Управление и связь в военные годы

Шла осень 1940 года. В темно-синем небе над вечерним Лондоном виднелись лишь небольшие клочки облаков. Стояла обманчивая тишина. Внезапно где-то в полумраке завыли сирены воздушной тревоги. Лондонцы привыкли к этому беспокойному звуку, ночные авианалеты Германии на Соединенное Королевство стали для них обыденным явлением. Немцы начинали вылеты ночью, потому что в темноте истребителям Королевских ВВС было сложнее выслеживать подлетающие конвои бомбардировщиков, а защитникам Лондона – тяжелее их сбивать. Однако ночные вылеты были неточными, пилоты ориентировались визуально и часто использовали зажигательные бомбы, чтобы отметить цель, чаще всего центр промышленности или транспортный узел[9], для последующей активной бомбардировки. Из затемненных окон не вырывалось ни лучика света. В безлунные ночи люфтваффе атаковал меньше.

Этой ночью луна взошла, осветив мягким серебристым сиянием красные и коричневые крыши столицы. На Флит-стрит два американских репортера надели стальные шлемы и забрались на вершину 50-этажного здания офиса Chicago Tribune. Джозеф Черутти и Ларри Ру ожидали очередного авианалета.

Они посмотрели вверх – «тьму прорезал луч прожектора»[10]. Затем на юго-востоке показалась «блестящая цепочка трассирующих пуль, устремленных к небу». Потом в бой вступили зенитные батареи, их снаряды, похожие на падающие звезды, разрывались высоко в небе. И только тогда Черутти и Ру услышали «беспощадный грохот» десятка немецких бомбардировщиков, доверху напичканных взрывчаткой и зажигательными бомбами. Над самым городом пилоты открыли люки. Их смертоносный груз, поначалу невидимый, со свистом полетел вниз, послышались взрывы, и повсюду разлилось белое пламя. Языки огня затемняли клубы дыма. Стаи городских птиц – скворцы, ласточки, голуби – в панике поднялись в горящее небо. Из темноты внезапно выступила ярко освещенная громада купола кафедрального собора Святого Павла.

Только с приближением рассвета наступило затишье. Медленно возвращающийся солнечный свет, казалось, растопил неослабевающий поток бомбардировщиков. «Теперь все в порядке», – сказал Ру. Глава бюро Chicago Tribune в Лондоне уже много раз видел авианалеты, «смерть прямо над головой»[11]. Затем Черутти снова услышал звук низко летящего самолета. Большой одиночный бомбардировщик резко снижался: «Он приземлился на крышу офисного здания на соседней улице. Я стоял, облокотившись на невысокий каменный парапет, и наблюдал. Бомба взорвалась с оглушительным грохотом, и в зареве взрыва я увидел, как целый, как будто даже неповрежденный, фасад здания буквально подняло в воздух. Окна и карнизы поднялись вместе со стеной метров на пятнадцать, и только потом все развалилось, разлетевшись на груды обломков».

Знаменитая воздушная битва за Британию началась в первых числах июня 1940 года. А уже первого августа Адольф Гитлер подписал директиву фюрера за номером 17, которая предписывала люфтваффе «всеми имеющимися средствами в кратчайшие сроки преодолеть сопротивление английских ВВС»[12]. В августе ночные авианалеты стали интенсивнее. Британия не сдавалась. В начале сентября Гитлер изменил стратегию и выбрал главной целью Лондон. 15 сентября две сотни немецких самолетов под прикрытием тяжелых истребителей направились к столице Соединенного Королевства. Авиаудары продолжались несколько месяцев. Днем немецкие бомбардировщики и истребители проносились над юго-восточной Англией, по ночам они атаковали Лондон. Особенно массированная атака была предпринята люфтваффе в ночь с 15 на 16 октября, когда в налете на столицу принимали участие 235 бомбардировщиков. Оборонительные сооружения Британии явно не справлялись: 8326 залпами защитникам удалось уничтожить только два самолета и подбить два других[13]. Год завершился еще одним мощным ударом по городу, нанесенным в ночь с 29 на 30 декабря. Олицетворением этого кошмара стала фотография собора Святого Павла, окутанного клубами дыма. За декабрь британцам удалось сбить всего 14 вражеских самолетов.

Военный историк Джон Киган[14] назвал битву за Британию «действительно революционной». Впервые в истории государство провело широкомасштабную военную кампанию против другого государства исключительно в воздухе. Британию не атаковали ни наземные, ни морские силы, только мощный военно-воздушный флот Германии. Жизненно важно было укрепить воздушную оборону, эта необходимость остро ощущалась вдоль всей Атлантики. Благодаря странному стечению обстоятельств, немецкие бомбы, падающие в ночном небе Лондона, вызвали настоящий взрыв в области научных и промышленных исследований в США. Спустя всего четыре года, еще до окончания войны в Европе, новые думающие машины появились в районе Ла-Манша, – машины, способные бороться с другими машинами и принимать автономные решения о жизни и смерти.

I

Немалый вклад в это внес Вэнивар Буш, один из самых плодовитых изобретателей своего поколения. К началу Второй мировой войны у Буша был впечатляющий опыт научной и руководящей работы, он занимал пост вице-президента МТИ (Массачусетского технологического института) и декана Инженерной школы Стэнфордского университета. В 1936 году Буш пытался опротестовать решение Генерального штаба армии США вдвое сократить бюджет на научные исследования. Военные генералы сочли, что американское оружие отвечает требованиям современности, а деньги лучше потратить на поддержку существующего оборудования, его ремонт и боеприпасы[15]. Кроме того, как отметил Буш после продолжительных переговоров, военное командование совершенно не представляло, чем наука может им помочь, а ученые не представляли, что нужно военным.

Человек-оператор становился шестеренкой внутри брюха машины, незначительным, предназначенным для одноразового использования винтиком, распадающимся на куски под вражеским огнем.

В 1938 году Буш был назначен на должность заместителя председателя Национального консультативного комитета по воздухоплаванию (НАКА), предшественника НАСА. Эта работа дала ему глубокое понимание передовых авиационных разработок, в чем немало помогли рассказы его сотрудника Чарльза Линдберга, побывавшего на немецких заводах по производству военного оборудования и самолетов. Линдберг был потрясен мощью немецких военных машин, особенно тех, что стояли на вооружении непобедимого люфтваффе. Только немногие могли лучше Линдберга оценить их силу. Одиннадцатью годами ранее этот пионер авиации стал первым пилотом, который без остановки пролетел от Нью-Йорка до Парижа. Позже он сравнивал свой самолет с живым существом. Высоко в воздухе Линдберг почувствовал себя частью машины, вот как он пишет о том перелете: «…каждый из нас чувствовал красоту, жизнь и смерть особенно остро, каждый зависел от верности другого. Мы сделали это, мы пересекли океан, а не я или он в отдельности»[16]. Линдберг опасался, что во время войны единство человека и быстрых громадных машин не будет уже таким живым и прекрасным, а станет смертоносным. Авиатор очень не хотел, чтобы Америка принимала участие в военных действиях.

Опыт Буша, наоборот, подсказывал ему, что Америке лучше быть готовой к войне и задача науки – помочь своей стране. В январе 1939 года уже немолодой Буш переехал из Бостона в Вашингтон, чтобы занять пост президента Института Карнеги. Он уже хорошо видел свою цель – Буш стремился принимать участие в управлении фондами научных исследований и направлять их на развитие точных наук, которые считал приоритетными на тот момент. Офис Института Карнеги располагался на углу Шестнадцатой и Пи-Стрит, всего в десяти кварталах к северу от Белого дома. Фактически Буш стал неофициальным советником президента по научным вопросам. Весной 1939 года, когда в Европе еще царил мир, Буш начал обдумывать проблему противовоздушной обороны.

Буш прекрасно понимал, насколько труднее стало сбивать новые самолеты старым оружием. Во время работы в НАКА он наблюдал, как самолеты становятся крупнее, быстрее и поднимаются все выше. Поразить такую машину артиллерийскими снарядами, которые взрываются при ударе, стало практически невозможно. Правильно установить время отсроченного взрыва – еще сложнее, поскольку скорость и расстояние существенно увеличились. В октябре 1939 года Буш стал председателем НАКА и сразу доложил президенту, что «не существует агентства для очень важной области воздушной обороны, особенно по модернизации зенитных устройств»[17]. 27 июня 1940 года Рузвельт учредил Национальный исследовательский комитет по вопросам обороны (National Defense Research Committee, NDRC)[18], чьей целью было создать фонд академических исследований в области практических военных проблем. Деятельность NDRC обещала быть крайне успешной.

В то время инженеры часто использовали пример стрельбы по уткам, чтобы объяснить проблему предсказания позиций цели. Когда опытный охотник видит летящую птицу, его глаза передают визуальную информацию через нервные окончания мозгу, мозг вычисляет позицию ружья, а руки регулируют положение, словно «ведя» цель по предсказанной траектории полета. Процесс, длящийся доли секунды, завершается спуском курка. Если перенести движения стрелка на инженерную систему, то охотник одновременно выполняет функции сети, компьютера и силового привода. Если заменить птицу далеко и быстро летящим вражеским самолетом, а охотника – противовоздушной батареей, то слаженная работа глаз, мозга и рук станет сложнейшей инженерной задачей.

Именно этой инженерной задаче суждено было лечь в основу кибернетики. Норберт Винер весьма воодушевился ею и снова и снова пытался решить связанную с ней проблему предсказания траектории движения самолета. Профессор Винер так и не узнал, что один из наиболее одаренных американских предпринимателей еще в 1915–1918 годах нашел свое решение этой проблемы, в результате чего на свет появился первый беспилотный летательный аппарат, способный лететь на заданной высоте по заданному курсу, прозванный «летающая бомба».

Притом что Элмер Амброуз Сперри сам был выдающимся изобретателем-новатором, он обладал поистине экстраординарной деловой хваткой. Сфера его интересов была очень широка. Помимо всего прочего, Сперри хотел создать компанию, которая бы поставляла модули управления – стабилизирующие системы для судов, системы навигации самолетов и наведения оружия – как отдельную технологию. Продукция Сперри должна была повысить надежность машин, обеспечив вычисления более точные, чем мог бы произвести человек. Сам изобретатель не дожил до войны, но его изобретения и собранная им команда ученых позволили компании стать ведущим поставщиком военного оборудования во время Второй мировой войны. Элмер Сперри основал компанию Sperry Gyroscope в 1910 году, и изначально она занималась продажей судовых гирокомпасов собственного производства. Позже Сперри изобрел гиростабилизаторы, уменьшающие качку судна и позволяющие самолету лететь прямо, еще позже его компания выпускала гироуправляемые торпеды, автопилоты для судов и приборы для обнаружения подводных лодок.

Руководство концерна Sperry понимало, что проблемы противовоздушной обороны не ограничиваются землей. Американские «Летающие крепости», мощные бомбардировщики B‐17, были слишком крупными и потому уязвимыми перед быстрыми, маленькими и маневренными истребителями. Большие самолеты нуждались в новых средствах защиты. Томас Морган, президент компании Sperry в начале 1940-х годов, главной ценностью военных продуктов фирмы называл то, что «они расширяют физические и умственные возможности человека в вооруженных столкновениях, позволяя наносить удары врагу до того, как он сможет на них отреагировать»[19].

Яркий пример такого инновационного продукта – турели Sperry, надежно защитившие громоздкие В‐17. Пулеметчики в них работали отдельно друг от друга, их пулеметы 50-го калибра могли обстреливать цели в зоне видимости на относительно небольшом расстоянии. Бортовой механизм управления огнем мог напрямую управлять гидравлическими приводами турели, то есть уже тогда использовалось дистанционное управление. Движения турели были стабилизированы и сглажены, что позволяло стрелку быстро поворачиваться, преследуя вражеские истребители.

Инженеры Sperry искали способ наглядно показать, как солдаты и рабочие взаимодействуют с их машинами. Отдел инженерной графики принял решение нанять на работу художника с опытом рисования в перспективе. На эту должность назначили Альфреда Крими, известного нью-йоркского художника, специалиста по фрескам. Крими получил отдельную студию, полную свободу действия и время для экспериментов.

Крими разработал особую технику, создавая как бы прозрачные рисунки, части которых перекрывают друг друга. Его самые известные картины изображают артиллеристов, чьи винтовки просвечивают сквозь тело, «как будто их видно с помощью рентгеновских лучей»[20]. Он изображал человеко-машинное взаимодействие как на фронте, так и в тылу, показывал конвейерные цепочки по сборке оружия для военно-морского флота, женщин-работниц, рассматривающих что-то под микроскопом, огромные гирокомпасы в море и научные лаборатории, в которых воссоздавались условия высоты порядка 20 тысяч метров над уровнем моря.

На самом известном карандашном рисунке Крими изображен пулеметчик, лежащий в шаровой турели Sperry, небольшой сферической кабине с выступающими из нее двумя пулеметами, присоединенной к днищу «Летающей крепости» B‐17. Турель делалась небольшой, чтобы не перегружать самолет, и была весьма тесной. В ней располагалось два 50-калиберных пулемета Браунинг с боекомплектом в 500 патронов для каждого. Сложная система желобков в верхней части сферы поставляла патроны к корпусу пулеметов. Пулеметы были расположены по обе стороны от стрелка, образуя общую конструкцию. В турели было несколько треугольных окон, самое большое из них, 33-сантиметровое прицельное окно, находилось между ног стрелка. Броня защищала только спину человека. В турели не было места для парашюта.

Стрелок с помощью гидравлических рычагов управления, похожих на джойстики, мог поворачивать турель. Угол поворота составлял 360 градусов по вертикали и 90 – по горизонтали. Поворачиваясь вместе с турелью, стрелок или ложился, или почти вставал. Гашетки располагались на джойстиках. Правая нога стрелка управляла кнопкой связи, левая – рефлекторным прицелом, который накладывал светящийся указатель на цель. Стрелок, обычно самый низкий член экипажа, залезал в турель уже в воздухе, когда самолет ложился на курс, после того как убирали шасси. Команда наводила оба пулемета на землю, затем стрелок открывал люк, располагал ноги в стременах и сворачивался в позе эмбриона между двумя пулеметами. Подтянув ремни, он получал контроль над вращающимся оружием.

Говоря словами Рэндалла Джаррелла, знаменитого американского поэта, «согнувшись внутри своей маленькой сферы, он был похож на зародыш в чреве матери». Джаррелл служил офицером ВВС во время войны. В 1945 году он опубликовал яркое стихотворение «Смерть стрелка-радиста», состоящее всего из пяти строк, в котором обличал последствия объединения человека и машины во время механизированной войны. Человек-оператор становился шестеренкой внутри брюха машины, незначительным, предназначенным для одноразового использования винтиком, распадающимся на куски под вражеским огнем и подлежащим равнодушной утилизации: «Потом меня смыли шлангом со стенок турели»[21].

Сейчас подобные технологии могут показаться примитивными, однако тогда это было самое совершенное оборудование, отвечавшее высоким требованиям механического предсказания пути полета.

Проблема обезличивания людей в слиянии с механизмами, пусть не настолько жестко обозначенная, угадывается в эскизах и рисунках Крими. На его эскизах некоторые части машинной оболочки не прорисованы, чтобы показать оператора-человека, словно бы встроенного внутрь турели как живая часть машины. Тело человека, в свою очередь, изображено словно бы прозрачным, чтобы показать глубинные механизмы. Пугает отсутствие лица. Рисунки чем-то напоминают учебные эскизы по анатомии для студентов-медиков. Крими проиллюстрировал, как люди взаимодействуют с машинами, чтобы увеличить силу своих мускулов. Человеко-машинный симбиоз был далек от идеала – стрелок в турели все еще использовал свои глаза, чтобы находить истребители, и свой мозг, чтобы определять момент, когда нужно жать на гашетку. Тем не менее турели Sperry подняли взаимодействие людей и машин на новый уровень.

Эскизы Крими – это отражение страха перед стремительно развивающейся механизацией, призыв к борьбе с «монотонностью труда человеческих конвейеров»[22]. Его схематичные рисунки часто печатали в крупных журналах, они затрагивали больную тему. В этих произведениях искусства отображались новые формы человеко-машинного взаимодействия, волновавшие тогда все общество. И если Винер восторгался «механизированным человеком», Крими был настроен более скептически. Тем не менее, работая в Sperry, художник выразил в своих рисунках ровно то же самое, что кибернетика выразила на своем собственном языке: отношения между людьми и их механическими инструментами начали меняться.

II

Задолго до того, как кибернетика заговорила о своих цепочках «обратной связи», один из талантливейших инженеров своего времени работал над вопросами управления и взаимодействия в условиях войны. Воздушный бой – сложная задача, однако европейский блицкриг высветил новую проблему – необходимость развития противовоздушной обороны. Просто увидеть цель в то время уже было сложнейшей задачей. Прожекторы мало помогали. Когда немецкий бомбардировщик «Юнкерс-88» попадал в линию света, стрелять было уже поздно, и самолет стремительно уносился прочь. Чтобы справиться со своей задачей, системам противовоздушной обороны нужно было видеть самолет до того, как его увидят люди, им требовалась большая чувствительность. Эта задача была решена с помощью радара.

Термин «радар» изначально был аббревиатурой фразы «radio detection and ranging» (радиообнаружение и измерение дальности). Главной задачей радаров было определять расстояние от радиолокационной станции до объекта. К 1940 году и страны «оси», и союзники начали использовать коротковолновые радары. Гораздо более значимая технология микроволновых радаров пока не была открыта, однако это должно было вот-вот случиться. До того как появились атомные бомбы, микроволновый радар считался наиболее мощным секретным оружием, критически важной новой технологией, от которой зависела победа или поражение от стран «оси»[23].

По словам The New York Times, радар может «видеть сквозь самый густой туман и непроглядную ночь». Принцип его работы прост, это немного похоже на бросок камня в темную дыру и измерение того, как долго он будет лететь до земли: радиостанция посылает радиоволны, цель отражает энергию этих волн, а антенна принимает отраженный сигнал. Время, которое требуется, чтобы получить отраженный сигнал (эхо), и определяет удаленность цели. Электромагнитный импульс радара движется со скоростью света, 299 792 458 метров в секунду. Если объект находится в 24 километрах от радара, его эхо вернется через 0,00016 секунды. Выявленную дальность и направление объекта операторы видят на «экране», круглом дисплее, напоминающем слабо освещенный циферблат часов. На экране изображено несколько концентрических колец, а иногда карта. Цель появляется на экране как маленькая светящаяся точка. Расстояние от точки до центра экрана зависит от того, сколько времени ушло на получение эхо-сигнала. Важно, что радар указывает точное направление цели, независимо от ее удаленности. За это отвечает антенна, которая поворачивается и испускает направленные импульсы, похожие на прожекторы из микроволн. Цель появляется на экране оператора, когда вращающаяся антенна оказывается напротив нее. Высота цели рассчитывается с помощью угла поворота антенны. Конечно, радар улавливает и шумы. Справочники по радарам 1940-х годов включали в себя обширные параграфы по «изучению и интерпретации всех типов контактов в индикаторах радара»[24]. Это было настоящее искусство – правильно считывать размер точки, ее форму, частоту мерцания, флуктуации по высоте, перемещение в диапазоне и азимут. Работа операторов была очень серьезной: если перепутать шум и настоящий сигнал, можно выстрелить в скалу или в дружественный самолет вместо вражеского.

Официальная разработка первого американского серийного радара, SCR‐268, началась в 1936 году. Он был очень неудобен из-за огромных размеров антенн – около 12 метров в ширину и 3 метра в высоту. Кроме того, он был еще и очень неточным из-за того, что работал на длинной, около одного метра, волне. Использовать радар было все равно что изучать землю с высоты птичьего полета без возможности приблизиться, чтобы рассмотреть детали. Теоретически проблема решалась простым переходом на короткие или микроволны. Короткие волны с большой частотой имели критически важное преимущество, ведь чем короче волна, тем уже поисковый луч и тем выше разрешение картинки, которую видит оператор. Новый радар позволил бы приближать карту, не теряя высокого разрешения, и это был бы по-настоящему удобный инструмент. Проблема заключалась в том, что, хотя физики знали о существовании микроволн, никто еще не нашел способа их генерации[25]. Немецкие инженеры сразу признали задачу построения микроволновых радаров технически невозможной[26].

МТИ удалось разрешить эту задачу, и в этом есть доля иронии: разрушая Англию, Германия помогла создать мощное оружие, которое помогло ее победить. Свирепые атаки немецких сил на Лондон и юго-восточную Англию привели к тому, что Британия сосредоточила усилия всех своих инженеров на быстрой разработке продукции военного назначения. Научные исследования потеряли часть финансирования, поэтому сэр Генри Тизард, член Комитета по аэронавигационным исследованиям Британии, позволил США проводить изыскания, связанные с британскими секретными экспериментами в области микроволновой технологии. В конце 1939 года исследователи из Бирмингемского университета сделали сенсационное открытие и построили микроволновую пушку, назвав ее «магнетрон»[27].

Электрические системы наведения требовали меньше навыков от операторов, меньше времени и денег для производства, а в работе позволяли получить большую точность, скорость и гибкость.

Крошечное изобретение было примечательно тем, что могло испускать столь желанные короткие волны и работало в сантиметровом диапазоне. А его миниатюрные размеры позволяли устанавливать его на самолеты и корабли. Магнетрон открывал широкие возможности для военных самолетов: теперь солдаты могли увидеть врага в любое время суток, в то время как враг еще не видел их. Кроме того, мобильные радары позволяли самолетам летать в темноте, а кораблям – маневрировать в густом тумане. И это еще не все: сигнал радара, если он работает с десяти- и трехсантиметровыми волнами, гораздо труднее заглушить, чем длинноволновый сигнал. Это давало большое преимущество – теперь союзники могли заглушить сигнал врага, лишив его ориентиров, и не ослепить при этом свои собственные приборы.

Американская программа разработки радаров кардинально изменилась 28 августа 1940 года – со встречи двух ученых. В ту среду свирепый тропический шторм обрушился на среднеатлантические штаты. Вэнивар Буш обедал с Тизардом в вашингтонском клубе «Космос». Они хорошо поладили, обнаружив общий интерес к практическому применению гражданских исследований. Этот обед послужил толчком к целой серии событий, в результате которых NDRC Буша взяло под контроль исследование микроволн. Армия и флот прекратили свое собственное исследование в этой области еще в 1937 году и не возражали против такого решения. «С магнетроном, – вспоминал Буш, – мы вырвались вперед»[28].

В октябре 1940 года была учреждена Радиационная лаборатория МТИ, которая поначалу занимала всего несколько комнат и в которой работало всего несколько десятков исследователей. Буквально за какие-то месяцы лаборатория совершила колоссальный шаг вперед. Инженеры МТИ сделали еще одно блестящее открытие: они использовали обратную связь и скоординировали сервомеханизмы антенны с отраженным импульсом радара, иными словами, создали автоматическое управление гаубицами.

В конце мая 1941 года Радиационная лаборатория продемонстрировала экспериментальную автоматическую радарную систему. Инженеры привезли механизированную турель на крышу здания МТИ и настроили систему так, чтобы пулемет автоматически отслеживал самолет, пролетающий мимо, даже в условиях сплошной облачности. Демонстрация впечатляла.

Следующий шаг был очевиден: взять этот приборчик, перепроектировать его и встроить в автоматическую систему противовоздушной обороны. В начале декабря 1941 года Радиационная лаборатория продемонстрировала свое экспериментальное оборудование в расположении войск связи США в Форте Ханкок, Нью-Джерси. Вечером в пятницу 5 декабря инженеры праздновали успех своей новой машины, а через два дня Япония атаковала Перл-Харбор.

В течение следующих четырех военных лет лаборатория превратилась в огромный исследовательский центр, который выполнял большую часть работы по разработке радаров в США. Ее ежемесячный бюджет составлял четыре миллиона долларов, а число сотрудников достигало четырех тысяч человек, причем в это число входила пятая часть лучших физиков государства[29]. Радиационная лаборатория имела свой собственный завод, аэропорт в Бедфорде, штат Массачусетс, а также сеть радиолокационных станций в США и по всему миру. Лаборатория стала самым крупным проектом NDRC и одним из самых прославленных научных институтов времен войны. К маю 1945 года, менее чем через пять лет после начала миссии Тизарда, армия и флот заключили контракт общей суммой более 2,7 миллиарда долларов на поставку радарного оборудования, разработанного в МТИ. Эти значительные инвестиции легли в основу мощной послевоенной электронной индустрии США.

Наибольшим достижением лаборатории можно назвать микроволновый радар XT‐1 с системой автоматического наведения, который военные переименовали в SCR‐584. Это было очень важное устройство, с появлением которого почти все ранее созданные радары в одночасье устарели. Машина была достаточно точной, чтобы отобразить на своем экране траекторию 155-миллиметрового артиллерийского снаряда, когда он приближался к цели. Когда маленькая звездочка и более крупная звездочка сходились на экране, они просто исчезали.

То, как гидравлические приводы усиливали мускулы человека, просто впечатляло. То, насколько радарная система улучшала его восприятие, впечатляло еще сильнее. Однако даже двух этих усовершенствований было недостаточно. Чтобы издалека нанести удар по немецкому бомбардировщику, нужно было нечто большее, чем заранее увидеть самолет и направить на него оружие. Чтобы попасть по вражескому бомбардировщику, нужно было еще понять, куда целиться. Снаряд не может перемещаться со скоростью света, как импульс радара: 155-миллиметровый снаряд может находиться в воздухе до 20 секунд, прежде чем настигнет цель, а за это время немецкий бомбардировщик может пролететь более трех километров. Как и в случае с охотником, стреляющим по летящим уткам, стрелок должен предугадать траекторию полета мишени и нацелиться на точку в будущем. Для этого предсказания нужен был специальный механический мозг.

Военные подразделения, ответственные за стрельбу из больших орудий, называются «батареи». Управлять стрельбой, особенно точным наведением сложных артиллерийских орудий, было крайне непросто. Начнем с того, что различные элементы противовоздушной батареи могли располагаться на расстоянии нескольких метров друг от друга, в зависимости от местности и выбранной стратегии. Независимые компоненты батареи связывались телефонными линиями. Чтобы поразить цель, наблюдатель должен был передать данные офицеру по телефону. Офицер вводил данные в примитивный компьютер и получал выходные значения. Затем он передавал эти значения по телефону пулеметчикам. Стрелки настраивали орудия, наводили их на цель и только после этого стреляли. Половина работы держалась на телефонных переговорах, точность стрельбы зависела от качества связи. Поэтому нужно отдать должное телефонной компании Bell Telephone Laboratories и исследовательскому институту, основанному AT&T и Western Electric, неустанно совершенствовавшим свое оборудование.

Точная стрельба батареи по движущейся цели требовала двух независимых вычислений: баллистики и предсказания. Баллистические расчеты были проще и заключались в решении одной задачи – куда выстрелить, чтобы снаряд взорвался в определенной точке пространства и времени. Стрелку нужно было ввести всего три значения: азимут и высоту, чтобы определить направление стрельбы, а также время, чтобы определить точный момент выстрела. При традиционном, неавтоматизированном, методе членам артиллерийской команды приходилось вычитывать эти значения из специальных таблиц, состоящих из длинных колонок значений высоты, азимута, настроек замедлителя, времени полета и свободного падения.

В ходе эволюции артиллерийских установок добавились новые поправки: на начальную скорость снаряда, встречный и попутный ветер, температуру и давление воздуха и многие другие. Изучать таблицы в самый разгар стрельбы стало окончательно неэффективно. Так появились механизированные наводчики, которые автоматизировали поиск по таблицам. Место бумаги с колонками цифр заняли металлические конусы, утыканные кнопками, немного напоминающие цилиндры в старомодных музыкальных шкатулках. Эти цилиндры, так называемые камеры Sperry, выглядели как скрученные и изогнутые стволы деревьев, но они работали, и работали лучше человека. Фактически эти конусы были первым независимым хранилищем данных – то, что сейчас мы называем ROM (Read Only Memory), а прибор для их чтения – примитивным механическим компьютером. Машина научилась выбирать и комбинировать значения, рассчитанные заранее.

Вторая вычислительная задача, предсказание, оказалась гораздо сложнее. Вычислить, как выпустить снаряд, чтобы он оказался в определенной точке пространства и времени, – это одно. Подсчитать, где именно будет эта определенная точка пространства и времени по отношению к быстро летящему самолету, – совершенно другое. Чтобы упростить задачу, инженеры допустили, что вражеский самолет летит прямо и на одной высоте, а не по петляющей траектории, то ниже, то выше, как это происходит обычно на практике. Устройство наведения предполагало, что имеется константная траектория. Допущение не соответствовало реальности, но не настолько, чтобы лишить предсказание смысла.

Вторая мировая война была войной технологий, войной механических чудовищ из железа и стали, громивших друг друга на земле, в море и в воздухе.

К 1940 году последнее слово в области разработки систем управления было за Sperry, и это преимущество сохранялось в последующие 30 лет. Поначалу эти системы наведения физически воссоздавали поведение приближающегося бомбардировщика: «Действительное движение цели механически воспроизводилось в небольшом масштабе без использования компьютера, – сообщается в записях компании за 1931 год. – Нужные углы или скорости могли быть измерены непосредственно из перемещений этих элементов»[30]. Сейчас подобные технологии могут показаться примитивными, однако тогда это было самое совершенное оборудование, отвечавшее высоким требованиям механического предсказания пути полета. Механический компьютер Sperry, М‐7, состоял из одиннадцати тысяч частей и весил около 400 килограммов.

Ситуацию изменила компания Bell Labs. Идея, позволившая Bell Labs внести свой весьма значительный вклад в развитие систем наведения, зародилась во сне. В мае и июне 1940 года физик лаборатории, Дэвид Паркинсон, работал над «автоматическим самопишущим уровнемером». Паркинсон пытался начертить график скачущего электрического напряжения на диаграммной ленте, для чего присоединил измеритель напряжения – потенциометр – к двум магнитным захватам, которые держали пишущую ручку. Напряжение управляло этой ручкой, и на бумагу ложилась кривая линия.

Пока Паркинсон работал над своим самопишущим уровнемером, битва за Дюнкерк потрясла Европу. С 26 мая по 4 июня нацистская Германия обратила в бегство французские, британские и бельгийские войска. Атаки пикирующих бомбардировщиков «Штука» сыпались со всех сторон. 29-летний Паркинсон был очень встревожен этими событиями, и вскоре ему приснился «очень необычный сон»[31]. Позднее он написал об этом в своем дневнике: «Я увидел себя в окопе вместе с командой воздушной обороны… Там было орудие… оно стреляло, но самое замечательное – каждый его выстрел сбивал самолет! После трех или четырех выстрелов человек из команды улыбнулся мне и поманил ближе к орудию. Когда я подполз к нему, он указал на левую часть установки. Там был прикреплен потенциометр от моего самопишущего уровнемера!»[32]

Проснувшись утром, Паркинсон совершенно точно знал, что ему делать. Его самопишущая ручка может стать оружием! Как потенциометр управляет движением ручки, точно так же он может управлять движением орудия – быстро и точно. Нужно просто усилить сигнал.

Босс Паркинсона, Кларенс Ловелл, сразу оценил потенциал идеи. Механической основой машины Bell должен стать компьютер, но не скрипучий механизм, способный только выбирать и объединять высчитанные заранее значения. Электрический компьютер Bell должен сам уметь производить вычисления. «Диапазонный вычислитель» Ловелла и Паркинсона работал по другому принципу, нежели М‐7 Sperry. Инженеры Bell Labs рассматривали расстояние от точки наблюдения до цели как «электрическую разность потенциалов»[33].

Чтобы выйти на рынок электронных вычислительных машин, начать их массовый выпуск, нужно обладать целым рядом различных навыков, выходящих далеко за рамки того, что может предложить фирма-производитель, даже такая как Sperry. У телекоммуникационной компании был нужный опыт в коммуникационной инженерии, а также собственное производство потенциометров, резисторов, конденсаторов и средств обратной связи. В 1940 году лидирующей телекоммуникационной лабораторией была Bell Labs.

Основателем и президентом Bell Labs был Франк Джеветт. У него, бывшего инструктора по электротехнике в МТИ, имелся свой целостный взгляд на коммуникации. Еще в 1935 году на лекции в Национальной академии наук он сказал: «Мы склонны думать и, что еще хуже, действовать так, как будто телеграфия, телефония, радиопередачи, телефонография и телевидение – это какие-то отдельные понятия»[34].

Джеветт считал электрический сигнал единым универсальным элементом. Буш высоко оценил идеи Джеветта и поставил его во главе подразделения С – коммуникаций и передачи – только что созданного Научно-исследовательского совета национальной обороны. Уоррен Уивер, бывший директор отделения естественных наук Рокфеллеровского фонда, возглавил отделение D‐2, которое вело огромное количество проектов NDRC в области автоматического контроля, включая разработку устройств наведения и радаров. Джеветт еще во время работы в Bell хорошо представлял важность проекта по модернизации устройств наведения и рассматривал задачу как коммуникационную проблему. Уивер был согласен с такой остановкой вопроса: «Есть потрясающее количество близких и точных сходств между проблемой разработки устройства наведения и задачами, стоящими в области коммуникационной инженерии», – писал он позже. Шестого ноября 1940 года при поддержке войск связи новый цех D‐2 Уивера и Bell Labs подписали контракт.

Уивер оценил опыт сотрудников компании Bell в области электроники. Новое оборудование оказалось настолько удачнее механических систем наведения, что в это было трудно поверить. Электрические системы наведения требовали меньше навыков от операторов, меньше времени и денег для производства, а в работе позволяли получить большую точность, скорость и гибкость. Компьютер Bell позволял устройству наведения рассчитывать простые математические функции, такие как синус и косинус, а с помощью резисторов, потенциометров, серводвигателей и усилителей оно могло управлять тяжелой 90-миллиметровой установкой противовоздушной обороны.

Однако даже автоматическое радиолокационное отслеживание не сделало устройства наведения идеальными. Как только снаряд со взрывателем вылетал из жерла ствола, он становился неуправляем. Так как снаряды, как и самолеты, летали все быстрее и выше, настройка временного взрывателя становилась все более сложной задачей. Наведение было незамкнутым контуром: не было никакого механизма обратной связи со снарядом. Если бы только был способ сообщить снаряду, чтобы он взорвался немного позже или немного раньше, в зависимости от реальной ситуации!

Университет Джонса Хопкинса, тоже финансируемый NDRC, предложил использовать бесконтактный взрыватель, также известный как «плавкий взрыватель с переменным временем», или просто «VT-взрыватель», для замыкания этой обратной связи. Оставалось его немного улучшить. Снаряд срабатывал бы намного лучше, если бы мог распознавать приближение к немецкому бомбардировщику. Разница была небольшой, но значительной. Временные взрыватели устанавливались до выстрела, время детонации бесконтактных взрывателей определялось в полете. Механизм взрывателя должен был быть чувствительным, но в то же время прочным, чтобы выдержать сам момент выстрела из мощного 5,8-тонного орудия M‐114. Сила, в 20 тысяч раз превосходящая гравитацию, запросто могла разорвать снаряд внутри орудия. Вскоре решение было найдено.

Новый американский взрыватель представлял собой радиостанцию в миниатюре, с передатчиком, антенной и приемником внутри головки артиллерийского снаряда. Когда 155-миллиметровый снаряд покидает орудие со скоростью, примерно вдвое превышающей скорость звука, его маленькая радиостанция включается и начинает испускать волну. При приближении к немецкому бомбардировщику или крылатой ракете радиоволны отражаются от цели, как свет в зеркале. Снаряд ловит отраженную волну, усиливает ее и передает на маленький приборчик тиратрон, который детонирует заряд. Это была сложная инженерная задача. Десятилетием ранее лучшие умы Германии напрасно трудились над радиовзрывателями[35].

Чтобы замкнуть цепь обратной связи для орудия противовоздушной обороны, нужно было сделать несколько новых изобретений. Первая проблема состояла в крошечной стеклянной вакуумной трубке, похожей на ту, что раньше использовалась в слуховых аппаратах. Хрупкое стекло должно было выдержать момент выстрела. Испытания были жесткими: сначала академики из Джона Хопкинса укрепляли трубки методами, почерпнутыми у строителей мостов и небоскребов, а затем трясли их в стальных контейнерах, швыряли в свинцовые блоки, вертели, стреляли в них из самодельного гладкоствольного оружия. В ходе испытаний обнаружилось, что стеклянные трубки нужно просто упаковать в резиновые чаши и натереть воском, и тогда они выдержат нагрузку.

Крошечной радиостанции нужна была крошечная электростанция, также способная выдержать сильнейшее давление. Инженеры из Университета Джона Хопкинса сумели обратить себе на пользу удар от выстрела и вращение снаряда в полете. Они разработали аккумулятор, в котором два электролита были разделены стеклянной ампулой. Когда орудие стреляло, стекло лопалось, и батарея заряжалась.

Для безопасности нужно было ввести небольшую отсрочку, чтобы радиовзрыватель снаряда во время выхода из ствола не принял свою собственную артиллерийскую батарею за цель. Гениальная идея заключалась в том, чтобы использовать вращение снаряда в ртутном переключателе: когда снаряд покидает ствол и еще какое-то время вращается, ртуть выталкивается через пористую диафрагму из контактной камеры, включая систему. К тому времени, как ртуть вытолкнута, снаряд уже свистит в воздухе, самостоятельно приближаясь к вражескому самолету и ожидая, когда сработает механизм обратной связи, распознав ничего не подозревающего врага.

Мы увидели начало первой битвы роботов. Человеческий фактор был значительно сокращен, в будущем машины исключат его совсем.

Радиоуправляемые снаряды были огромным шагом вперед. «Как секретное оружие, они уступали по важности лишь атомным бомбам», – сообщалось в The Baltimore Sun уже после войны[36]. Нацисты стремились завладеть этим взрывателем. В июне 1942-го агенты ФБР схватили восемь немецких шпионов, которые пытались узнать подробности проекта, но массовое производство снарядов хранилось в секрете даже от тех десяти тысяч работников завода, которые за четыре года произвели 130 миллионов миниатюрных вакуумных трубок. Улучшенное конвейерное производство началось в сентябре 1942 года. К концу 1944 года 118 заводов, управляемых 87 компаниями, производили более четырех тысяч взрывателей в день. Только высшее руководство половины этих компаний знало, что на самом деле они производят. Рабочим, которые производили вакуумные трубки, сообщили, что они делают слуховые аппараты. Взрыватель использовали только над открытой водой по крайней мере до конца 1944 года, и это помогло сохранить его секрет. Над морем врагу было труднее обнаружить орудие противовоздушной обороны, а с земли невозможно было понять, как работает это устройство. Океан хранил секрет.

Командование армии было в восторге от новой технологии. Джордж Паттон, командир Третьей армии США, был настолько восхищен устройством, что посчитал, будто теперь изменится сама природа войны: «Я думаю, когда все армии получат такие снаряды, мы откроем некоторые новые методы военного дела»[37].

III

С 1940 по 1945 год NDRC финансировало 8 проектов по разработке системы управления огнем. Заключенные контракты фактически отражали положение дел в мире систем управления. D‐2 заключили 51 контракт с частными компаниями и лабораториями, 25 контрактов – с академическими исследовательскими институтами. Более 60 проектов были посвящены проблемам наземного огня из орудий противовоздушной обороны. Средняя сумма финансирования составляла 145 000 долларов. Самым крупным и успешным контрактом Уивера на сумму 1,5 миллиона долларов была система наведения, разработанная в Bell, M‐9. Самый маленький и несущественный контракт, на сумму чуть более 2000 долларов, был связан с работой Норберта Винера, который исследовал методы предсказания будущей криволинейной траектории полета самолета[38].

В начале февраля 1940 года, через пять месяцев после вторжения нацистской Германии в Польшу, Винер вступил в Американское математическое общество. Позднее, 11 сентября, Винер принял участие в собрании Американского математического общества в Дартмутском колледже, и это событие изменило историю вычислений. В Bell Laboratories тогда работали со «сложным вычислителем». Машина состояла из 450 реле и 10 матричных переключателей, а также удаленных терминалов, каждый с клавиатурой для ввода и телетайпом для вывода. Один из них был в Дартмуте. Сотрудник Bell Джордж Штибиц был знаком с работами Винера и потому пригласил участников собрания посмотреть компьютер, который выполняет сложение, вычитание, умножение и деление сложных чисел. Винер подошел к клавиатуре и стал испытывать его, стараясь сбить компьютер с толку, но на телетайпе раз за разом появлялись правильные значения, и это казалось волшебством. Так Винер впервые столкнулся с думающей машиной[39].

Тем временем немцы бомбили Лондон, шла ожесточенная и кровопролитная битва за Британию. Для NDRC приоритетной задачей становилось улучшение систем наведения орудий ПВО.

22 ноября Винер отправил в исследовательский комитет Буша докладную записку на четырех страницах, в которой предлагал «изучить чисто математическую возможность предсказания пути полета аппаратными средствами», а затем «разработать эти аппараты»[40]. Перед самым Рождеством 1940 года проект был утвержден, NDRC выделил 2325 долларов профессору из МТИ.

На пост главного инженера проекта Винер выбрал 27-летнего выпускника МТИ, специализировавшегося в области электротехники и математики, Джулиана Бигелоу. Амбициозный Бигелоу во всем ценил точность, кроме того, он был авиатором-любителем, что дало ему навык, полезный в новом проекте. Оба академика знали, что они взяли на себя одну из труднейших проблем в своей области. Блицкриг был в самом разгаре. Через несколько дней после того, как стартовал проект Винера, вечером 29 декабря, люфтваффе особо яростно обрушился на Лондон. За три часа на город были сброшены 120 тонн взрывчатки и 22 тысячи зажигательных бомб. Никогда еще проблема противовоздушной обороны не стояла столь остро.

Винер и Бигелоу занимали бывший математический класс во втором корпусе МТИ, превратив его в «маленькую лабораторию». Здесь они экспериментировали с импровизированными устройствами. Винер справедливо полагал, что, попав под обстрел, пилоты «скорее всего, будут петлять, двигаться зигзагом или еще как-нибудь уклоняться»[41]. Чтобы проиллюстрировать это, профессор начертил зигзагообразную линию на доске. Бигелоу возразил, что такое поведение пилота ограничено возможностями самолета[42]. Из-за инерционных свойств самолета, да еще на большой скорости, пилот теряет свободу маневра. Зигзаг выполнить не так-то просто. Винер понял, что психологический стресс и физические ограничения самолета делают человеко-машинную систему более предсказуемой и можно будет вычислить будущую траекторию в зависимости от предыдущей. Он стер зигзаг и вместо него начертил линию из сглаженных кривых.

Ученые столкнулись со следующей проблемой: у них нет никаких точных данных о поведении пилотов во время боя, поэтому им нужно смоделировать полет, основываясь на предположениях. Это было непросто. Чтобы скопировать случайные кривые, которые выписывали в воздухе над Лондоном и всей охваченной войной Европой немецкие пилоты, Бигелоу установил моторный прожектор, который проецировал сглаженные, циклические, но не однообразные схемы полета на стену их импровизированной лаборатории. Чтобы «облететь» стену, ему требовалось около 15 секунд[43].

Джинн вышел из бутылки. Это означало только одно: кто-то должен предупредить мир об опасности расцвета машин.

Это был идеальный путь полета. Чтобы смоделировать реальные пути пилота, находящегося в ситуации стресса, исследователи установили второй, красный прожектор и устроили погоню на стене, стараясь догнать красным светом белые кривые. Это была довольно сложная задача. Погоня за светом требовала «мягкого приспосабливания», как называл это Винер, движение было достаточно сложным, чтобы казаться естественным, и при этом «совершенно неправильным». По мнению Винера, из полученного беспорядочного движения можно было выделить ограниченное количество моделей поведения вражеских пилотов и описать их языком цифр.

Тем временем в других проектах NDRC наметился значительный прогресс. К концу мая Радиолаборатория успешно протестировала автоматическую турель B‐17 на одной из крыш МТИ. Несколькими днями позже, 4 июня 1941 года, Уивер организовал для Винера и Бигелоу посещение лаборатории Bell в Уиппани, Нью-Джерси. Осматривая экспериментальное устройство Bell, Бигелоу так выразил свое удивление величиной допущения инженеров: «У них не было никаких случайных переменных, они совершенно не принимали во внимание попытки уклониться или даже случайные отклонения в курсе полета»[44]. Ученые пытались возражать, но в Bell совершенно не заинтересовались абстрактной математикой, которую представил им Винер.

Первого февраля 1942 года Винер послал Уиверу обширный отчет с длинным названием «Интерполяция, экстраполяция и сглаживание стационарных временных рядов». Винер внес академический вклад в целый ряд теоретических дебатов в области абстрактной математики, но его работа оказалась бесполезной в условиях войны; атака на Перл-Харбор произошла всего двумя месяцами ранее, все заводы США переключились с коммерческой продукции на военную.

В 124-страничном же докладе Винера насущные проблемы даже не упоминались, ни слова не говорилось о безуспешных экспериментах в маленькой лаборатории МТИ или способах механического воплощения этой теории. Проблема наведения упоминалась в докладе только дважды, затерянная среди леса математических формул. Ни заглавие, ни введение, ни содержание не имели и намека на проблему, ради которой затевался проект. Вместо этого Винер сыпал заумными математическими терминами: броуновское движение, частичные суммы Чезаро, интеграл Фурье, гамильтоновы формы, мера Лебега, теорема Парсеваля, распределение Пуассона, интеграл Стилтьеса, лемма Вейля и так далее. Когда Уивер получил доклад, он сразу его засекретил и поместил в папку «оранжевой угрозы», как неофициально называли документы, относящиеся к противостоянию с Японией. Инженеры в шутку прозвали этот документ желтой, по цвету обложки, угрозой, подсмеиваясь над непроходимой сложностью теории и отсутствием ее практической ценности отчета.

Через пять месяцев, 10 июня 1942 года, Винер и Бигелоу послали краткий промежуточный отчет о своих попытках построить обещанные устройства. Поиграв со светом в темноте комнаты 244 в течение нескольких месяцев, они разработали некоторые ключевые идеи, которые позднее обрели форму кибернетического мировоззрения Винера. В частности, они поняли, что человек и машина формируют целое, систему, слаженный механизм. Они считали, что этот комбинированный механизм в конце концов будет действовать как сервопривод, устройство, автоматически корректирующее свое поведение в ответ на ошибку: «Мы понимали, что иррациональность пути самолета вводится пилотом. Пытаясь выполнить полезный маневр, например прямой полет или поворот на 180 градусов, пилот действует как сервомеханизм, компенсируя отклонение динамики его самолета как физической системы, увеличивая угол наклона в зависимости от ошибки»[45]

Загрузка...