Глава 2 ЭМБРИОГЕНЕЗ И НЕЙРОЭНДОКРИННАЯ РЕГУЛЯЦИЯ РЕПРОДУКТИВНО-ПОЛОВОЙ СИСТЕМЫ У ДЕТЕЙ И ПОДРОСТКОВ

2.1. Эмбриогенез и дифференцировка органов репродуктивно-половой системы

Прежде чем коснуться аспектов эмбриогенеза, следует напомнить некоторые постулаты и принципы функционирования генетического аппарата человека (см. цв. вкл., рис. 2.1; 2.2 и 2.3).

Первый уровень построения генома предполагает организацию дезоксирибонуклеиновой кислоты (ДНК) с гистоновыми белками – образование нуклеосом. Две молекулы специальных нуклеосомных белков образуют октамер в виде «катушки», на которую наматывается нить ДНК. На одной нуклеосоме размещается около 200 пар оснований. Между нуклеосомами остается фрагмент ДНК размером до 60 пар оснований, называемый линкером. Этот уровень укладки позволяет уменьшить линейные размеры ДНК в 6 – 7 раз (см. цв. вкл., рис. 2.4).

На следующем уровне нуклеосомы укладываются в фибриллу (соленоид). Каждый виток составляет 6 – 7 нуклеосом, при этом линейные размеры ДНК уменьшаются до 1 мм, то есть в 25 – 30 раз.

Третий уровень компактизации – петельная укладка фибрилл – образование петельных доменов, которые под углом отходят от основной оси хромосомы. Их можно увидеть в световой микроскоп как интерфазные хромосомы типа «ламповых щеток». Поперечная исчерченность, характерная для митотических хромосом, отражает в какой-то степени порядок расположения генов в молекуле ДНК.

Если у прокариот линейные размеры гена согласуются с размерами структурного белка, то у эукариот размеры ДНК намного превосходят суммарные размеры значимых генов. Это объясняется, во-первых, мозаичным, или экзон-интронным, строением гена: экзоны – фрагменты, подлежащие транскрипции, – чередуются с интронами – незначащими участками (рис. 2.5).


Рис. 2.5. Гаплоидный набор хромосом у мужчины


Последовательность генов сначала полностью транскрибируется синтезирующейся молекулой РНК, из которой затем вырезаются интроны. Экзоны сшиваются, и в таком виде информация с молекулы иРНК считывается на рибосоме. Второй причиной колоссальных размеров ДНК является большое количество повторяющихся генов. Некоторые гены повторяются десятки или сотни раз, а есть и такие, у которых встречается до 1 млн повторов на геном. Например, ген, кодирующий рибосомальную РНК (рРНК), повторяется около 2 тыс. раз (см. цв. вкл., рис. 2.6; 2.7).

Развитие половых желез в эмбриогенезе (Балаболкин М. И., 2002) обусловлено набором половых хромосом, образующихся после оплодотворения яйцеклетки. Кариотип 46XX определяет развитие яичников, а 46XY – яичек.

Мужские и женские гонады развиваются из трех различных компонентов: целомического эпителия, мезенхимы и примордиальных герминальных клеток. Первичная половая дифференцировка – это процесс развития половых гонад, который начинается на 6 – 7-й неделе эмбрионального развития. Почки, надпочечники и половые железы развиваются в тесном взаимодействии, имеют общее происхождение и являются производными одной и той же области примитивной мезодермы. Под влиянием транскриптационных факторов, в частности фактора WT1 (туморосупрессор опухоли Вилмса), клетки мезодермы трансформируются в почечный примордиум и адреногенитальный примордиум. Последний под влиянием двух транскриптационных факторов – SF1 (ген стероидогенного фактора 1, СФ1) и DAX1 – в последующем развивается в кору надпочечника и первичную гонаду. Для развития и функционирования коры надпочечников и первичной гонады требуется нормальная экспрессия SF1. Принято считать, что его действие заключается не в инициации, а в поддержании развития и образования первичной гонады и ранней фазы развития репродуктивного тракта. Следует отметить, что за развитие коры надпочечников отвечает фактор транскрипции DAX1.

Ген SF1 у человека локализуется на хромосоме 9q33 и содержит семь экзонов, включая два некодирующих. SF1 является ядерно-рецепторным транскрипционным фактором и регулирует экспрессию многих генов, в том числе генов, кодирующих стероидогенез кортикостероидов. Исключительная важность SF1 в эмбриогенезе гонад подтверждается работой J. J. Acherman (1999), в которой доказано, что мутация гена SF1 сопровождается нарушением половой дифференцировки. У больного с женским фенотипом сразу после рождения отмечалась надпочечниковая недостаточность. Однако при обследовании был установлен мужской кариотип 46XY. Кроме того, в области живота определялись структуры протоков Мюллера и маленькие тестисподобные образования.

Кроме SF1, первичная роль в развитии примордиальной гонады бипотенциальных протоков принадлежит опухольсупрессорному фактору Вилмса (WT1, или ВО1). Локус гена WT1 у человека локализуется на хромосоме 11p13 и фактически состоит из двух генов – WT1 и WIT1. Экспрессия этого гена у эмбриона человека выявляется, начиная с 28-го дня беременности, в тканях производных мезодермы – почках, гонаде (клетки Сертоли), мезотелии, а также в спинном и головном мозге. Мутации гена WT1 идентифицированы у больных с Дэнис – Дрэш синдромом (DDS). Указанный синдром характеризуется триадой:

1) гонадальный дисгенез с нарушенной маскулинизацией у эмбриона мужского пола;

2) нефропатия;

3) предрасположенность к опухоли Вилмса.

Как показали исследования S. Barbaux (1997), при синдроме Фрейзера (FS) также имеется мутация гена WT1. Клиническая картина синдрома Фрейзера незначительно отличается от триады Дэнис – Дрэш синдрома и включает:

1) гонадальный дисгенез;

2) нарушенную маскулинизацию плода мужского пола;

3) прогрессивную гломерулопатию;

4) гонадобластому.

Описан также синдром, по клинической картине близкий синдрому Фрейзера, при котором имеет место гонадальный дисгенез.

Таким образом, на самых ранних стадиях развития примордиальной гонады и бипотенциальных протоков большое значение имеют гены SF1 и WT1, а для развития бипотенциальных протоков еще и ген Wnt4. Зародыш гонад (примордиальная гонада) бипотенциален и состоит из двух частей: кортикальной и медуллярной. При двух функционально нормальных Х-хромосомах кортикальная часть индифферентной гонады развивается в яичник. Гены, расположенные в перицентромерной области Y-хромосомы, определяют развитие медуллярной части в яичко. Однако процесс половой дифференцировки более специфичен и помимо указанных хромосом контролируется дополнительно несколькими генами. Этот процесс является растянутым во времени и одновременно координируется экспрессией одних генов и регрессом других.

Длительное время считалось, что гены, определяющие развитие бипотенциальной гонады в яичко, идентичны генам, которые кодируют H-Y-антиген, являющийся клеточно-поверхностным белком. Он способен оказывать непосредственное действие на дифференцировку первичной гонады в яичко. Однако тщательный анализ больных с различными нарушениями половой дифференцировки показал, что H-Y-антиген не идентичен Y-гену, контролирующему дифференцировку яичка. Еще W. K. Silvers установил, что H-Y-антиген локализуется на длинном плече Y-хромосомы и достаточно далеко от гена, определяющего развитие пола эмбриона. При детальном изучении карты хромосом у лиц с набором 46ХХ-половых хромосом при наличии яичек и мужского фенотипа установлено, что у них имеются участки последовательности Y-хромосомы на Х-хромосоме. На основании этого было высказано предположение, что на Y-хромосоме имеется участок последовательности, названный фактором, определяющим развитие яичка, который локализовался у этих больных в псевдоаутосомальной области. Ген, ответственный за развитие яичка, был идентифицирован D. C. Page [et al.] (1987), а клонированный ими участок хромосомы был назван ZFY. Указанная последовательность (ген ZFY) выявлялась у 46ХХ-фенотипичных мужчин, но отсутствовала у 46XY-фенотипичных женщин. Проведенные исследования позволяют считать, что ZFY является небольшой частью Y-хромосомы, сочетающейся с дифференцировкой плода. Однако у некоторых больных ZFY обнаруживали на аутосомах. Исследователи описали четырех мужчин с 46ХХ-набором половых хромосом, у которых наследуемый участок Y-хромосомы не включал ZFY (Palmer M. S. [at al.], 1990). Было установлено, что ZFY не является фактором, ответственным за развитие яичка. Почти одновременно другие ученые опубликовали уточняющие данные о локализации гена в области рY53.3, ответственного за пол эмбриона, назвав его SRY (Sinclair A. H. [et al.], 1990). По их мнению, SRY – истинный фактор, определяющий развитие яичка.

Он экспрессируется только в яичках и отсутствует в легких и почках взрослого мужчины. Область ДНК, в которой локализуется SRY, ответственна также за кодирование двух ключевых ферментов, участвующих в дифференцировке первичной гонады по мужскому типу: 1) ароматазы Р450, контролирующей конверсию тестостерона в эстрадиол; 2) фактора или гормона, ингибирующего развитие протоков Мюллера, который вызывает регресс указанных протоков и способствует дифференцировке тестикул.

Тем не менее, SRY участвует в процессах половой дифференцировки в тесном взаимодействии с геном Z (McElreavey K. [et al.], 1993). Его функция в норме заключается в угнетении специфических мужских генов. В случае нормального мужского генотипа 46XY ген SRY продуцирует белок, угнетающий ген Z, и специфические мужские гены активируются. При нормальном женском генотипе 46ХХ и отсутствии SRY ген Z активируется и угнетает специфический мужской ген, что создает условия для развития по женскому типу. У 46ХХ-мужчин также отсутствует ген SRY, и это сопровождается активацией гена Z с угнетением специфического мужского гена, вызывая развитие по женскому типу. У 46ХХ-мужчин при отсутствии у них SRY должна быть мутация гена Z, сопровождающаяся невозможностью его экспрессии, что способствует осуществлению дифференцировки по мужскому типу. Эта гипотеза объясняет и генез развития женского фенотипа при 46XY. У этих лиц имеется интактный ген SRY и, вероятно, мутация гена Z.

Ген SRY локализуется на коротком плече 6-й хромосомы (центромерно к псевдоаутосомальной области Yp 11.3), а продукт этого гена комплексуется с различными участками ДНК. Ген SRY выполняет основную роль в половой дифференцировке и способен вызвать развитие обратного пола. Он экспрессируется в половой полоске только в определенное время эмбрионального развития, когда происходит образование тестикулярных зачатков. Мутация и делеция этого гена имеется у XY-женщин.

Кроме того, ген SRY на уровне ДНК непосредственно регулирует активность других факторов транскрипции промоторной области гена ароматазы Р450, конвертирующей тестостерон в эстрадиол с угнетением этого процесса у эмбрионов мужского пола, а также ген антимюллерового гормона, ответственного за регрессию протоков Мюллера.

Несмотря на то что ген SRY принимает активное облигатное участие в превращении бипотенциальной гонады в яички, имеются данные, свидетельствующие о том, что одного указанного гена недостаточно для развития яичек (Ramos E. S. [et al.], 1996; Teebi A. S. [et al.], 1998). Имеются дополнительные области на Х-хромосоме и на аутосомах, участвующие в процессах трансформации первичной гонады в яичко. Помимо гена SRY, в указанных процессах половой дифференцировки мужской гонады важная роль принадлежит гену SOX9. К группе SOX-генов (SOX – гены, комплексирующиеся с областью SRY HMG) относят несколько генов (SOX1, SOX2, SOX3 и др.), участвующих в процессах половой дифференцировки первичной гонады. У человека ген SOX9 локализуется на хромосоме 17q 24 – 25 на участке, названном участком аутосомного изменения пола (SRA1), и кодирует транскрипционный фактор, играющий важную роль в развитии яичка, в частности, отвечает за дифференцировку клеток Сертоли (Morais da Silva [et al.], 1996). Экспрессия гена SOX9 определяется в яичках в области семявыносящих канальцев на 18-й неделе эмбрионального развития вслед за экспрессией гена SRY. Исследования последних лет позволяют считать, что ген SRY активирует экспрессию гена SOX9, который прямо или опосредованно участвует в развитии клеток Сертоли, тогда как ген DAX1 репрессирует SOX9, угнетая развитие клеток Сертоли и являясь непременным условием трансформации первичной гонады в яичники.

Загрузка...