Предисловие

Радость

Математика прекрасна и приносит радость[1]. Нам знакомы шедевры в разнообразных областях деятельности человека. В изобразительном искусстве – «Мона Лиза», в театре – «Гамлет», в биологии – открытие роли ДНК в наследственности, в археологии – расшифровка иероглифов с помощью Розеттского камня, в физике – уравнение E = mc². Понять шедевры математики сложнее, поэтому я просто хочу поделиться с вами собственными предпочтениями.

Музеи изобразительных искусств хранят огромные коллекции, но выставляют на всеобщее обозрение лишь некоторые предметы. Так же и я отобрал некоторые шедевры и хочу представить их вашему вниманию.

Эта книга не настолько мала, чтобы я ограничился одной-единственной математической драгоценностью, но если бы мне предложили выбрать таковую, я бы остановился на доказательстве того факта, что простых чисел бесконечно много[2]. Этот пример демонстрирует, чем я руководствовался, выбирая темы для своего «Путеводителя»:

• Они неизвестны людям, не имеющим отношения к математике. Читатели могут знать, что такое простое число, но вряд ли они задумывались над вопросом, сколько всего существует простых чисел.

• Они высвечивают идею доказательства, и в особенности технику доказательства от противного.

• Для их понимания не требуется вузовская подготовка – хватит знаний, полученных в средней школе.

• Они полны сюрпризов. Ответы неочевидны. Легко понять, что существует бесконечно много нечетных чисел или идеальных квадратов, но нет четкого закона, по которому простые числа следуют друг за другом. Поразительно, что короткая цепочка рассуждений приводит нас к неоспоримому выводу о том, что простые числа никогда не иссякнут.

• Они имеют практическое применение, например в случае простых чисел это криптография.

Хотя некоторые темы, затронутые в нашем «Путеводителе», не обладают всеми перечисленными свойствами, каждая глава книги рассказывает о математическом чуде, которое удивит и заинтригует читателя.

В 1940 году британский математик Годфри Харди[3] опубликовал «Апологию математика» – личное оправдание того обстоятельства, что он потратил жизнь на изучение абстракций. В книге Харди рассказывал, сколько радости и блаженства он испытал. Но говорить о радости занятия математикой – все равно что говорить о радости плавания. Пока вы лично не поплещетесь в прохладной воде, вы не поймете, насколько это здорово.

Боюсь, для многих получение математических знаний было безрадостным процессом. Представьте, что занятия словесностью свелись к изучению орфографии и пунктуации, а чтение «Гарри Поттера» и сочинение своих собственных историй оказались под запретом. Случись такое, школьники вряд ли бы стали любить литературу.

Вот несколько утрированная иллюстрация того, как некоторые воспринимают изучение математики:

• В начальной школе мне рассказали, что у меня было десять апельсинов, а потом три апельсина кто-то отнял. Зачем? Я бы и так с ним поделился.

• В средней школе я нашел общий знаменатель и подсчитал какие-то проценты.

• В старших классах меня заставили запомнить формулу корней квадратного уравнения[4], я до сих пор могу написать ее, но так и не понял, зачем она мне нужна.

Разумеется, в математике есть много прикладных задач, но среди прочего она обладает великой красотой. Моя цель – поделиться хотя бы частью этой красоты.

Обзор

Математика изучает числа и геометрические фигуры, и я выбрал эти темы для первых двух частей «Путеводителя».

В части под названием «Число» мы исследуем некоторые необычные числа (например, √2 и e) и последовательности чисел (например, простые числа и числа Фибоначчи). Кроме того, читателя ждет множество неожиданных вещей: он узнает, как одна бесконечность может быть бесконечнее другой и почему в нашем мире на цифру 1 начинается большее количество чисел, чем на цифру 9.

В части под названием «Геометрические фигуры» мы вспомним хороших двумерных знакомых (например, круги и окружности), а также познакомимся с трехмерными фигурами (например, платоновыми телами) и с фигурами, чья размерность больше одного, но меньше двух (с фракталами). Нас ждет немало сюрпризов. Так, все знают, как застелить пол плитками в форме квадратов или равносторонних шестиугольников, но такое возможно и в случае с равносторонними пятиугольниками. Ну что, я вас удивил? Заинтриговал? Этого-то я и добивался.



Завершается книга частью под названием «Неопределенность», там мы рассмотрим идеи случайности, непредсказуемости и интуитивных вычислений. Вы узнаете о том, как чрезвычайно надежный медицинский тест может давать неточные результаты, есть ли смысл в рейтингах и как правильно выбрать кандидата, когда их число больше двух. Как и прежде, вас ждут сюрпризы.

Последовательность глав произвольна, и вы можете читать их в любом удобном вам порядке[5]. Сложность материала разнится от главы к главе, так что вы ничего не потеряете, если пропустите самые заковыристые главы, чтобы вернуться к ним впоследствии.

Как читать математические книги?

Не торопитесь. Все главы короткие, но чтобы уловить их основные идеи, нужно время. Я часто прибегаю к вычислениям или алгебраическим выкладкам, чтобы подвести базу под те или иные утверждения. Вы лучше поймете, о чем идет речь, если вооружитесь карандашом и бумагой. Иногда вам нужно будет перечитывать какие-то абзацы, чтобы разобраться во всем досконально.

Можно читать не в одиночку. Предложите приятелю обсудить идеи из книги. Вам придется объяснять их таким образом, чтобы он уловил, о чем вы говорите. Это поможет вам лучше овладеть концепциями, о которых вы прочитали.

Главы устроены так, что самые замысловатые идеи расположены в конце. Лучше всего читать каждую главу последовательно с начала. Возможно, в какой-то момент вы решите остановиться и перейти к следующей главе.

Что касается обложки…

На обложке изображено множество решений уравнения:

(x² + y² – 1)³ = x²y³. (*)

Какая пара чисел (x, y) удовлетворяет этому уравнению? Например, x = 1 и y = 0 при подстановке в левую и правую часть дадут одно и то же число, а именно 0. Если мы подставим x = –1 и y = 1, обе части (*) будут равны 1. Другими словами, пары (1, 0) и (–1, 1) являются решениями уравнения. Обратите внимание, что пара (0, 0) не является решением.

Существует бесконечно много решений уравнения, например x = 0,70711… и y = –0,41401… Если мы подставим эти числа в формулу, обе части будут равны –0,03548…

Бесконечное множество решений этого уравнения можно изобразить с помощью графика, если нанести на плоскость точки с координатами (x, y), где оба числа удовлетворяют уравнению (*). В этом случае мы получим изображение кривой в виде сердца, нарисованной на обложке.

Вы еще не полюбили математику? Когда дочитаете книгу, непременно полюбите.

Благодарности

Я хочу поблагодарить тех, кто давал плодотворные отзывы и полезные комментарии во время работы над книгой: Мордехая Леви-Эйчел, Джошуа Минкина, Йони Надив, Эми Шейнерман, Дэниела Шейнермана, Иону Шейнермана, Леонору Шейнерман, Наоми Шейнерман и Рейчел Шейнерман. Они читали черновик книги и давали полезные советы[6].

При подготовке книги к печати я получил замечательные отзывы рецензентов. О многих из этих людей я не знаю ничего, но имена некоторых, к счастью, мне известны. Спасибо за комментарии и энтузиазм Кристофу Бёрджерсу, Анне Лачовски и Джаядеву Атрейя.

Также я хочу поблагодарить Арта Беньямина за информацию о техасском холдеме в главе 19. Этот пример можно найти в задаче из книги Стюарта Айзера «Доктрина шансов: вероятностные аспекты азартных игр» (The Doctrine of Chances: Probabilistic Aspects Of Gambling).

Наконец, огромное спасибо за помощь издательству Йельского университета. Прежде всего – Джо Каламиа за его энтузиазм, множество полезных рекомендаций и ответы на мои непрерывные вопросы. Также я благодарю Энн-Мэри Имборнони за помощь при подготовке финальной версии, Лиз Кейси за дотошную редактуру, Соню Шэннон за дизайн, а Томаса Старра за великолепную обложку.

Загрузка...