации, которые мы рассмотрели выше, но которые состоят при этом не из нецелого, а из дробного числа волновых пакетов.

Выделение циклов

В своей прошлой книге я выделял циклы при помощи дерева, которое я рисовал в волновом балансе.



Сейчас я значительно упросил метод отображения и подсчета циклов – я просто выделяю соответствующие участки разными по цвету прямоугольниками. При этом я также указываю параметр интерференции и среднюю длительность цикла.



Однако давайте все по порядку.

Чтобы облегчить восприятие материала, я решил воспользоваться нестандартным подходом и в качестве наглядного пособия использовать плиточный шоколад. Да-да, вы не ослышались, именно плиточный шоколад, чтобы на его примере просто и наглядно постараться объяснить, что такое волновые циклы и как они образуются.

При этом рассказывать я буду не просто о плиточном шоколаде, а о том, как его можно делить. Ну что ж, поехали.

Но для начала напомню, что в AWA в качестве своеобразной базы использован простейший волновой цикл (R1).



По модулю он имеет структуру [(+2+1)(+2+2)(+2+2)(+2+1)]. Почему именно такая структура и как она появилась, вы можете прочитать в предыдущей моей книге.

Стоит также отметить, что здесь использована симметричная (относительно центра) структура построения цикла, хотя эта последовательность может быть абсолютно любой.

Главное условие – это определенное количество пар. В данном случае простейший цикл (R1) будет содержать 21 четных пар и столько же нечетных пар. Иначе говоря, две четные и две нечетные пары, а последовательность их расположения никакой роли не играет, так как это суперпозиция.

Но вернемся к шоколаду. Если говорить образно, то простейший цикл (R1) можно представить как своеобразную стандартную плитку шоколада, которую выпускает фабрика под названием «финансовый рынок».

На рисунке ниже вы как раз можете видеть вот такую вот стандартизированную шоколадную плитку, с идеальной центральной симметрией, которая состоит из одного элемента. Такая комбинация представляет собой 1 цикл, состоящий из 1 части (1/1), или просто камень.



Также обратите внимание, что эта стандартная шоколадная плитка разграничена на кусочки (плитки) меньшего размера. Разделена она так неслучайно: только на эти кусочки вы можете разделить шоколад, чтобы поделиться им со своими друзьями.

Смотрите, если разломить эту плитку ровно пополам, то получится два кусочка [(+2+1)(+2+2)] и [(+2+2)(+2+1)]. Такая комбинация представляет собой 1 цикл, состоящий из 2 частей (1/2).



Но эту плитку можно разделить и на две неравные части, например так: [(+2+1)(+2)] и [(+2)(+2+2)(+2+1)].



A можно и так: [(+2+1)] и [(+2+2)(+2+2)(+2+1)]. Но все равно эти комбинации будут представлять собой 1 цикл, состоящий из 2 частей (1/2).



А можно разделить нашу плитку и на три части, например так: [(2+1)(+2)] и [(+2+2)] и [(+2)(2+1)]. Тогда такая комбинация будет представлять собой уже 1 цикл, состоящий из 3 частей (1/3).



Или так: [(+2+1)] и [(+2+2)(+2+2)] и [(+2+1)].



В общем, как вы поняли, вариантов деления может быть много. Но обратите внимание, что нашу плитку можно разделить максимум только на 6 частей. Тогда такая комбинация будет представлять собой уже 1 цикл, состоящий из 6 частей (1/6).



При этом, чем на большее количество частей мы делим нашу плитку, тем меньшими по размеру становятся наши кусочки.

Другими словами, самой маленькой частью может быть [(+2)], чуть больше [(+2+1)], затем [(+1+2+1)], после [(+2+2)] и т. д.

Но в любом случае нашу шоколадную плитку можно разделить максимально только на 6 частей. Однако сей факт совершенно не означает, что вы можете пригласить только 6 друзей, с которыми можно поделиться этим замечательным шоколадом!

Дело в том, что шоколадная фабрика под названием «финансовый рынок» может выпускать шоколад и с большим, чем одна, количеством плиток внутри одной упаковки. Именно из-за этого на рынке могут формироваться достаточно сложные волновые образования, состоящие из нескольких циклов одновременно. Например, 2 цикла из 3 частей (2 цикла из последних 3 волновых пакетов) и т. д.



Однако это не самое главное. Основная проблема заключается в том, как именно объединять циклы. Но об этом далее.

О принципе суперпозиции

Принцип суперпозиции является основополагающим методом расчета циклов в альтернативном волновом анализе. Однако прежде, чем мы познакомимся с этим принципом, небольшое предисловие.

Дело в том, что только принцип суперпозиции позволяет вести учет циклов без ухода в бесконечность. Во всех остальных вариантах расчета возникает проблема бесконечности. Постараюсь объяснить, о чем идет речь.

С самого начала я считал циклы, складывая волновые пакеты последовательно, а именно слева направо.



В общем, так, как это показано на изображении: по мере образования циклов слева направо, то есть из прошлого в будущее. Однако при таком подходе начинают оставаться незакрытые волновые пакеты, которые в конечном итоге приводят к проблеме бесконечности.

Суть этой проблемы заключается том, что если добавить к текущему волновому балансу дополнительный участок из прошлого, то общая картина волновых циклов меняется, так как некоторые волновые пакеты начинают образовывать новые циклы с предыдущими, вновь добавленными пакетами.

В результате такого добавления новых исторических данных к уже имеющейся статистике картина волновых циклов постоянно менялась, что приводило к полной неоднозначности процесса их вычислений.

В результате возникала проблема бесконечности, связанная с начальной точкой отсчета. Чисто теоретически получалось, что можно было до бесконечности добавлять все новые и новые участки исторических данных, и это постоянно приводило бы к изменению картины волновых циклов.

В общем, возникала полная неоднозначность, связанная с выбором точки отсчета, или нулевой точки.

Но была одна подсказка. Дело в том, что такая проблема отсутствовала в волновой разметке. Я имею в виду тот факт, что волновая разметка AWA давала абсолютно идентичную картину, как при традиционной разметке (то есть слева направо, иначе говоря, из прошлого в будущее), так и справа налево, то есть от текущего момента и далее в прошлое.

Эта инвариантность не давала мне покоя. Я точно знал, что, если свойства инвариантности проявляются на ценовом графике, значит, точно так же они должны проявляться и волновом балансе при выделении циклов. Дополнительное подтверждение этой идеи я получил, когда подробно ознакомился с принципом формирования стоячих волн в физике.

В общем-то, я и раньше предполагал, что аналогом циклов на финансовых рынках являются стоячие волны в физическом мире, но изучив и осмыслив теорию по ним, я сделал совершенно удивительное заключение: так как стоячие волны с точки зрения физики представляют собой суперпозицию двух противоположно направленных гармонических волн, бегущей и отраженной, то и в случае с финансовыми рынками также необходимо учитывать сразу два направления одновременно.

Бегущая (испущенная) волна – это движение из прошлого в будущее. Отраженная волна – это движение из будущего в прошлое. Другими словами, будущее есть отраженная волна прошлого. Поэтому в качестве эксперимента я решил попробовать провести выделение циклов справа налево, то есть из будущего (от текущей точки) и назад в прошлое.



Картина циклов при таком выделении, естественно, отличалась от той, которая получалась в случае традиционного движения из прошлого в будущее (слева направо).



Но затем, разобрав принцип квантовой суперпозиции, я понял, что циклы необходимо формировать именно по этому принципу – другими словами, циклы существуют всегда во всех состояниях одновременно, то есть в суперпозиции, что слева направо, что справа налево по оси времени.

Другими словами, нужно по очереди анализировать – сначала последний волновой пакет, смотреть, не состоит ли он из любого целого числа циклов R1. Потом аналогичным образом анализируются два последних волновых пакета, потом три, четыре и т. д. И все время смотреть, не состоит ли текущая последовательность из любого целого числа циклов R1.

В основном я просчитываю от 1 до 16 последних волновых пакетов (как показывает опыт, этого достаточно). И если в любом из этих вариантов возникает цикл, значит, система фиксирует волновое препятствие, ведь суперпозиция представляет собой геометрическую сумму всех возможных состояний системы.

А теперь предлагаю подробнее познакомиться с понятием суперпозиции, которое используется в квантовой механике.

В классической физике объекты можно описывать, придавая им различные параметры, такие как:

• положение;

• скорость;

• масса.

Путем проведения измерений для каждого из объектов в любой момент времени можно точно вычислить значения этих параметров. Однако на уровне микромира все обстоит совсем по-другому.

Дело в том, что в микромире частицы нельзя описать законами классической физики. Связано это с тем, что на квантовом уровне частица может находиться в позиции А:



Или же в позиции В:



Либо в так называемой суперпозиции, которая представляет собой нечто среднее:



В такой суперпозиции положение частицы в позиции А и в позиции В может иметь одинаковую вероятность:



Но бывает суперпозиция, в которой вероятность того, что частица займет положение А, больше, чем вероятность того, что частица займет положение В:



Либо, наоборот, вероятность того, что частица займет положение В, больше, чем вероятность того, что частица займет положение А:



При этом в состоянии суперпозиции частица не находится ни в точке А, ни в точке В:



Она также не находится в двух точках одновременно:



Частица в этом состоянии как бы вообще не имеет позиции:



Она, получается, в своем роде размазана и образует некое облако состояний:



Но все меняется, как только появляется наблюдатель.



Частица начинает менять состояние.

Она может занимать позицию А или позицию В в совершенно случайном порядке:



Таким образом, проводимые наблюдения фиксируют, что частица находится либо в позиции А:



Или что частица находится в позиции В:



Но до того, как появится наблюдатель, невозможно определить, какую позицию займет частица:



Наблюдение за частицей позволяет ей занять одну из доступных позиций. Хотя и невозможно заранее точно сказать, какую из двух позиций займет частица, тем не менее можно предсказать вероятность ее положения!



Соответственно, если доминирующей в суперпозиции является точка А, то и вероятность того, что частица займет точку А, больше. И наоборот, соответственно:



Мы рассмотрели с вами возможность частицы занять две позиции:



Однако на самом деле таких позиций может быть гораздо больше:



В общем, сколько угодно.

При этом существует лишь большая вероятность того, что частица займет одни позиции:



И меньшая вероятность того, что она займет другие позиции:



Поэтому, основываясь на этих наблюдениях, можно построить волновой график вероятностей распределения. Вероятностей того, какие позиции частица займет, а какие не займет (с большей или меньшей вероятностью):



Факт того, что таким образом можно предсказывать положение частиц, лежит в основе многих квантовых феноменов, которые называются корпускулярно-волновым дуализмом.

Аналогичным образом, с точки зрения AWA, развивается и ценовой график. Другими словами, невозможно заранее точно сказать, как поведет себя цена в будущем, так как всегда существует несколько сценариев ее развития с различными по величине (амплитуде) вероятностями.

Однако, проводя замеры, каждый раз мы можем путем вычислений определить, в какую область вероятностной кривой попадет текущая фаза. Но вернемся к волновому графику.

Как мы уже знаем, его амплитуда колебаний описывает вероятность того, какое положение частица может занять, а какое нет.

Если мы внимательно посмотрим на эту кривую, то увидим:



Волновая кривая вероятностей очень сильно напоминает концентрические стоячие волны, возникающие вокруг падающей капли.



Согласитесь, очень похоже.

Я не зря рассмотрел принцип суперпозиции в самом начале. Ведь именно принцип суперпозиции лежит в основе формирования стоячих волн, о которых речь пойдет далее. Именно поэтому я использую его при расчете волновых циклов.

Стоячие волны

Теперь давайте поговорим о том, что такое стоячие волны. Для начала рассмотрим простой пример. Прикрепим один конец веревки к стенке, а второй конец при этом начнем раскачивать.



По веревке начинает бежать волна, которая затем отразится. Мы продолжаем качать свободный конец веревки. Волны, бегущие в прямом и обратном направлениях, складываются. Но мы видим полный беспорядок.



Меняем частоту колебаний до тех пор, пока не возникнет устойчивая картина стоячей волны.



Мы видим точки волны, которые остаются на месте. Это интерференционные минимумы, или узлы стоячей волны. Также мы видим точки, колеблющиеся с максимальной амплитудой. Это интерференционные максимумы, или пучности стоячей волны. Можно увеличить частоту колебаний свободного конца веревки и также увидеть стоячую волну, но с меньшей длиной волны. Главное условие, чтобы на расстоянии между источником и стенкой укладывалось целое количество половин длины волны.

Итак, мы познакомились с простейшей иллюстрацией стоячих волн. Теперь давайте разберем стоячие волны с точки зрения физики.

Стоячая волна – это волна, которая образуется при наложении двух волн с одинаковой амплитудой и частотой, когда волны движутся навстречу друг другу (испущенная и отраженная волны).

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн по отдельности. Это утверждение называется принципом суперпозиции (наложения) волн.

В случае, когда колебания, обусловленные отдельными волнами в каждой из точек среды, обладают постоянной разностью фаз, волны называются когерентными. При сложении когерентных волн возникает явление интерференции, заключающееся в том, что колебания в одних точках усиливают, а в других точках ослабляют друг друга. Возникающий в результате колебательный процесс называется стоячей волной.

На практике стоячие волны образуются при отражении волн от различных преград. Падающая (испущенная) на преграду волна и бегущая ей навстречу (отраженная) волна, накладываясь друг на друга, формируют стоячую волну.

Таким образом, стоячую волну можно представить как суперпозицию (сумму) двух плоских волн, распространяющихся вдоль оси X в противоположных направлениях. Уравнения двух плоских волн, распространяющихся вдоль оси X в противоположных направлениях:

ψ1 = A cos(ωt – kx + φ),

ψ2 = A cos(ωt + kx + φ).

Сложение этих функций, согласно формуле суммы косинусов дает следующее выражение:



Чтобы привести это уравнение к более простому виду, выберем точку начала отсчета x, так чтобы разность φ2–φ1 стала равной 0. Аналогичным образом поступим и с точкой начала отсчета t. Ее выберем так, чтобы сумма φ12 тоже стала равной 0.

После таких преобразований формула стоячей волны будет иметь вид

ψ = 2A cos kx cos ωt

Заменив волновое число k его значением , получим уравнение стоячей волны, удобное для анализа колебаний частиц в стоячей волне:



Из этого уравнения видно, что амплитуда колебаний зависит от x: в точках, координаты которых удовлетворяют условию



амплитуда колебаний достигает максимального значения. Эти точки называются пучностями стоячей волны.

Значения координат пучностей равны



В точках, координаты которых удовлетворяют условию



амплитуда колебаний обращается в 0. Эти точки называются узлами стоячей волны.

Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов имеют значения



Из этих формул следует, что расстояние между соседними пучностями, так же как и расстояние между соседними узлами, равно λ/2. Пучности и узлы сдвинуты друг относительно друга на четверть длины волны λ/4.



Стоячая волна не переносит энергию. Дважды за период происходит пульсация – превращение энергии стоячей волны то полностью в потенциальную энергию, сосредоточенную в основном вблизи узлов волны, то полностью в кинетическую энергию, сосредоточенную в основном вблизи пучностей волны. В результате происходит переход энергии от каждого узла к соседним пучностям и обратно.

Здесь необходимо отметить, что стоячие волны являются достаточно частым явлением в физическом мире. Они могут возникать в струнах, стержнях, жидкостях, воздушных столбах и т. д., поэтому я сделал предположение о том, что стоячие волны могут проявляться и на ценовых графиках финансовых активов.

Оставалось только найти подходящего кандидата. И такой кандидат действительно нашелся – это волновые циклы, которыми оперирует AWA.

Да-да, вы не ослышались. Именно волновые циклы выступают аналогом стоячих волн на финансовых рынках.

Но прежде чем мы продолжим, необходимо разобраться с таким понятием, как интерференция волн. Дело в том, что стоячие волны являются следствием такого фундаментального явления в физике, как интерференция волн.

Интерференция волн


В материале, посвященном стоячим волнам, я уже говорил о том, что стоячие волны возникают в процессе наложения бегущей и отраженной гармонических волн.

Стоит отметить, что природа волновых процессов здесь роли абсолютно не играет. Это могут быть механические волны в упругой среде, электромагнитные волны (в частности, свет) в прозрачной среде или, например, в вакууме. И даже, как в нашем случае, ценовые волны, возникающие на графиках финансовых активов.

Но несмотря на такие, казалось бы, кардинальные различия в природе волн, ключевым понятием здесь по-прежнему выступает принцип суперпозиции, о котором я рассказывал ранее.

Суть принципа суперпозиции заключается в том, что если две гармонические волны накладываются друг на друга в определенной точке или области пространства, то они порождают новый волновой процесс.



При этом значение колеблющейся совокупной волны всегда будет равно сумме соответствующих величин испущенной и отраженной волн по отдельности. Таким образом, стоячую волну можно рассматривать как суперпозицию бегущей и отраженной гармонических волн.

Однако если мы будем говорить не о стоячих волнах, образующихся в результате сложения бегущей и отраженной гармонических волн, а о суперпозиции двух отдельных точечных источников волн, то для описания понятия интерференции нам понадобится определение когерентности.

Просто когда речь идет о суперпозиции испущенной и отраженной волн (допустим, в струнах), они по умолчанию получаются когерентными из-за условия гармоничности.

КОГЕРЕНТНЫЕ ИСТОЧНИКИ

Допустим, у нас имеются два точечных источника, создающие волны в окружающем пространстве.



Если при этом частота колебаний этих источников (частота волн) одинакова и разность фаз колебаний с течением времени не меняется, то такие источники волн называются когерентными. Складываясь друг с другом, когерентные волны способны интерферировать.



Интерференция волн – сложение когерентных волн с образованием устойчивой картины максимумов и минимумов амплитуды колебаний. На примере ниже мы видим, что в тех точках среды, где гребни волн складываются со впадинами, образуются узлы (стоячих волн), называемые минимумами интерференции:



В тех же точках среды, где происходит сложение «гребень плюс гребень» либо «впадина плюс впадина», образуются пучности (стоячих волн), или максимумы интерференции:


УСЛОВИЯ МАКСИМУМОВ И МИНИМУМОВ ИНТЕРФЕРЕНЦИИ

Итак, рассмотрим два источника когерентных волн S1 и S2.



Для простоты считаем, что источники излучают волны одинаковой амплитуды, а разность фаз между источниками равна 0. Другими словами, предположим, что эти точечные источники являются точными копиями друг друга.



Теперь выберем некоторую произвольную точку А, в которой будем фиксировать наложение волн, испущенных источниками S1 и S2.

Очевидно, что результат интерференции (наложения волн) в этой точке будет зависеть от разности хода волн, которую обозначим как дельта d (Δd). Предположим, что разность хода (Δd) равна половине длины волны (λ/2):



Тогда в точку А волны придут в противофазе, то есть гребень источника S2 придется на впадину источника S1. В результате такого наложения волн произойдет их ослабление друг другом и в точке А образуется интерференционный минимум (узел стоячей волны).

Очевидно, что этот результат будет только при условии, когда Δd = 1/2, 3/2, 5/2, …n и т. д. длины волны (лямбда):



Тогда условие минимума интерференции (где k – возрастающий коэффициент) будет следующим:



Другими словами, амплитуда колебаний в данной точке минимальна, если разность хода двух волн равна нечетному числу полуволн.

Если разность хода (Δd) равна одной длине волны (лямбда), тогда в точку А волны придут в одинаковой фазе, то есть впадина источника S2 придется на впадину источника S1, или, наоборот, гребень источника S2 придется на гребень источника S1. В этом случае образуется интерференционный максимум (пучность стоячей волны), характеризующийся усилением результирующей волны:



При этом очевидно, что результат будет одинаковым, если Δd = 1, 2, 3, … n и т. д. длины волны (лямбда):



Тогда условие максимума интерференции, то есть амплитуда колебаний в данной точке максимальна, если разность хода равна целому числу волн, или можно сказать по-другому: когда разность хода равна четному числу полуволн.



Теперь давайте подытожим.

1. Интерференционные минимумы возникают, когда разность хода равна нечетному количеству полуволн.

2. Интерференционные максимумы образуются, если разность хода равна четному количеству полуволн.

Вот почему в альтернативном волновом анализе играет большую роль понятие четности и нечетности. Они имеют непосредственное отношение к интерференционной картине среды, в нашем случае рынка.

Поэтому выделение волновых циклов можно сравнить с анализом интерференционной картины рынка, которая постоянно изменяется по мере возникновения новых волновых моделей, выступающих в роли своеобразных источников когерентных волн.

При этом пучности стоячих волн (циклы и полуциклы) будут соответствовать максимумам интерференции, а узлы стоячих волн (дробные циклы) будут соответствовать минимумам интерференции.



Кроме этого, в AWA используется аналогия между ценовым графиком и водным потоком.


Изображение сгенерировано нейросетью «Шедеврум»


Все дело в интерференции стоячих волн, которые проявляются, как известно, в любых средах.

Смотрите сами: на реках стоячие волны – это валы. На ценовых графиках стоячие волны – это циклы. На реках области турбулентности называются бочками, в альтернативном волновом анализе им соответствуют дробные циклы. Ну а форма рельефа русла (пороги, перекаты и т. д.) есть не что иное, как полуциклы. В общем, суть у них одна и та же.

Все они представляют собой своеобразные преграды на пути движения потока. Поэтому их необходимо преодолеть, чтобы у него была возможность двигаться далее.

В общем, такая аналогия позволяет не только запомнить непростые названия основных комбинаций пар, которые фиксируются в волновом балансе, а затем переносятся в таблицу учета циклов, но и получить общее представление о том, в каком месте ценового русла мы находимся в текущий момент.

Обо всем этом мы и будем говорить далее.

Закон Бернулли и режимы течения жидкости

Но для начала давайте вспомним такой важный закон гидродинамики, как закон Бернулли.

Закон Бернулли устанавливает зависимость между скоростью потока жидкости и ее давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот.



Для стационарного течения несжимаемой жидкости уравнение Бернулли может быть получено как следствие закона сохранения энергии. Закон Бернулли утверждает, что



где ρ – плотность жидкости;

v – скорость потока;

h высота;

p давление;

g ускорение свободного падения;


Константа в правой части иногда называется полным давлением, или весовым давлением. Она может менять значение для различных линий тока.

Если посмотреть на формулу внимательно, можно заметить, что размерность всех слагаемых – это единица энергии в единице объема.

Первое и второе слагаемые уравнения Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объема жидкости.

Третье слагаемое по своему смыслу является работой сил давления, но в гидравлике это слагаемое может называться энергией давления и представляет собой часть потенциальной энергии.

Таким образом, если вернуться к самому закону, который гласит, что если давление жидкости повышается, то скорость течения убывает, и наоборот, можно сделать вывод, что в случае роста давления происходит переход энергии из кинетической в потенциальную. А в случае увеличения скорости течения осуществляется, наоборот, переход энергии из потенциальной в кинетическую.

Такие переходы одного вида энергии в другой и наоборот очень сильно напоминают поведение стоячей волны, которая, как известно, не переносит энергию, а сохраняет ее низменной.

Дважды за период у стоячих волн происходит превращение энергии то полностью в потенциальную, сосредоточенную в основном вблизи узлов волны, то полностью в кинетическую, сосредоточенную в основном вблизи пучностей волны.

Однако вернемся к гидродинамике.

Как я уже говорил, в AWA используется аналогия между ценовым графиком и движением жидкости, например течением воды в руслах рек.

Именно поэтому применяется очень много терминологии из рафтинга (рафтинг – это сплав по рекам или искусственным каналам на большой надувной лодке, название которой и дало имя этому занятию), а также частично использованы названия из гидродинамики.

Кстати, рассматривая как-то на досуге такой раздел гидродинамики, как режимы течения жидкости, число Рейнольдса, я вдруг нашел для себя интересным выделить те участки движения водного потока, где происходит возникновение турбулентности (завихрений).


Опыты по этому вопросу были проведены английским ученым Осборном Рейнольдсом в 1883 г. Но давайте по порядку.


Итак, согласно законам гидродинамики, существует два основных режима течения жидкости:

• Ламинарное течение – процесс, при котором жидкость или газ перемещаются слоями без перемешивания и пульсаций (нет беспорядочных быстрых изменений скорости и давления). Характеризуется слоистым характером течения жидкости, отсутствием перемешивания, неизменностью давления и скорости во времени.

• Турбулентное течение – процесс, когда при увеличении скорости течения жидкости или газа образуются нелинейные фрактальные волны. При этом происходит вихреобразование с вращательным движением жидкости, возникают непрерывные пульсации давления и скорости в потоке воды.

Кстати, обратите внимание на фразу «возникают непрерывные пульсации давления и скорости в потоке воды». То есть переход потенциальной энергии в кинетическую энергию и наоборот. Все в точности как у стоячих волн.

А так как в AWA движение цены рассматривается как своеобразный вихревой поток, нас будут интересовать только режимы турбулентного течения жидкости.

РЕЖИМ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЖИДКОСТИ ПРИ РАСШИРЕНИИ ПОТОКА

Согласно исследованиям Рейнольдса, при внезапном расширении русла происходит потеря напора – энергии, которая расходуется на вихреобразование, связанное с отрывом потока от стенок, то есть на поддержание вращательного движения жидкости.



Области вихреобразования здесь и далее на рисунках обозначены завитками.

Аналогичная ситуация происходит с течением турбулентной жидкости при плавном расширении русла. Такое расширение называется диффузор.



В диффузоре, как и при внезапном расширении русла, происходит отрыв основного потока от стенки русла и наблюдается вихреобразование.

Таким образом, течение жидкости при расширении потока сопровождается уменьшением скорости движения и увеличением давления, то есть преобразованием кинетической энергии движения жидкости в потенциальную энергию давления.

РЕЖИМ ТУРБУЛЕНТНОГО ТЕЧЕНИЯ ЖИДКОСТИ ПРИ СУЖЕНИИ ПОТОКА

При внезапном сужении русла происходит потеря напора – энергии, которая расходуется на трение потока при входе в более узкую трубу и потери на вихреобразование, связанное с отрывом потока от стенок и образующееся вокруг суженой части потока.



Аналогичная ситуация происходит с течением турбулентной жидкости при плавном сужении русла. Такое сужение называется конфузор.



В результате этого образуются зоны вихреобразования, которые возникают в кольцевом пространстве вокруг суженной части потока.

Таким образом, при сужении русла происходит увеличение скорости движения потока и снижение давления, то есть преобразование потенциальной энергии давления в кинетическую энергию движения жидкости.

Теперь, если мы применим эту теорию к рафтингу, то увидим, что те же самые законы действуют и на реках. Такие области вихреобразования (циркуляции) в рафтинге называются улово.

Улово – участок реки, где основной поток отрывается от берегов русла, в результате чего возникает противоток основному течению либо возникает водоворот. Чаще всего это возникает у прижимов, вблизи перекатов, выступов берега, в местах резкого расширения или после сужения русла реки, впадения притоков и т. д.

Если мы внимательно посмотрим на пример течения жидкости в условия сужения русла, можно выделить ряд интересных особенностей поведения турбулентного потока.



Очень часто зоны вихреобразования (циркуляции) возникают сразу после суженной части потока, проявляясь в виде пены по краям основного течения.

Обратите внимание на светлые области пенообразования, а именно на то, где расположены эти участки. Правильно: зона вихреобразования (циркуляции) образуется сразу после суженной части потока, в момент его максимального ускорения.

Затем по мере снижения скорости потока пена исчезает, и остается только струя. Таким образом, именно резкое ускорение (или замедление) потока и порождает области циркуляции. Это области образования поверхностных бочек (R/2, R/3, R/4).

Динамика водного потока. Виды препятствий

Я уже говорил о том, что использую аналогию между ценовым графиком и рекой.

На реках стоячие волны – это валы. На ценовых графиках стоячие волны – это циклы.

На реках области турбулентности – это бочки, в альтернативном волновом анализе им соответствуют дробные циклы. Ну а форма рельефа русла реки (пороги, перекаты и т. д.) – это полуциклы.

Поэтому я решил использовать терминологию из лекций по рафтингу, чтобы можно было подробно классифицировать все существующие волновые препятствия.

А начнем мы с камней. Да-да, с тех самых камней, которые встречаются в руслах рек.

КАМЕНЬ

Изображение сгенерировано нейросетью «Шедеврум»


В AWA камнями называются волновые препятствия, которые имеют параметр интерференции 1.

Камни представляют собой одну из разновидностей препятствий, которые могут встречаться на пути водного потока.

Если камень подходит близко к поверхности воды и энергии набегающего потока оказывается достаточно, чтобы вода переливалась поверх камня, тогда этот камень называется обливным.


Изображение сгенерировано нейросетью «Шедеврум»


Ниже обливного камня, в зависимости от его размеров и скорости потока, вода может срываться с его поверхности тонкой пленкой, под которой образуется большая воздушная полость.



Либо может падать отвесно вниз, образуя глубокую и жесткую бочку.



Когда скорость потока оказывается недостаточной, для того чтобы поднять уровень воды выше камня, перед камнем образуется отбойный вал.



При большей скорости течения, но все же недостаточной, для того чтобы поднять уровень воды выше камня, перед ним может возникать и бочка.



Как я уже говорил, в альтернативном волновом анализе камнями считаются волновые препятствия, которые имеют параметр интерференции 1.

Другими словами, в волновом балансе камень будет представлять собой комбинацию – 1 цикл R1, состоящий из 1 волнового пакета (1/1), или 2 цикла R1 из 2 волновых пакетов (2/2) и т. д.



Если же цикл R1 состоит не из одного, а из двух и более волновых пакетов, такие циклы я буду называть валами.

ВАЛ

Изображение сгенерировано нейросетью «Шедеврум»


Валы – это стоячие волны, неподвижные относительно берегов. Они образуются при токе воды в пологих сливах, обычно в виде дорожки из нескольких валов.

Стоит избегать встречи с мощными крутыми валами с пенным гребнем на вершине. Валы бывают стоячими и пульсирующими.

Стоячий вал – это такой вал, в любой точке которого горизонтальная скорость воды направлена по ходу основного потока.

Стоячие валы подразделяют на прямые, косые и пирамидальные:

Прямой вал – вал, гребень которого перпендикулярен направлению потока, и вода движется строго вдоль склонов вала вверх и вниз.



Косой вал – вал, в котором скорость течения на самом валу, до и после него имеет составляющую, параллельную гребню. Иначе говоря, поведение лодки на косом валу можно рассматривать как прохождение прямого вала плюс боковой снос.



Пирамидальный вал – крайний случай стоячего (косого) вала, т. е. если вал очень узкий, то его гребень превращается практически в точку. Такие валы возникают, например, в конце языка после сужающегося слива. На переднем и боковых склонах вала вода движется вверх, и только на заднем – вниз.




В волновом балансе стоячий вал будет представлять собой комбинацию – 1 цикл R1, состоящий из двух и более волновых пакетов. Тогда такой вал будет иметь параметр интерференции (1/2, 1/3 и т. д.).

Если циклов несколько, тогда образуются валы.



В волновом балансе валы будут представлять собой комбинацию из двух и более циклов R1, которые состоят при этом из трех и более волновых пакетов.

Хотя, как правило, я их все равно называю в единственном числе. Как в нашем случае: вал (-2/3), или два цикла R1 из трех волновых пакетов.

ПУЛЬСИРУЮЩИЙ ВАЛ

Пульсирующий вал – периодически возникающий вал. На протяжении нескольких секунд вал растет, становится более крутым, затем его верхушка опрокидывается, и процесс повторяется сначала.

Основное отличие пульсирующего вала от стоячего вала в AWA заключается в том, что пульсирующий вал – это одновременно несколько валов в одном.

Например, возможна ситуация, когда текущий вал представляет собой следующую комбинацию: 3 цикла из 4 волновых пакетов – вал (3/4), и 5 циклов из 7 волновых пакетов – вал (5/7) одновременно. Соответственно, у такого пульсирующего вала будет плавающий параметр интерференции 0,75–0,71. Однако в таблицу учета циклов я вношу среднее значение.


ЭВОЛЮЦИЯ ОТ ВАЛА ДО БОЧКИ ПРИ ИЗМЕНЕНИИ СКОРОСТИ ПОТОКА

Если энергия потока, высвобождаемая в данном месте, невелика, вал будет иметь очень пологую форму. При увеличении удельной энергии вал становится более крутым и, при неизменной длине, более высоким. Вершина его становится все более острой. Наконец, при достижении некоторой критической величины образуется пирамидальный вал. Затем вершина обрушивается навстречу потоку. Дальнейшая эволюция вала в этом направлении постепенно превращает его в бочку.

ЭВОЛЮЦИЯ ОТ БОЧКИ ДО ВАЛА ПРИ ИЗМЕНЕНИИ ГЛУБИНЫ ПОТОКА
БОЧКА

Изображение сгенерировано нейросетью «Шедеврум»


В альтернативном волновом анализе бочкой называется дробный цикл R.

Дробный цикл R представляет собой такую ситуацию, когда формируется последовательность базового цикла R1, которая состоит при этом не из целого числа волновых пакетов.

Бочки представляют собой пенные ямы, или котлы, которые образуются в месте падения воды с крутых сливов. Их главная опасность в сильной вертикальной циркуляции, порождающей встречный ток воды по поверхности бочки.

Бочки образуются, когда вода со слива падает в стоячую воду и закручивает значительную циркуляцию в вертикальной плоскости. При этом в обратное течение подсасывается большое количество воздуха, и гребень бочки оказывается сильно вспененным.

По сути, бочка – это предельный случай вала, при котором размер и энергия опрокидывающегося пенного гребня сопоставимы с размером и энергией набегающего потока.

Бочки подразделяют на поверхностные и глубокие.

Поверхностные бочки могут быть очень мощными, но под турбулентной пенящейся поверхностью скрывается мощный невозмущенный поток, называемый донной струей. Если вы перевернетесь в такой бочке, он быстро вынесет вас прочь. Такие бочки обычно бывают очень шумными и эффектными, но относительно безопасными.



Глубокие бочки образуются там, где вода падает под большим углом в глубокий бассейн ниже слива. Это часто происходит на искусственных сооружениях, таких как плотины и дамбы, и на локальных водопадных сливах при малой скорости течения до и после слива.



Для такой структуры характерна большая область обратного течения, направленного к сливу, и пузырьки, поднимающиеся на поверхность, как при кипении. Донная струя проходит в этом случае очень далеко от поверхности.



Также выделяют прямые, косые и обратные бочки.

Прямая бочка – бочка, направление которой строго перпендикулярно потоку, и каждая струя в ней циркулирует в одной вертикальной плоскости.



Косая бочка расположена под острым углом к основному потоку, и в ней помимо циркуляции существует более или менее значительный боковой снос. Вода в этом случае движется по спирали вдоль оси бочки. Такая бочка возникает, например, после слива, расположенного под острым углом к оси потока. Характерными признаками косой бочки являются также несоосность входной и выходной струи, неравномерная глубина на кромке слива.



Обратная бочка также расположена под углом к основному потоку, но в ней помимо циркуляции существует значительный снос к центру потока. Вода в этом случае движется по спирали вдоль оси бочки, но в обратном направлении.




В волновом балансе бочка представляет собой цикл R1, состоящий из дробного (то есть не целого) числа волновых пакетов.

При этом существует большая разница между моментом возникновения препятствия в волновом балансе и моментом фактического проявления препятствия на ценовом графике.

Это означает, что само препятствие фиксируется в волновом балансе, как правило, всегда раньше или максимум одновременно с моментом, когда это препятствие начинает реально проявляться на графике в виде коррекции.

В зависимости от того, куда и насколько точка начала препятствия на ценовом графике сдвинута в отношении точки возникновения препятствия в волновом балансе, можно определить, какая идет бочка – косая, прямая или обратная.

ПЕННЫЙ КОТЕЛ

Пенный котел – предельный случай бочки – образуется, если скорость течения невелика, а слив имеет подковообразную форму и обращен навстречу течению.

В AWA пенный котел представляет собой ситуацию, при которой изменение направления тренд-вектора сопровождается сразу и медвежьей, и бычьей бочкой.



При этом бочки могут возникать на перекатах и шиверах, порогах и водопадах.

Таким образом, все эти комбинации могут давать некоторое представление о том, в каком месте ценового русла мы находимся.

ПОРОГИ

Изображение сгенерировано нейросетью «Шедеврум»


Если полуцикл M4 состоит из одного волнового пакета, то такую комбинацию я буду называть порогом.

Порог или пороги – это сочетание различных препятствий: валов, бочек, надводных и подводных камней и т. д.

Пороги формируют участок реки повышенной сложности, иногда превращаясь в каскады – последовательное сочетание нескольких порогов подряд.

Если говорить просто, порог или пороги – это каменистый или скалистый участок в русле водотока (реки или ручья) с повышенной скоростью течения и относительно большим падением отметок уровня воды, образовавшийся вследствие ступенчатого размыва русла, если материал его изначально был неоднороден.



В волновом балансе пороги представляют собой полуцикл M4, состоящий из 1 волнового пакета.

ШИВЕРА

Изображение сгенерировано нейросетью «Шедеврум»


Если полуцикл M4 состоит из двух или более волновых пакетов, то такую комбинацию я буду называть шиверой.

Шивера – относительно мелководный участок реки с беспорядочно расположенными в русле подводными и выступающими из воды камнями и быстрым течением.



В волновом балансе шивера представляет собой полуцикл M4, состоящий из двух и более волновых пакетов.

Более пологие и простые пороги с быстрым течением воды называются шиверами и перекатами, а более крутые обычно именуются водопадами.

ВОДОПАД

Изображение сгенерировано нейросетью «Шедеврум»


Если полуцикл W4 состоит из одного волнового пакета, то такую комбинацию я буду называть водопадом.

Водопад – падение воды в реке с уступа, пересекающего речное русло. В отличие от речных порогов, для водопадов характерны резкий перепад высоты речного дна и отвесность падения.



В волновом балансе водопад представляют собой полуцикл W4, состоящий из 1 волнового пакета.

ПЕРЕКАТ

Изображение сгенерировано нейросетью «Шедеврум»


Если полуцикл W4 cостоит из двух или более волновых пакетов, то такую комбинацию я буду называть перекатом.

Перекат – это мелководный участок русла реки, представляющий собой поперечную отмель, то есть своеобразный вал, который образуется сразу после глубоководного участка русла.

Из-за того что перекат представляет собой отмель, скорость течения реки на перекате резко увеличивается, но при этом поток теряет свою энергию.



Кроме того, перекаты часто чередуются с более глубоководными участками русла.



В волновом балансе перекат представляет собой полуцикл W4, состоящий из двух и более волновых пакетов.

Если же речь идет о цикле R2 (то есть удвоенном цикле R1) и соответствующих ему полуциклах, то везде в названиях будет добавляется слово большой: большой перекат, большая шивера, большие пороги (или каскады), большой водопад и т. д.

В общем, все эти симметричные комбинации являются своеобразными препятствиями, которые возникают на пути у ценового потока. Но и это еще не все: дело в том, что у нас еще имеется слив.

СЛИВ

Изображение сгенерировано нейросетью «Шедеврум»


Слив образуется потоком воды, стекающей с одиночного обливного камня, гряды камней или ступеньки в русле. Практически всегда сливы сочетаются с другими препятствиями – валами и бочками.

Выделяют различные виды сливов.

Прямой слив представляет собой однородную вертикальную ступеньку через все русло. За ним, как правило, образуется столь же однородная бочка.



Чем меньше начальная скорость потока и чем выше слив, тем более круто падает вода в конце него и тем более глубокой и жесткой оказывается бочка. Под ступенькой может образовываться полость – карман, в котором существует собственная циркуляция. Выбраться из такого кармана крайне сложно.

Наклонный слив дает потоку достаточный разгон.



Если бассейн под сливом достаточно глубок и не засорен скальными обломками, в нем образуется мощная бочка во всю ширину слива.

Ступенчатый слив состоит из нескольких прямых или наклонных сливов, расстояние между которыми сравнимо с их высотой.



Вместе они образуют единую структуру, соединенную в одно целое прямыми и обратными течениями бочек, отбойными валами и другими структурами.

В нашем случае сливами будут считаться те точки ценового движения, в которых отсутствуют любые препятствия. Таким образом, сливы будут соответствовать точкам с нулевым параметром интерференции. Именно в эти моменты лучше всего и осуществлять входы на рынок.

ПОЛОГИЙ СЛИВ

Пологий слив в AWA представляет собой ситуацию, когда происходит устранение искажения, возникающее на заемной волне.

Если на рынке возникает заемная или возвратная волна (искажение), такое искажение либо должно со временем исчезнуть (самоустраниться, образовав пологий слив), либо компенсироваться антиискажением (то есть искажением с противоположным знаком).



В альтернативном волновом анализе пологий слив возникает, когда цена закрытия преодолевает экстремум заемной волны. Стоит отметить, что пологий слив считается достаточно сильным сигналом (образующим ОБК – основу базовой конструкции), который часто возникает одновременно или сразу после области ценовой турбулентности (бочек), отменяя тем самым их действие.

При этом необходимо добавить, что чем ближе по времени расположен пологий слив к точке, в которой возникла заемная волна, тем сильнее сигнал.



Чем позже формируется пологий слив по отношению к моменту формирования заемной волны, тем более слабым становится сигнал.


Параметры интерференции волновых препятствий

Для того чтобы понять, как рассчитываются параметры интерференции в AWA, необходимо запомнить, в каких точках волнового пакета образуются полуциклы, циклы и дробные циклы.



Согласно представленному изображению, циклы формируются в центре волнового пакета, что соответствует максимуму интерференции, а значит, они представляют собой пучность стоячей волны.

Полуциклы возникают в точках, которые соответствуют максимумам интерференции, но которые при этом расположены по краям волнового пакета.

Другими словами, полуциклы совпадают с точками начала и завершения волновых пакетов и также соответствуют пучностям стоячей волны.

Ну и наконец, дробные циклы в таком случае будут соответствовать точкам минимумов интерференции и формироваться в узлах стоячей волны.



Однако, несмотря на то что все эти комбинации являются своеобразными аналогами друг друга, все же они характеризуются различными коэффициентами амплитуды, так как возникают в разных точках волнового пакета.

При этом чем большим получается значение параметра интерференции, тем значительнее по величине (плотности), т. е. амплитуде и длительности, возникает препятствие, которое ценовому потоку необходимо преодолеть, чтобы двигаться далее.

Поэтому при расчете параметров интерференции в каждом конкретном случае необходимо учитывать коэффициент амплитудной поправки, то есть добавлять поправку на дугу (см. рисунок).

• Для циклов таким поправочным коэффициентом является значение 1, что на самом деле означает, что поправка в данном случае не требуется.

• Для дробных циклов таким поправочным коэффициентом является параметр 2/3.

• Для полуциклов такой поправкой является параметр 1/2.

Теперь давайте рассмотрим на реальных примерах, как правильно рассчитываются параметры интерференции для различных видов препятствий начиная от валов и камней и заканчивая бочками, порогами, перекатами и водопадами.

Итак, на примере представленной таблицы учета циклов с 18 июля 2022 года по 5 октября 2022-го система зарегистрировала следующие волновые препятствия:



• циклы (R1) – 5 событий;

• дробные циклы (R) – 7 событий;

• полуциклы (M4/W4) – 0 событий;

• смешанные циклы (M4/W4 + R1) – 2 события.

Давайте рассмотрим их по-отдельности. Для начала посчитаем параметры интерференции для базовых циклов R1.

Первое событие: 29 июля.



1 цикл R1 из 3 волновых пакетов (вал 1/3). Параметр интерференции 1/3 = 0,33.

Второе событие: 16 августа.



–1 цикл R1 из –2 волновых пакетов (вал –1/2). Параметр интерференции –1/2 = –0,50.

Третье событие: 8 сентября.



–9 циклов R1 из –13 волновых пакетов (вал –9/13). Параметр интерференции –9/13 = –0,69.

Теперь посчитаем параметры интерференции для некоторых дробных циклов R.

Первое событие: 18 августа.



1 дробный цикл –R из –2 волновых пакетов (поверхностная бочка –R/2).

Параметр интерференции для такого случая считается следующим образом.

1. Для начала мы должны посчитать позиционную интерференцию. Для этого мы, имеющийся у нас дробный цикл –R приравниваем к целочисленному циклу –R1 и считаем позиционную интерференцию как отношение общего количества дробных циклов к совокупному числу волновых пакетов. Получаем позиционную интерференцию –1/2.

2. Однако на самом деле дробный цикл (–R) по факту не является целочисленным циклом –R1, поэтому необходимо ввести поправку ну амплитуду (дугу). Для этого мы используем поправочный коэффициент 2/3, умножаем его на позиционную интерференцию. Таким образом получаем поправочный коэффициент: 2/3 * (–1/2) = –1/3 = –0,33.

Третье событие: 7 сентября.



1 дробный цикл –R из –3 волновых пакетов (поверхностная бочка –R/3).

Параметр интерференций для такого случая считается следующим образом.

1. Для начала мы должны посчитать позиционную интерференцию. Для этого мы имеющийся у нас дробный цикл –R приравниваем к целочисленному циклу –R1 и считаем позиционную интерференцию как отношение общего количества дробных циклов к совокупному числу волновых пакетов. Получаем позиционную интерференцию –1/3.

2. Однако на самом деле дробный цикл (–R) по факту не является целочисленным циклом –R1, поэтому необходимо ввести поправку ну амплитуду (дугу). Для этого мы используем поправочный коэффициент 2/3, умножаем его на позиционную интерференцию –1/3. Таким образом получаем параметр интерференции: 2/3 * (–1/3) = –2/9 = –0,22.

Седьмое событие: 5 октября



1 дробный цикл R из 1 волнового пакета (бочка R). Параметр интерференций: 1 * 2/3 = 2/3 = 0,67.

Таким образом, как видите, жесткая бочка – это именно глубокая бочка, то есть тот дробный цикл R, который состоит из одного волнового пакета. У такой бочки параметр интерференции 0,67. Все остальные бочки можно считать поверхностными, так как они имеют очень низкие значения параметра интерференции.

Теперь посчитаем параметры интерференции для смешанных циклов (M4/W4 + R1).

Первое событие: 19 июля.



Смешанный цикл (–W4–3) из –5 волновых пакетов (перекат с 3 валами).

Так как смешанные циклы представляют собой сумму циклов и полуциклов, их можно представить как отдельно полуцикл и циклы:

(–W4–3) / 5 = –W4/5 – 3/5 = –1/2 * 1/5 – 3/5 = –1/10 – 6/10 = –7/10, или –0,70.

Можно считать сразу: (–1/2 – 3) / 5 = –7/2 * 1/5 = –7/10, или –0,70.

Обратите внимание, это достаточно высокий показатель интерференции.

Второе событие: 20 июля.



Смешанный цикл (–W4–1) из –3 волновых пакетов (перекат с валом).

Так как смешанные циклы представляют собой сумму циклов и полуциклов, их можно представить как отдельно полуцикл и циклы:

(–W1–1) / 3 = –W4/3 – 1/3 = –1/2 * 1/3 – 1/3 = –1/6 – 1/3 = –3/6 = –1/2, или –0,50.

Можно считать сразу: (–1/2 – 1) / 3 = –3/2 * 1/3 = –1/2, или –0,50.

Таким образом, полученные параметры интерференции позволяют сравнивать абсолютно разные ценовые резонансы с точки зрения величины образуемого ими барьера и определять тем самым целесообразность открытия сделок в момент возникновения ценовых препятствий.

Архитектура системы

Я хочу особо отметить, что AWA представляет собой полностью автоматизированный алгоритм учета ценовых волн, что, собственно, и позволяет избегать субъективных оценок.

Поэтому сейчас предлагаю ознакомиться с информацией о том, какие именно параметры учитывает система.

Начнем.

Помимо самой волновой разметки, которая наносится непосредственно на ценовой график, а затем переносится в волновой баланс, есть еще таблица учета циклов (аналог кассы из прошлой книги), где затем аккумулируется и анализируется вся полученная статистика.



В таблице учета циклов фиксируется следующая информация:

1) цена, по которой была зарегистрирована волновая конструкция в волновом балансе (здесь могут быть как цены закрытия, так и цены открытия);

2) дата, когда была зафиксирована волновая конструкция в волновом балансе;

3) структура волновой конструкции (если нажать на ссылку, то на каждую конструкцию откроется свой волновой баланс);

4) количество волновых пакетов, а также длительность (в свечах) каждого волнового пакета, из которых было образовано волновое препятствие;

5) общая длительность (в свечах) всех волновых пакетов, образовавших волновое препятствие;

6) название волнового препятствия (циклы);

7) количество волновых пакетов, образовавших волновое препятствие;

8) параметр интерференции;

9) средняя длительность одного цикла;

10) приоритет (или сила потока) – разница между средней длительностью последнего бычьего цикла и последнего медвежьего цикла.

Далее на основе этих переменных происходит построение и сравнение двух основных графиков – параметров интерференции и приоритета (силы потока).



Основная суть этого подхода заключается в том, чтобы находить те участки ценового графика, когда зеленые столбцы параметров интерференции совпадают с красными столбцами приоритета (силы потока), что указывает на наличие восходящего тренда на ценовом графике.

При этом чем выше красные столбцы и чем ниже зеленые столбцы, тем сильнее сигнал. Также играет большую роль и динамика изменения этих столбцов, например, снижение или рост приоритета, а также и рост или снижение параметров интерференции.

А вообще сама система следующая:

• если зеленые столбцы параметров интерференции совпадают с красными столбцами приоритета (силы потока), это указывает на наличие восходящего тренда на ценовом графике;

• если синие столбцы параметров интерференции совпадают с желтыми столбцами приоритета (силы потока), это указывает на наличие нисходящего тренда на ценовом графике.

Все остальные варианты указывают на наличие рыночной неопределенности (флэта).

Ко всему прочему, на основании цен закрытия 4-часового графика (цены из первого столбца, по которым были зарегистрированы волновые модели в таблице учета циклов) выстраивается дополнительный график CNY/RUB – аналог ценового графика, но без временной привязки, так как частота появления волновых моделей разная.



На этой кривой красными маркерами отмечены бычьи волновые конструкции. Песочным цветом отмечены маркеры, отображающие точки, в которых произошло формирование медвежьих волновых конструкций. Именно по этому графику я делаю долгосрочные прогнозы.

Про волновой анализ, торговую систему и управление капиталом

В этом блоке материала я хотел бы прояснить несколько моментов, связанных непосредственно с механизмом торговли.

Смотрите, в основе моей торговой стратегии заложено три базовых компонента:

• альтернативный волновой анализ;

• торговая система;

• управление капиталом;

Если говорить о волновом анализе, то его нельзя в чистом виде назвать торговой системой, потому что это всего лишь инструмент прогнозирования, точно так же как и волновой анализ Эллиотта. Никто его же не называет торговой системой.

Так вот, в альтернативный волновой анализ я интегрировал отдельную торговую систему – алгоритм входов в рынок и выходов из него.

Хочу отдельно сказать, что каждый может под себя разработать совершенно разный алгоритм входов – выходов, причем на основании одних и тех же показаний волнового анализа.

НАСЧЕТ ВХОДОВ

В моем случае я решил остановиться на пробойной системе входов в рынок на основании показаний системы волнового анализа (AWA) (иногда ее называют пробойно-откатной).

Согласно этому алгоритму сигнал на вход в рынок образуется в тот момент, когда на рынке возникает новая волновая модель, а направление сигнала определяется направлением тренд-вектора этой модели.

Но так как я торгую только в лонг (потому что изначально мой принцип работы инвестиционный), то для сигналов на вход я использую только восходящее направление тренд-вектора.

Таким образом, теоретически получается, что сколько в волновом пакете будет моделей, столько должно быть и входов, за вычетом тех моделей, на которых были образованы волновые препятствия с параметром интерференции от 0,5 и выше.

Несмотря на то что пробойная система входов по своей сути запаздывающая торговая система (потому что она изначально трендовая, поэтому и запаздывающая), соответственно, и рассчитана она на периоды устойчивого роста цены.

Во время тренда входы на пробой максимума работают достаточно хорошо, а вот откатные ордера практически не срабатывают, так как на мощных движениях редко когда происходит глубокий откат, и если торговать только с отката, то бо́льшую часть движения будешь попросту пропускать, из-за того что далеко поставил лимитные ордера.

Однако как только рынок начинает переходить в диапазон или на рынке присутствует переходное состояние (диапазон с небольшим углом наклона), входы на пробой максимума часто будут попадать в завершение хода, после чего будет происходить значительный откат в сторону убытков.

(Хотя бо́льшую часть таких сигналов система отфильтровывает из-за волновых препятствий, возникающих в данный момент.)

Тем не менее, зная это, я заранее подстраховываюсь, поэтому в таких случаях добавляю еще ордер на усреднение с отката. Как именно вы настроите свою систему входов, зависит только от вас!

НАСЧЕТ ВЫХОДОВ

Под выходами я подразумеваю стоп-лоссы и тейк-профиты.

Начну с тейк-профитов.

Я очень редко ставлю отложенные ордера на выход по тейк-профиту по техническим уровням (чаще всего это бывает в период полной неопределенности, когда волновая картина ничего не показывает).

Основной подход, который я использую, – выхожу из рынка вручную по таймингу, когда возникают значимые волновые препятствия (валы, бочки, камни), у которых параметр интерференции 0,5–1.

Теперь про стоп-лоссы.

Стоп-лоссы как ордера я не ставлю. (Могу иногда установить, если только существует вероятность, что я не смогу закрыть сделку вручную, а так нет.) И вот почему.

Я уже очень давно занимаюсь трейдингом. За это время результаты были разные, были и заработки, и сливы были, но одно я понял для себя точно: ордера стоп-лоссов (в прямом их понимании) ставить практически не имеет смысла.

Нужно закрывать сделки вручную.

Потому что очень часто возникают ситуации, когда цена лишь тенью касается стоп-лосса, закрывает позицию, а затем идет в нужном направлении. И это получается очень обидно. Поэтому, чтобы исключить такую неприятность, я использую другой подход.

Как я уже говорил, я торгую по таймингу и поэтому закрываю сделки вручную строго по времени.

Суть в следующем: так как моя система анализирует 4-часовой график пары юань/рубль, то получается, что все сделки я заключаю по ценам закрытия-открытия 4-часового графика Мосбиржи, то есть в 7, 8, 12, 16, 19 мск.

Поэтому, когда я пишу, что жду пробой какого-то максимума или минимума, это означает, что нужно дождаться ближайшего закрытия из диапазона (7, 8, 12, 16, 19 мск), так как в это время происходит завершение 4-часового интервала, и только потом проанализировать, как зафиксировалась цена закрытия, определяя, есть пробитие или нет.

Это и есть тайминг. По крайней мере так устроена моя система.

Так вот, в случае стоп-лосса я использую факт изменения направления тренд-вектора с восходящего на нисходящее.

Другими словами, если я удерживаю одну или несколько длинных позиций, а система начинает регистрировать изменение направления тренд-вектора (и при этом не возникает значимого волнового препятствия), то возникает сигнал на выход из рынка. С убытками или нет, неважно. Закрывай позиции и выходи в кеш.

Такая система называется оборотной, когда сигнал на продажу является сигналом к закрытию покупок.

Однако иногда на рынке возможны ситуации, когда на графике может быть сформирована разворотная техническая модель (допустим, двойная, тройная вершина, голова и плечи и т. д.).

В таком случае я также могу подстраховать себя от резкого падения, при котором тренд-вектор не успеет развернуться, и выйти в кеш, если цена по закрытию зафиксируется ниже значения «линии шеи». Но это, скорее, исключение. Так что с критериями на выход у меня все в порядке.

ПРО УПРАВЛЕНИЕ КАПИТАЛОМ

На самом деле, когда речь заходит про управление капиталом, все сразу начинают считать процент прибыльных и убыточных сделок, величину просадки, отношение средней прибыли к среднему убытку и т. д. Действительно, все это важные показатели, но не основные.

Основной показатель риска – это плечи (маржинальная торговля). Именно большие плечи есть братская могила инвесторов, а не что-то другое!

А суть в том, что размер плеч, которые вы используете в торговле, определяется именно вашей жадностью. А где жадность, там и страх. Чем больше плечи, тем больше как потенциальная прибыль, так и потенциальный убыток.

Но в итоге из-за страха или жадности убытки будут всегда перевешивать прибыль. А все остальное – это лирика.

Моя система управления капиталом построена следующим образом.

Начальный размер капитала я умножаю на 2 (получается кредитное плечо 2 к 1), а затем полученную сумму делю на 8 частей. И начинаю по одной части (1/8) постепенно выстраивать лесенку (до 8/8).

Получается, что 1 часть (1 позиция) – это 1/4 вашего капитала. Таких позиций я максимум могу открыть 8 штук. Если открыто 4 позиции или меньше, значит, стою на своем.

Это позволяет мне перестаивать большие колебания, не боясь, что позвонит дядя Коля (будет маржин-кол). И перестаивать так я могу годами, пока не дождусь нужной мне цены или сильной волновой конструкции!

При этом чаще всего такие позиции я набираю по мере роста, то есть усредняюсь в прибыль. Если же по какой-то причине цена идет против меня, я сразу сбрасываю плечи и начинаю ждать нужного момента, чтобы добавить усреднение по лучшей цене, и все это в рамках кредитного плеча 2:1. Понимаете, в чем дело!

А вот если вы стоите с плечом 100:1 или даже больше, то перестаивать убытки уже не получится.

Кстати, в такой ситуации держать позицию без стоп-лосса становится уже очень страшно, потому как даже при небольших колебаниях цены против вас, убыток начинает резко расти, и чем больше, тем сильнее начинает зашкаливать страх, ведь за углом вас ждет дядя Коля с дубиной!

Результаты торговли

Небольшое предисловие.

После того как я издал свою книгу «Альтернативный волновой анализ», мне стали приходить различные комментарии по поводу самой теории.

Скажу сразу, что люди писали разное, много было таких комментариев: «Ты чего там такое куришь?» Или: «Бред сивой кобылы, тут без ящика водки никак не разобраться». Хотя встречались и такие: «Ты статистику сделок по этой системе на реальных деньгах хотя бы за год покажи».

И тогда я задумался.

А ведь действительно, теория теорией, а нужен статистически подтверждающий результат.

Поэтому я решил, что необходимо честно и открыто протестировать систему, по крайней мере для себя самого.

Причем на реальных деньгах и в режиме реального времени. С подробным описанием предварительных показаний системы и ее конечными прогнозами. И накопить такую информацию хотя бы за год.

Чтобы можно было потом проанализировать статистику сделок, а также сравнить этот результат с теми показаниями системы, которые были на тот момент описаны в виде обзора.

Кстати, подобное накопление информации может позволить в дальнейшем обучить торговать по этой системе нейросеть. Научившись на примерах множества обзоров, она сможет быстро анализировать, сравнивать и классифицировать точки входа-выхода, статистика по которым уже накоплена системой.

Поэтому я решил тогда, что буду выкладывать свои обзоры на разных ресурсах, а вот возможность комментировать их я оставил только на «Профите» – соцсеть от БКС. Все мои прогнозы, которые я делал по системе, вы прочтете далее в разделе «Торговый дневник», а вот комментарии к ним можно найти в моей ветке AWA на «Профите».

Дальше привожу статистику торгов по системе за период с 11 марта 2022-го по 16 августа 2023-го (экселевский файл с полной статистикой есть в моем телеграм-канале https://t.me/awanowa).

Здесь необходимо отметить, что все сделки я совершал на паре юань/рубль, 4-часовой таймфрейм. Часть сделок я держал среднесрочно (больше месяца), часть сделок – краткосрочно (меньше месяца). Были и совсем краткосрочные сделки. Но в основном это случаи, когда я выходил по стоп-лоссу.

Торговал я лесенкой. Набирал от 1 до 8 позиций во время тренда по волновым моделям. При этом получалось максимальное плечо 2 к 1.

И вот результат.



Здесь график изменений баланса выражен в пунктах курсовой разницы (1 пункт = 0,1 коп.). Отчет велся от нуля без учета комиссии.



Таким образом, с 11 марта 2022-го по 16 августа 2023-го было совершено 63 сделки. Из них 45 сделок было прибыльных и 18 сделок были убыточными. Получается 71,4 % прибыльных торгов и 28,6 % убыточных торгов.

При этом общая прибыль составила 21211,7 пункта, что дает значение средней прибыли 471,4 пункта. А общий убыток составил –2754 пункта, что дает значение среднего убытка –153 пункта.

Получаем отношение средней прибыли на средний убыток 3:1.

Рассчитаем матожидание системы.

МО = коэффициент прибыли * среднюю прибыль + коэффициент убытков * средний убыток = 471,4 * 0,714–153 * 0,286 = 292,8 пункта. Матожидание положительное.

Много это или мало? Для меня достаточно!

Система полностью алгоритмизирована и представляет собой, по сути, математический аппарат, не допускающий двоякой трактовки вводных данных. Значит, представленные здесь выводы можно считать статистически устойчивыми.

Загрузка...