PHYSICAL AND MATHEMATICAL SCIENCES

CURRENT RESEARCH IN THE DIRECTION OF STUDYING THE LARGEST PLANET IN THE SOLAR SYSTEM – JUPITER

UDC 523.45

Aliyev Ibratjon Xatamovich


3rd year student of the Faculty of Mathematics and Computer Science of Ferghana State University


Ferghana State University, Ferghana, Uzbekistan

Annotation. This study analyzes modern achievements of science and technology on the way to explore the largest and most massive object in the Solar System, except for its star, the planet Jupiter. Much attention is paid to the analysis of its internal structure and the environment prevailing there, along with a parallel analysis of the possibilities of technologies for exploring the planet under specified physical conditions.

Keywords: Jupiter planet, gas giant, environment, physical and mathematical modeling, research, analysis.

Аннотация. В настоящем исследовании проводиться анализ современных достижений науки и техники на пути исследования самого большого и массивного объекта в Солнечной системы, кроме её звезды – планеты Юпитер. Большое внимание уделяется анализу его внутренней структуры и царящей там среды, наряду с параллельным анализом возможностей технологий для исследования планеты при обозначенных физических условиях.

Ключевые слова: планета Юпитер, газовый гигант, среда, физико-математическое моделирование, исследование, анализ.

The planet Jupiter, which is the second largest, after the Sun in terms of size and volume of objects in the Solar System, appears as a rather interesting object to study, along with a variety of space objects. So, it was this planet, discovered by the brilliant scientist Galileo Galilei, that became one of the key reasons for the collapse of the geocentric theory, as well as the clearest proof that not all objects in the system revolve around the Earth or the Sun, which in turn struck a blow towards the heliocentric system. Jupiter has a huge number of very different satellites and today more than 80 satellites are known, but the first of them were discovered precisely the so – called Galileo satellites, named by his German colleague – Ganymede, Europa, Io and Calisto.

Jupiter is a gas giant, unlike other planets with a solid surface, surrounded by a large thick atmosphere. This was also the reason that this planet is home to the largest hurricane in the entire Solar System, the size of planet Earth, called the “Big Red Spot” and which has been going on for hundreds of years and besides, the wind speed in it reaches 650 km/h or 350 knots. It is also worth noting that only in its small diameter, because it has the shape of an ellipsoid, it is approximately equal to the Earth, and its larger diameter is relatively larger than the diameter of the Earth.

It is interesting to establish the initial connection with the planet directly, namely, the process of transferring from the optical part of the spectrum to the radio wave, one can see the radiation of the planet’s magnetic field formed in a powerful magnetosphere. So, the first information about this radiation was received from Pioneer-10 on March 12, 1973, after which all models were equipped with a powerful safety system against strong electromagnetic radiation, but the next obstacle is a powerful atmosphere, even more significant in its danger than the danger of the electromagnetic background.

For the first time, the Galileo spacecraft succeeded in penetrating the planet’s atmosphere on December 8, 1995, when its expedition was launched and for 8 years this device has been transmitting information about the analysis of both the planet itself and satellites. So, its first satellite Io is a very tectonic space object with a large number of volcanoes and slightly larger than the Moon, in contrast to the calm and snowy Europe, under which there is supposed to be a huge ocean. There are suggestions that real life can live in this liquid icy water.

But neither Io nor Europa have a magnetic field, as Ganymede is the largest satellite not only among the moons of Jupiter, but also among all the satellites in the Solar System. Returning to the atmosphere of Jupiter itself, it is worth believing that his research was carried out by Galileo, or rather by his atmospheric probe, which turned on at an altitude of 350,000 kilometers above the clouds of Jupiter and after 6 hours at a speed of 48 km/s he touched the atmosphere of the planet and spent 57 seconds only on the braking process.

Its sensors detect a sharply increasing temperature value, which reaches values of 16,000 degrees Celsius. The exhaust parachute helps by reducing the speed to 120 m / s and this happens only in the upper layers of the atmosphere, which was higher in magnitude only at the beginning, and in small subsequent layers is equal to the Earth’s atmosphere. The second main parachute also opens, reducing the speed to 27 m / s, which also reduces the temperature, after which the most important information about the structure of Jupiter’s atmosphere is transmitted within an hour, the overall temperature is also measured, a huge number of lightning is recorded, which are very common in such dense clouds of the planet. In addition, data on the energy received from the Sun is recorded, with a comparison of the energy, the emitter of which is the core of the planet.

At a depth of 180 km, at a temperature of 150 degrees Celsius and a pressure of 2,300,000 Gpa, which is comparable to an atmospheric pressure of 101,325 Pa in 22.7 atmospheres, the radio transmitter overheats and the device stops transmitting information. However, it continues its flight for several hours, the temperature and pressure begin to rise, leading to the fact that it eventually melts and evaporates in the vast atmosphere of the planet, turning into a part of it.

Galileo ended its existence, having received the same fate after 8 years of incessant service. But it is worth saying that this is only the beginning of the journey and the time will come when it will be possible to talk about creating more powerful devices equipped with new nuclear engines using thermonuclear or resonant nuclear reactions. The energy obtained from such energy sources will be sufficient to penetrate to a greater depth, supporting a thicker shell structure capable of withstanding higher atmospheric pressures, while continuing to penetrate into the deep layers of the atmosphere. In addition, paying attention to the chemical composition of Jupiter, which is dominated by hydrogen, nitrogen and some other gaseous compounds, there is a huge ocean of liquid hydrogen, which subsequently turns into a solid core.

There is also a further analysis of the planet, along with consideration of the possibility of participating in the role of a passenger in a spacecraft of this type – a human. Full-fledged installations could be developed that can receive energy from lightning, even if necessary, the number of which is simply huge, not to mention ultrafast winds, which can already be used not for wind generators, but for full-fledged ion engines or, more precisely, ion generators. Among all the above, the real challenge for human civilization, like the conquest of Mount Everest, remains the conquest of the “Big Red Spot” until it has transformed its existence, because if we compare even the data obtained at the beginning of the last century, the power and size of the largest hurricane in the system decrease every time. From the above it can be seen that achieving the set results is quite realistic and possible, which in turn will bring human civilization and its capabilities to a new level.

The literature used

1. Dr. David R. Williams. Jupiter Fact Sheet. NASA. 2007.

2. P. Kenneth Seidelmann et al. Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements. 2006 // Celestial Mechanics and Dynamical Astronomy: journal – Springer Nature, 2007. – Vol. 98, No. 3. – P. 155—180.

3. National Aeronautics and Space Administration. Probe Nephelometer. // характеристики космического аппарата. – NASA/JPL. 1983. – Iss. 6.

4. Анна Сдобина. Ты не пройдёшь! Кто ловит космических странников на пути к Земле // Наука и жизнь, 2022,;4. – С. 10—16.

5. Tristan Guillot, Daniel Gautier. Giant Planets. – 2009-12-10.

6. Elkins-Tanton, Linda T. Jupiter and Saturn. – New York: Chelsea House, 2006. – ISNB 0-8160-5196-8.

7. Guillot, T.; Stevenson, D. J.; Hubbard, W. B.; Saumon, D. Chapter 3: The Interior of Jupiter // Jupiter: The Planet, Satellites and Magnetosphere (англ.) / Bagenal, F.; Dowling, T. E.; McKinnon, W. B. – Кембриджский университет Press, 2004. – ISBN 0521818087.

8. Bodenheimer, P. Calculations of the early evolution of Jupiter (англ.) // Icarus. – Elsevier, 1974. – Vol. 23. – P. 319. – doi:10.1016/0019—1035 (74) 90050—5

9. Hubbard, W. B.; Burrows, A.; Lunine, J. I. Theory of Giant Planets. – С. 112—115.

10. Георгий Бурба “Оазисы экзопланет”. // Журнал “Вокруг света” №9 (2792), Сентябрь 2006

11. Guillot, Tristan. Interiors of Giant Planets Inside and Outside the Solar System (англ.) // Science: journal. – 1999. – Vol. 286, no. 5437. – P. 72—77. – doi:10.1126/science.286.5437.72. – PMID 10506563.

12. Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I. An expanded set of brown dwarf and very low mass star models (англ.) // The Astrophysical Journal: journal. – IOP Publishing, 1993. – Vol. 406, no. 1. – P. 158—171. – doi:10.1086/172427.

13. Rory Barnes & Thomas Quinn. THE (IN) STABILITY OF PLANETARY SYSTEMS (англ.). – Seattle, WA: Dept. of Astronomy, University of Washington, JANUARY 12, 2004. – P. 30. – doi:10.1086/421321. – arXiv: astro-ph/0401171.

14. Roy, A. E. & Ovenden, M. W. On the occurrence of commensurable mean motions in the solar system (англ.). – Monthly Notices of the Royal Astronomical Society. – 232 p. – (SAO/NASA Astrophysics Data System (ADS)).

15. Мюррей К., Дермотт С. Динамика Солнечной системы. – Физматлит, 2010. – 588 с. – 500 экз. – ISBN 987-5-9221-1121-8.

16. Карл Саган “Космос: Эволюция Вселенной, жизни и цивилизации”, – СПб: Амфора, 2008, С. 58—61. ISBN 978-5-367-00829-6

17. Atreya, S. K.; Mahaffy, P. R.; Niemann, H. B. et al. Composition and origin of the atmosphere of Jupiter – an update, and implications for the extrasolar giant planets (англ.) // Planetary and Space Sciences: journal. – 2003. – Vol. 51. – P. 105—112. – doi:10.1016/S0032—0633 (02) 00144—7.

18. Sagan, C. et al. Polycyclic aromatic hydrocarbons in the atmospheres of Titan and Jupiter (англ.) // The Astrophysical Journal: рец. науч. журнал. – IOP Publishing, 1993. – Vol. 414, no. 1. – P. 399—405. – ISSN 0004—637X. – doi:10.1086/173086. – Bibcode: 1993ApJ…414..399S.

19. Ingersoll, A.P.; Dowling, T.E.; Gierasch, P.J.; et al. (2004). “Dynamics of Jupiter’s Atmosphere” (PDF). In Bagenal, F.; Dowling, T.E.; McKinnon, W.B. (ed.). Jupiter: The Planet, Satellites and Magnetosphere. Cambridge: Cambridge University Press. ISBN 0-521-81808-7..

20. Miller, Steve; Aylword, Alan; and Milliword, George. Giant Planet Ionospheres and Thermospheres: the Importance of Ion-Neutral Coupling (англ.) // Space Sci.Rev.: journal. – 2005. – Vol. 116. – P. 319—343. – doi:10.1007/s11214-005-1960-4..

21. Е. П. Левитан. Астрономия: Учебник для 11 кл. общеобразовательных учреждений. – 9-е изд. – М.: Просвещение, 2004. – ISBN 5-09-013370-0..

STUDY OF THE CONTROL PROPERTIES OF POLYCRYSTALLINE STRUCTURES BASED ON SILICON AND CADMIUM TELLURIDE

UDC 544.22

Salim Madrahimovich Otajonov


Doctor of Physical and Mathematical Sciences, Professor of the Department of “Professional Education” of the Faculty of Physics and Technology of Fergana State University Alimov Nodir Esonalievich Doctor of Philosophy in Physical and Mathematical Sciences, Lecturer at the Department of Physics, Faculty of Physics and Technology, Ferghana State University Botirov Qodir Abdullayevich Lecturer of the Department of “Professional Education” of the Faculty of Physics and Technology of Ferghana State University


Ferghana State University, Ferghana, Uzbekistan

Annotation. In this paper, the photoelectric properties of CdTe – SiO2 – Si heterostructures are investigated. For the first time, the possibility of controlling the spectrum of short – circuit current and photo-EMF using an integrated charge in a dielectric (SiO2) has been demonstrated. It was found that with an increase in the corona discharge potential, the spectra will mix into the short – wavelength regions of the spectrum from 0.93 to 1.5 eV, while the activation energy of the deep level of 0.73 eV changes significantly and this change occurs due to the Poole-Frenkel effect. It is found that the electric field strength in the vicinity of the defect is ε = 105 V/cm.

Keywords: photoconductivity, PHOTOEMF, spectral distribution of photosensitivity, short-circuit current, asymmetry of barriers, surface photo-EMF, deep levels, impurity photoconductivity, corona discharge.

Аннотация. В данной работе исследованы фотоэлектрические свойства гетероструктур на основе CdTe – SiO2 – Si. Впервые продемонстрирована возможность управления спектра тока короткого замыкания и фото – ЭДС при помощи встроенного заряда в диэлектрике (SiO2). Установлено, что с увеличением потенциала коронного разряда спектры смешается в коротковолновые области спектра от 0,93 до 1,5 эВ, при этом существенно изменяется энергии активации глубокого уровня 0,73 эВ и это изменение возникает за счёт эффекта Пула – Френкеля. Найдено, напряжённость электрического поля в окрестности дефекта ε = 105 В/см.

Ключевые слова: фотопроводимость, фото-ЭДС, спектральное распределение фоточувствительности, ток короткого замыкания, асимметрия барьеров, поверхностная фото-ЭДС, глубокие уровни, примесная фотопроводимость, коронный разряд.

Introduction

The development of micro – nano electronics and new technological possibilities for the manufacture of complex semiconductor structures stimulate further study of new optical and photovoltaic phenomena in active film elements.

Currently, oxides and nitrides of semiconductors and semiconductor films grown on their surfaces are widely used in the manufacture of multichannel photovoltaic converters and other active elements of microelectronics circuits, and in particular, optoelectronics. In this case, it is possible to obtain high-quality and dielectric layers of semiconductors with deep levels. At the same time, it is easier and cheaper to use polycrystalline films sprayed on amorphous substrates rather than epitaxial ones.

CdTe semiconductor films are an important material for the creation of photodetector devices based on heterostructures operating in the near (up to 3 microns) and far (8—14 microns) The IR range. It is of interest to obtain heterostructures based on photosensitive layers with different types of conductivity. A promising p-type material doped with silver and copper, which give an acceptor level in the forbidden zone with a long lifetime of non-main charge carriers [1—14].

The aim of the work is to study new photovoltaic properties of active CdTe thin films and heterostructures in a system with SiO2-Si under conditions of specific external influences.

The results of experimental studies of the photovoltaic properties of textures from sprayed layers of CdTe – SiO2 – Si, etc., allow the development of new devices based on polycrystalline films with controlled properties.

Below we investigate the photosensitivity of the CdTe – SiO2 – Si structure, which can be used, for example, as a metal – silicon nitride oxide semiconductor (MNP) – a transistor with a polarized dielectric [1,2], which allows electrical rewriting of information.

Experimental results

Polycrystalline (grain sizes are 0.05—0.1 microns) CdTe films were obtained on the surface of SiO2 – Si. CdTe and Ag and Cu impurities evaporated in a vacuum of 10—5 mmHg from separate evaporators onto the heated oxidized surface of Si. The relative arrangement of the layers of the CdTe – SiO2 – Si structure and the ohmic contacts to them is schematically shown in Fig.1. In such a structure, photosensitivity is controlled by external influences, such as an electric field or corona discharge, which change the built-in field in the dielectric. In this case, we have a “reverse” field – effect transistor of the CdTe – SiO2 – Si type, when the control charge is located under the semiconductor layer, and its surface remains open.


Fig.1 The relative position of the layers of the CdTe – SiO2 – Si structure. 1,2 – contacts; 3 – filtering contacts.


Currently, electrification using a corona discharge is the main method of sensitizing photovoltaic layers in industrial electrography [3].

An experimental setup was used for corona electrification of the studied structures, the block diagram of which is presented in [4]. Electrification occurs due to deposition of positive or negative ions in a corona discharge on the surface of the layer. Corona discharge occurs if the voltage between the metallized surface of the Al layer and the electrode exceeds 6 kV, when the field embedded in the structure reached 100 V. The spectra of the short – circuit current charged in this way in the CdTe – SiO2 – Si structure were studied depending on the magnitude of the external corona discharge and showed that in the static mode a shift of the spectra to the short-wave region is observed (Fig.2). It turned out that in such a structure, the photosensitivity of the layer can be controlled by the action of an external corona discharge potential (using the “field effect” method), which, as it turns out below, induce embedded electric charges in the dielectric.

In Fig.2. The spectral dependences of the short-circuit current (Icz) of the CdTe layer for various values of the corona discharge intensity, which were carried out by contact (2) and electric probe contact (3) to the surface of the CdTe semiconductor, are presented. It can be seen that in the absence of external influences in the Icz (v) spectra, an inversion of the Icz sign is observed in the vicinity of the light quantum energy value equal to hν= 1.21eV (curve 1) the inclusion of the surface corona discharge potential between the CdTe layer and silicon leads to a significant change in the spectral sensitivity of the short-circuit current (Icz). When the surface potential changes within its value from 0 to 100 V, the inversion position of the short-circuit current sign will mix into the short-wave region of the spectrum. In this case, the maximum photosensitivity of the Icz will be mixed into the short-wavelength region of the spectrum in the range from 0.93 eV to 1.5 eV. The position of the maximum value of the Icz increases by more than 1000 times at 70 angstems (curve 3).


Fig.2. Spectral dependences of the Icz for the CdTe-SiO2-Si structure on the magnitude of the corona discharge potential: jcr = 0 V (curve 1), 40 V (2),70 V (3). The inset shows the photosensitivity spectra of the impurity region of light absorption on a logarithmic scale.

Discussion of the results

For a qualitative description of the physical nature of the transfer phenomenon occurring in the CdTe – SiO2 – Si (semiconductor – oxide – semiconductor, i.e. POP) structure when a voltage is applied to it, consider a model in which a stationary current consists of a stream of electrons tunneling from the conduction band of a semiconductor into a deep level located in the oxide (and including the trap at the interface). Since the thickness of the silicon oxide in the structure under consideration is 0.4 microns, according to our estimates, the first contribution to the total flow is insignificant (less than 25%).

Tunneling of current carriers from the CdTe film into deep levels of silicon oxide leads to a change in the filling of the surface state. The latter, depending on the magnitude of the built-in charge, modifies the potential relief of the structure. So that the photogeneration rate will depend on the magnitude of the built-in charge, i.e. on the magnitude of the corona discharge potential in the structure. This means that the magnitude of the photo-EMF will be determined by the degree of asymmetry of the potential relief.

For a qualitative description of the physical nature of the kinetic phenomenon in the structure of semiconductor CdTe – oxide semiconductor SiO2 – semiconductor Si, a model based on the theory of a TIR (metal-dielectric-semiconductor) transistor can be considered. In this case, we mean that in a thick (0.4 µm) oxide layer, the main mechanism of current flow is determined by the Fowler – Nordheim model [5] and the corresponding current is denoted as



where i is the emission current density, E is the electric field strength, φ is the output operation, functions a and b depend on the geometry and operation of the output, for example, the degree of asymmetry, height, and width of the potential barrier. The current carrier flow should occur: a) due to the increasing (due to the Poole-Frenkel effect) thermionic emission through the potential barrier (jFN) of electrons with an increase in the magnitude of the corona discharge potential, b) due to the autoelectronic emission of current carriers trapped in the semiconductor oxide into the CdTe (jFN) conduction band. Since the contributions to the total current from the above currents are different in magnitude, the continuity of the current is disrupted at the interface. Thus, the excess (nonequilibrium) current carriers that appear in this case lead to the accumulation of charge at the interface. This leads to a redistribution of the internal electric field, which is essential in the formation of a potential barrier relief.

When the surface corona discharge potential is turned on at the boundary of CdTe films and the dielectric layer, charge carriers (electrons and holes) are tunneled from the semiconductor layer into the deep levels of the dielectric. Charge carriers in the film and at the interface, depending on the magnitude of the built-in charge, change the potential relief, therefore, when this layer is photoexcited, they will be generated under the influence of the built-in charge, changes the distribution of current carriers generated on the surface in such a way that draws them into an area that is accessible only to weakly absorbed electromagnetic radiation. Therefore, photo EMF also occurs during long-wave excitation. The asymmetry of the barriers is such that weakly absorbed radiation generates a photo EMF of the reverse sign compared to strongly absorbed radiation. Then, under the influence of a volumetric charge, the inversion of the sign of the photo EMF will mix the short-wave region, and the photosensitivity increases in the region of the electromagnetic radiation spectrum under study.

It should be noted that during corona discharge, the activation energies of the deep level (0.7 eV) change significantly depending on the potential of the corona discharge (see Figure 2 in the box). This change is due to the influence of the optical ionization energy of the deep level located in the region of the volume charge near the SiO2 layer (this is indicated by experimental results). If we assume that this change occurs due to the Pool – Frenkel effect [5], then the mixing (delta-E) level can be estimated using the formula



where, is the dielectric constant of CdTe, is the charge of the electron. Then, according to our estimates, the electric field strength in the vicinity of the defect is 105 V/s, which is quite reliable.

The situation arising in a CdTe film under the action of an embedded field corresponds to the model developed for a polysilicon field effect transistor [6]. The model considered in this paper is similar to the model [6], if identified with the control electrode of a field-effect transistor. Therefore, the numerical calculations of the potential distribution in a polycrystalline semiconductor are quite applicable for the embedded charge of a CdTe film. From the calculation results, the effect of an external field on the polycrystalline structure follows that a weak field only deforms the distribution of carriers, while a strong field leads to a decrease in the value of intercrystalline barriers due to the unification of the volume of the crystallite. These results show that the built – in field can lead to a decrease in the height of the barrier in the film (at U <10 V), and even to its disappearance (at U> 60 V) (on one of its surfaces), and then the remaining potential barrier becomes predominant, in the other – its opposite near-surface region.

Conclusion

Summing up the analysis of the results, it is shown that the spectral photosensitivity of the CdTe layer by short – circuit current and photo EMF can be controlled by the induced built – in electric charge of the dielectric created by the external corona discharge potential in the CdTe (film) – SiO2 (dielectric) – Si (semiconductor) heterostructure.

This opens up new possibilities for the creation of semiconductor devices sensitive to electromagnetic radiation, used in optoelectronics as a photosensitive device with a spectral characteristic in a wide sensitivity range. This effect is also associated with fundamentally new capabilities of semiconductor devices with variable spectral characteristics and matching it with an emitter, which is important for robots (the visual organ of a robot, where color vision is needed), for devices and information recording systems.

Literature

1. Maslov V. V. MNOP matrix for permanent storage devices with electrical rewriting. Electronic equipment series 3.-1974.No.21501 p.

2. Ginover A. S., Rzhanov A.V. Storage devices based on multiple structures. Microelectronics -1973. Vol. 2. No.5.-379s.

3. Ivanov R. N. Reprography. Methods and means of copying and reproducing documents. – M.: Sov. Radio. 1977. – 384 p.

4. In Gaidyalis I., Markevich N. N., Montrimas E. A. In the physical processes of electrophotographic layers of ZNO. Vilnius, 1968. – 367 p.

5. Juodvirshis A., Mikalkevicius M., Vyangris S., Fundamentals of semiconductor physics. Vilnius. Moxlas, 1985. – 352 p.

6. Guerrieri R., Giampolini P., Gnidi A., IEEE transactions on electronic devices. 1986., V. ED -33. No.-8., pp.1201—1206.

7. Vaitkus, Yu. Yu. The influence of excess tellurium and lead on the deformation characteristics of polycrystalline films. Yu. Yu. Vaitkus, S. M. Otazhonov, M. M. Khalilov, N. Yunusov. Scientific bulletin. Volume of physical and mathematical research. 3 Iss. 1. June 2021. Andijon. Uzbekistan.

8. Otazhonov, S. M. The effect of deformation on the migration of defects in photosensitive thin films of cadmium silver telluride: Ag and PP. / S. M. Otazhonov, K. A. Botirov, M. M. Khalilov. // ISSN number 2308—4804. Science and Peace. – 2021. – №6 (94).

9. Akhmedov T. Effective dielectric constant and electrical conductivity of polycrystalline PbTe films with impaired stoichiometry. T. Akhmedov, S.M. Otazhonov, M.M. Khalilov, N. Yunusov, U. Mamadzhanov, N.M. Juraev. Physical Journal: A series of conferences. 2131 (2021) 052008. doi:10.1088/1742—6596/2131/5/052008

10.Akhmedov, T. Optical properties of polycrystalline lead telluride films with distributed stoichiometry. T. Akhmedov, S. M. Otajonov, Ya. Usmonov, M.M. Khalilov, N. Yunusov and A.K. Amonov. Physical Journal: A series of conferences. 1889 (2021) 022052. doi:10.1088/1742—6596/1889/2/022052

11. Dashevsky, Z. Thermoelectric efficiency in graduated PbTe crystals doped with indium / Z. Dashevsky, S. Shuzterman, M.P. Dariel, I. Drabkin // Journal of Applied Physics. – 2002. – vol. 92, No. 3. – pp. 1425—1430.

12. Dzundza, B. Transport and thermoelectric characteristics of PbTe n-type films / B. Dzundza, L. Nikiruy, T. Paraschuk, E. Ivakin, Yu. Yavorsky, L. Chernyak, Z. Dashevsky. Condensed Matter Physics In April 2020. DOI:10.1016/j.physb.2020.412178

13. Otazhonov, S.M. The effect of internal stress on the deformation characteristics of polycrystalline PbTe films with an excess of tellurium and lead /S.M. Otazhonov. Otajonov S.M., Akhmedov T., Usmonov Ya., Botirov K.A., Khalilov M.M., Yunusov N. ISSN 2308—4804. Science and the World. 2021. No.3 (91). Volgograd, 2021.

14. Otazhonov, S.M. Influence of group VII elements on the deformation sensitivity of polycrystalline films PbTe, PbS Otazhonov S.M., Rakhmonulov M.Kh., Khalilov M.M., Botirov K.A., Yunusov N. Scientific journal European Science Review No.1—2 2021 (January – February), doi.org/10.29013/ESR-21-1.2-35-38.

MECHANICAL INTERPRETATION OF THE PHENOMENON OF INTERFERENCE PATTERN FORMATION IN JUNG’S EXPERIMENT FOR THE THEORY OF WAVE-PARTICLE DUALISM

UDC 577.332

Aliev Ibratjon Khatamovich


3rd year student of the Faculty of Mathematics and Computer Science of Ferghana State University


Ferghana State University, Ferghana, Uzbekistan

Annotation. The theory of wave-particle dualism is well-known today, along with many other theories aimed at explaining various types of phenomena. However, it is worth noting that until recently, the method of explaining the phenomena of wave-particle dualism in a more visual form, which appeared from Jung’s experiment, was questioned. The present study is aimed at presenting this model.

Keywords: particle-wave dualism, wave, particle-corpuscle, wave function, probability distribution, potential well, two-slit experiment.

Аннотация. Теория корпускулярно-волнового дуализма сегодня является общеизвестной, наряду с многими другими теориями, направленные на объяснение различных типов явлений. Однако, стоит отметить, что до последнего времени ставилось под вопрос метод объяснения в более наглядной форме явлений корпускулярно-волнового дуализма, появившаяся из эксперимента Юнга. На представление этой модели и направлено настоящее исследование.

Ключевые слова: корпускулярно-волновой дуализм, волна, частица-корпускула, волновая функция, вероятностное распределение, потенциальная яма, эксперимент с двумя щелями.

The so-called two-slit experiment is widely known, in which a stream of corpuscle particles was directed, as originally assumed, towards a plate with two thin slits, and a screen was located behind it. It was logical that after directing the flow of particles, initially photons from coherent laser radiation, two bands should have been observed on the screen, but instead the so-called interference pattern was observed on the screen. It consisted of a large number of bands with different sizes and brightness, while the maximum was determined in the middle.

Such a picture could only be obtained if the particle behaved like a wave, then it could form with itself and at the moments of opposite peaks extinguish each other, forming dark areas and in reverse positive moments, on the contrary, reinforcing each other, creating the above – described bands.

However, the corpuscular properties of particles are also highlighted, for example, in experiments with the photoelectric effect, it is the corpuscular nature of particles that acts. Based on the above, we had to conclude that particles are both waves and corpuscles, but how could this happen when it contradicted itself? In the quantum world, this was a reality, but for the macrocosm it still remained a mystery until the so-called dense “walking droplets” were used as an explanation.

This effect is formed when a medium-density liquid, for example oil, begins to vibrate and during the interaction of the liquid surface with a pointed object, it begins to divide into droplets, which immediately have to connect with the liquid, but this does not happen due to vibrations and they literally jump on the surface. Each of these drops is held under the influence of vibration, but moreover, such drops have the property of moving, because under the influence of vibrations they create standing waves that propagate across the surface, however, during the interaction of the drop with it, it begins to change its direction, which is why the effect of the movement of the drop is formed.

The present explanation can be applied to Jung’s experiment by directing the droplets towards two slits. It is worth clarifying before this that the drop itself expresses in this case a corpuscle-particle, when vibrations are the probabilistic nature of the existence of quantum objects – the particles under study in the person of photons, electrons, ions and others. When a particle begins to move towards the slit, its wave, which begins to oscillate at the level of spacetime, due to the vibrational nature of the particle – the variable probability of its being at a specific point, since its movement is discrete, according to the tunneling effect, begins to interact with the particle itself.

So, when it approaches the gap, it passes through one of the slits, when its wave passes through both, as a result of which, after passing through the barrier, the particle begins to interact with the formed wave, changing its trajectory. Thus, one can clearly see how the interference pattern is formed using the example of explaining Young’s experiment with two slits by means of jumping droplets.

In addition, during the explanation of the experiment, the concept of tunneling was demonstrated, which can also be represented by jumping droplets. The fact is that any space, according to the quantum vacuum model, has an infinite number of particles that are immediately born, annihilate with each other, disappear, etc., that is, according to the quantum vacuum model, there is practically no particle – free space, from which it can be concluded that in order for a particle to be able to overcome no matter how small the distance, it needs energy through which it could overcome this distance, but it also happens that a particle overcomes the same distance without practically losing energy, which is called tunneling.

In this case, there is a barrier in front of the particle that is moving, which it must overcome by making a certain leap through it, but without expending energy to overcome it. Surprisingly, this effect can also be represented in the form of a drip model, according to which, if a certain wall is placed in front of a drop, then each time it will try to jump over it, but it will not work, however, at a certain moment, interaction with its own standing wave may be sufficient to obtain additional energy and to overcome the barrier. In such a phenomenon, the probability is surprisingly determined in the macrocosm in the same way as it is determined in the quantum measurement and description of the phenomenon of quantum tunneling of particles.

Moreover, the generality of the described phenomena for a wide variety of particles, from elementary particles to ions, is important, which in a sense makes the droplet model of demonstration almost universal. However, a large number of phenomena still remain unexplained, which means that not a few works should be done on the basis of available data and the drip model, as one of the most progressive analogies, will have to overcome quite a few tests on the way to achieving the goals set.

The literature used

1. Boyarkin, O. M. Particle Physics – 2013: Quantum electrodynamics and the Standard Model / O. M. Boyarkin, G. G. Boyarkina. – M.: CD Librocom, 2015. – 440 p.

2. Boyarkin, O. M. Particle Physics – 2013: from electron to Higgs boson. Quantum theory of free fields / O. M. Boyarkin, G. G. Boyarkina. – M.: Lenand, 2018. – 296 p.

3. Boyarkin, O. M. Particle physics – 2013: Quantum electrodynamics and the Standard model / O. M. Boyarkin, G. G. Boyarkina. – M.: CD Librocom, 2016. – 440 p..

4. Voronov, V. K. Physics at the turn of the millennium: Physics of self-organizing and ordered systems. New objects of atomic and nuclear physics. Quantum information / V. K. Voronov, A.V. Podoplelov. – M.: KomKniga, 2014. – 512 p.

5. Gribbin, J. In search of Schrodinger’s cat. Quantum physics and reality / J. Gribbin. – M.: Ripoll-classic, 2019. – 352 p.

6. Zhuravlev, A. I. Quantum biophysics of animals and humans: A textbook / A. I. Zhuravlev. – M.: Binom. Laboratory of Knowledge, 2011. – 398 p.

7. Irodov, I. E. Quantum physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom, 2014. – 256 p.

8. Irodov, I. E. Quantum Physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2010. 256 p.

9. Irodov, I. E. Quantum Physics. Basic laws: A textbook / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2004. – 272 p.

10. Irodov, I. E. Quantum physics. Basic laws / I. E. Irodov. – M.: Binom. Laboratory of Knowledge, 2010. – 256 p.

11. Irodov, I. E. Quantum physics. Basic laws: A textbook for universities / I. E. Irodov. – M.: Binom. LZ, 2013. – 256 p.

12. Kamalov, T. F. Physics of non – inertial reference systems and quantum mechanics / T. F. Kamalov. – M.: KD Librocom, 2017. – 116 p.

13. Karmanov, M. V. Course of general physics. Vol. 3. Quantum optics. Atomic physics. Solid state physics In 4 tt T: 3 / M. V. Karmanov. – M.: KnoRus, 2012. – 384 p.

14. Kvasnikov, I. A. Thermodynamics and statistical physics. Vol. 4. Quantum statistics: Textbook / I. A. Kvasnikov. – M.: KomKniga, 2010. – 352 p.

15. Kvasnikov, I. A. Thermodynamics and statistical physics: Vol. 4: Quantum statistics / I. A. Kvasnikov. – M.: Lenand, 2017. – 352 p.

16. Kvasnikov, I. A. Thermodynamics and statistical physics. Vol. 4: Quantum statistics / I. A. Kvasnikov. – M.: KomKniga, 2014. – 352 p.

Загрузка...