Фундаментальные идеи… не висят на концах логических цепочек.
Время шло, и замечательный польский астроном (а также, врач, политик, богослов и даже руководитель обороны Вармии) Николай Коперник (1473–1543), рис. 2.1, предложил свою систему мира, пришедшую на смену системе Птолемея. Как результат, здание механики Аристотеля получило удар, от которого уже не оправилось.
Рис. 2.1. Николай Коперник
На самом деле, на всем протяжении развития физики, начиная со времен Аристотеля, высказывались идеи о возможном устройстве мира, в центре которого находится Солнце. Впервые об этом прямо заявил древнегреческий астроном, математик и философ Аристарх Самосский (ок. 310–230 г. до н. э.), но в те времена доказать это было невозможно. Коперник еще студентом познакомился с подобными доктринами. В результате он пришел к убеждению, что наблюдаемые движения небесных тел лучше всего объясняются двумя движениями Земли: ее вращением вокруг своей оси и обращением вместе с другими планетами вокруг Солнца. В этой системе планеты располагались в следующем порядке по мере удаления от Солнца: Меркурий, Венера, Земля (с Луной), Марс, Юпитер, Сатурн. Далее, как предполагалось, расположена сфера неподвижных звезд (рис. 2.2).
Рис. 2.2. Гелиоцентрическая система мира Коперника
Каковы же были предпосылки для построения гелиоцентрической системы? Птолемеевская система, кроме громоздкости, страдала явной несистематичностью, отсутствием целостности. Каждая планета рассматривалась сама по себе, имела отдельные, фактически собственные, законы движения.
Установка на поиск внутреннего единства была той основой, вокруг которой концентрировалось стремление создать гелиоцентрическую систему. Ее построение, в определенной мере, было связано и с необходимостью реформы юлианского календаря, в котором моменты наступления равноденствий и фаз Луны, установленные еще в рамках птолемеевского «Альма-геста», вернее звездного каталога, включенного в это сочинение, потеряли связь с современными календарными датами.
Папа Лев X предложил Копернику принять участие в подготовке реформы календаря, но тот отказался, поскольку считал, что продолжительность года, лежащая в основе календаря, определяется недостаточно точно из-за неудовлетворительной теории движения Солнца и Луны. Однако это предложение стало для Коперника одним из мотивов совершенствования геоцентрической теории. Была и общественная потребность, стимулировавшая поиски новой теории движения планет, связанная с мореходной практикой и нуждами астрологии, как это ни парадоксально сейчас звучит.
Гелиоцентрическая система Коперника концептуально была существенно проще системы Птолемея. Признание вращения Земли вокруг оси устраняло необходимость говорить о суточном движении звездной сферы и всех небесных тел; обращение же Земли вокруг Солнца объясняло и годовое перемещение Солнца по небесной сфере, и петли обратного движения планет. Коперник, однако, твердо придерживался представлений об идеальном движении светил, которые, следуя многовековым догмам, должны двигаться по окружности с постоянной скоростью. Поэтому для более точного объяснения наблюдаемых перемещений планет Копернику опять же требовались эксцентры и эпициклы. В окончательном виде его система насчитывала 34 круговых движения – меньше, чем система Птолемея, но все равно много. Более того, Коперник еще строже, чем Птолемей, следовал догме идеального движения по окружности, поскольку не допускал неравномерного движения по экванту.
Концепция гелиоцентрической системы была опубликована в книге «О вращении небесных сфер» в 1543 году, незадолго до смерти ученого. Протестантов эта работа привела в ярость сразу. Со стороны же католической церкви она поначалу не подверглась осуждению, возможно потому, что Коперник посвятил ее римскому папе Павлу III. Книга вызвала живой интерес и многочисленные дискуссии. В те времена было трудно представить, каким преследованиям со стороны Ватикана будут подвергнуты в дальнейшем последователи учения Коперника, в частности, Галилей.
Система мира Коперника имела среди ученых много сторонников, но было также и много противников. Опуская многое, необходимо упомянуть датского астронома Тихо Браге (1546–1601), рис. 2.3, самого замечательного наблюдателя своего времени. Он не поддерживал идею о движении Земли, а вместо этого выдвинул собственную модель, согласно которой Земля жестко закреплена в центре мира. Планеты в системе Тихо Браге обращались по круговым орбитам вокруг Солнца, которое, в свою очередь, совершало движение вокруг Земли. Несмотря на то, что теория Тихо Браге значительно упрощала систему Птолемея, она не получила поддержки у астрономов и не оказала особого влияния на их исследования.
Но главным вкладом Тихо Браге в науку были результаты астрономических наблюдений, проводившихся им в течение всей жизни, они позволили сделать следующий шаг в развитии представлений о Вселенной.
Рис. 2.3. Тихо Браге
Его страсть к наблюдениям проснулась очень рано. В возрасте примерно лет 15-ти он обнаружил, что данные известных тогда эфемерид (таблиц планетарных координат) существенно расходятся, как между собой, так и с данными его юношеских наблюдений. Для него это было нестерпимо! В это же время родители отправили его изучать «свободные искусства» в Лейпциг. Вот как он сам описывает свои занятия временем чуть позже:
«Позднее, в 1564 году (17–18 лет!), я тайно приобрел деревянный астрономический «посох Якова»[1], изготовленный по указаниям Геммы Фризия. Бартоломей Скультет, живший в то время в Лейпциге, с которым я поддерживал дружеские отношения на почве общих интересов, снабдил этот инструмент точными делениями с трансверсальными точками. Скультет почерпнул принцип трансверсальных точек у своего учителя Гомелия. Заполучив посох Якова, я не упускал ни одного удобного случая, когда ночь выдавалась звездной, и неустанно производил наблюдения. Нередко я проводил в бдении всю ночь напролет. Мой гувернер, ничего не подозревая, мирно спал, поскольку я производил наблюдения при свете звезд и заносил полученные данные в специально заведенную книжечку, которая сохранилась у меня поныне. Вскоре я заметил, что угловые расстояния, которые по показаниям посоха Якова должны были совпадать, превращенные посредством математических выкладок в числа, не во всем согласуются друг с другом. После того как мне удалось обнаружить источник ошибки, я изобрел таблицу, позволившую мне вносить поправки и тем самым учитывать дефекты посоха. Приобрести же новый лимб все еще не представлялось возможным, поскольку гувернер, державший в своих руках завязки от кошелька, не допустил бы подобных трат. Вот почему я, живя в Лейпциге, и позднее, по возвращении на родину, произвел при помощи этого посоха множество наблюдений».
Среди результатов Браге особенно нужно отметить данные наблюдений движения планет, а также его сотрудничество с Кеплером. Но об этом чуть позже, а сейчас, как пример, приведем исследование им сверхновой 1572 года, вспыхнувшей в созвездии Кассиопеи. Ее яркость была сравнима с яркостью Венеры. Попытки определить параллакс сверхновой оказались безуспешными, а это означало, что она находится далеко за пределами лунной сферы. Но звезда не участвовала и в движениях планет. Тогда Тихо Браге заключил, что она принадлежит звездной сфере, что противоречило догме Аристотеля об абсолютной неизменности сферы неподвижных звезд.
Также, изучая одну из комет, Тихо Браге обнаружил, что она движется по орбите вокруг Солнца, причем отстоит от него дальше, чем Венера. Так разрушалось еще одно представление Аристотеля, который предполагал, что кометы – это атмосферные явления. Но, несмотря на эти очевидные противоречия со стандартными представлениями, Тихо Браге не смог отказаться от того, что тяжелая Земля должна покоиться.
Ученый, сверстник Галилея,
был Галилея не глупее.
Он знал, что вертится Земля,
но у него была семья.
Итальянского ученого Галилео Галилея (1564–1642), рис. 2.4, по праву считают основателем современной физики, в рамках которой законы природы должны подтверждаться экспериментально. Его труды по исследованию движения стали базисом, основываясь на котором Ньютон построил непротиворечивую механику и теорию гравитации. Возможно, многим Галилей наиболее известен тем, что первым применил телескоп для астрономических наблюдений.
Рис. 2.4. Галелео Галилей
Исследуя какую-либо проблему досконально и многосторонне, Галилей почти каждый раз приходил к выводам, противоречащим утверждениям учения Аристотеля. Нельзя не отметить, что на протяжении столетий то один, то другой исследователь высказывал «крамольные» идеи или утверждения. Но они были, как правило, основаны на интуиции. Возражения же Галилея были обоснованы как математически, так и наблюдениями и опытами. Поэтому, конечно, Галилея можно считать одним из главных разрушителей многовековых догм. Неудивительно, что Галилей был и в числе самых известных сторонников системы Коперника. Поначалу эта система показалась Галилею неубедительной. Но шаг за шагом он все больше проникался идеями великого поляка.
Очень многие открытия были сделаны Галилеем благодаря использованию телескопа. Само изобретение телескопа обычно приписывают голландскому оптику Хансу Липперсгею (1587–1619). При этом полагают, что Галилей узнал об этом изобретении и начал изготавливать собственные инструменты, один из которых давал увеличение в 30 раз (рис. 2.5). Уже результаты первых наблюдений поражали воображение и противоречили устоявшимся представлениям. Всего за несколько месяцев наблюдений Галилей сделал открытия, которые полностью изменили представления человека о Вселенной.
Рис. 2.5. Телескопы Галилея
Наблюдения пятен, замеченных (хотя и не впервые) на поверхности Солнца, помогли Галилею выяснить, что оно вращается вокруг своей оси. Оказывалось, что Солнце – совсем не идеальное эфирное тело. Но если Солнце вращается вокруг своей оси, то и Земля может вращаться. У Венеры наблюдалась периодическая смена фаз, а это не объяснялось в системе Птолемея. Планеты имели вид кружков, а звезды оставались точками без параллактических смещений. Уже 1624 году Галилей заключает, что удаленные звезды не расположены на единой сфере, что противоречило прежним догмам.
Но самым важным открытием Галилея, совершенным с помощью «вооруженного глаза» и опубликованным в его труде «Звездный вестник» в 1610 году, было наблюдение четырех спутников планеты Юпитер. Это доказывало, что Земля не является единственным центром, вокруг которого все остальное должно вращаться, а, скорее всего, сама движется вокруг Солнца, что согласуется с взглядами Коперника. Наблюдения Галилея можно было объяснить и в рамках системы Тихо Браге. Но в любом случае они были против догмы, что мир разделен на небеса и Землю. А раз так, то к изучению законов природы (в том числе и законов тяготения) на Земле и небесах (в космосе) можно подходить с единых позиций, в рамках одних и тех же научных представлений. Это было прорывом, изменялась сама концепция (направленность) исследований, их мотивация.
Конечно, работа Коперника «О вращении небесных сфер» стала революцией в мировоззрении, но не было предложено объяснения новой системы. Не было создано соответствующей теории силы и движения, которая позволила бы объяснить наблюдаемые явления. Хотя Галилей и не создал такой теории, но он один из ее основателей. Отметим основные достижения Галилея в области механики.
Рис. 2.6. Опыт Галилея
Опытным путем Галилей доказал, что без сопротивления воздуха (или с равным сопротивлением) все тела, независимо от их веса, падают на землю с одинаковым ускорением. Два предмета, тяжелый и легкий, сброшенные с башни (говорят, Галилей бросал их с Пизанской башни, рис. 2.6) ударятся о землю одновременно, если они имеют одинаковую геометрическую форму. Это противоречило аристотелевскому представлению, что, чем тяжелее предмет, тем быстрее он должен падать. Галилей также доказал существование вакуума и продемонстрировал как его, в принципе, можно получить. Годы спустя английский физик, химик, теолог Роберт Бойль (1627–1691), один из основателей Лондонского королевского общества (академии наук), проверяя гипотезу Галилея о падении тел, показал, что в вакууме с одинаковой скоростью падают и перо, и тяжелая золотая монета. Вместе с этим Галилей установил математическое соотношение – закон – для свободно падающего тела. Он показал, что расстояние s, пройденное падающим телом, пропорционально квадрату времени падения t: s ~ t2 Эти же исследования показали, что движущееся с ускорением тело достигает скорости v пропорционально времени: v ~ t, а не расстоянию, как считалось раньше. Природа ускорения стала одним из центральных вопросов механики, на который необходимо было найти ответ.
В отличие от Аристотеля, Галилей утверждал, что для продолжения движения не требуется постоянного действия силы. По смыслу это заявление было фактически прообразом первого закона механики Ньютона. Оно было основано на следующих соображениях. Галилей мысленно рассматривал горизонтальную плоскость, на которой не было никаких воздействий на тело, то есть сил сопротивления (трения) или каких либо сил, способствующих движению. Тогда он утверждал, что если телу сообщить начальную скорость, то оно будет продолжать двигаться в начальном направлении до бесконечности. Чтобы остановить тело, нужно оказать воздействие, препятствующее его движению. Это заявление основано на следующем рассуждении. Тяжелые тела «предрасположены» к падению и «противятся» подъему, но они «безразличны» к движению в горизонтальной плоскости. Движущееся в горизонтальной плоскости тело не испытывает ни ускорения, ни замедления. Совершенно очевидно, что эти выводы не имели ничего общего с общепринятым тогда представлением о необходимости приложения силы для поддержания любого движения.
Проводя опыты, Галилей убедился, что тело может совершать одновременно два различных типа движения. Снаряд, пущенный горизонтально, должен двигаться вперед, проходя за равные отрезки времени равные расстояния, и, кроме того, он должен падать по направлению к земле в соответствии с установленным законом падения тел. Движение снаряда, выпущенного под углом вверх, должно следовать тому же закону. Поскольку эти два вида движения должны совершаться одновременно, траекторией объекта будет кривая, называемая параболой. А по Аристотелю, как мы уже знаем, траектория должна быть ломаной линией (см. рис. 1.3).
Несмотря на революционные достижения в области механики, Галилей не смог освободиться от гипноза понятия естественности кругового движения. Его анализ движения по горизонтальной плоскости привел фактически к варианту закона инерции почти в современном понимании. Но наряду с ним он ввел также понятие «круговой инерции», смысл которого состоял в том, что в отсутствие каких-либо сил тело должно продолжать движение по окружности. Обоснование этого тезиса состояло в следующем. В небольших, земных, масштабах тела движутся по прямым на плоскости. Но поскольку Земля имеет форму шара, то горизонтальная плоскость, в которой осуществляется равномерное движение тела, увеличиваясь в масштабе, становится, в конечном счете, параллельной земной поверхности. То есть фактически становится концентрической сферой для земной поверхности. А значит, в планетарном масштабе свободное от воздействий тело будет двигаться равномерно по окружности. Это вывод Галилея. И действительно, Земля и планеты движутся вокруг Солнца по круговым орбитам без видимого воздействия на них внешних сил. Эти соображения побуждали Галилея настаивать на естественности кругового движения.
Чтобы обосновать движение с круговой инерцией, Галилею пришлось вводить понятие некоего отталкивания, не позволяющего телу упасть к центру Земли. Натянутость таких объяснений очевидна. А ведь он уже имел в руках собственный инструмент для объяснения движение вокруг Земли и был знаком с работами Кеплера, который открыл, что орбиты планет не круговые, а эллиптические. По Галилею, благодаря круговой инерции, тело будет вращаться по той же самой круговой орбите, если ему задать разные скорости, лишь бы оно оказалось на этой орбите. Но если распространить вывод Галилея о сложении движений на планетарный масштаб, то ясно, что сложение движения к центру Земли и движений по линейной инерции с разными скоростями должно дать разные орбиты, а не круговую. Так как раз получаются эллипсы Кеплера. Но мы забежали немного вперед.
Что же касается природы тяготения, то о ней Галилей, как и все его современники, не имел определенного представления. Он оставлял решение этой проблемы будущим исследователям.
Пропаганда идей Коперника и собственные открытия Галилея вызвали ярость католической церкви. В 1633 году Галилей был подвергнут суду инквизиции, вынудившей его отречься от идей Коперника. Обстоятельства дела до сих пор остаются неясными. Галилей был обвинен не просто в защите теории Коперника (такое обвинение юридически несостоятельно, поскольку книга прошла папскую цензуру), а в том, что нарушил данный ему ранее запрет «ни в каком виде не обсуждать» эту теорию.
Существует легенда, что Галилей, прочитав на суде предписанную форму отречения и встав с колен, произнес знаменитую фразу: «А все-таки она вертится!». Вряд ли можно быть уверенным в том, что это было именно так. Но вся последующая деятельность Галилея указывает на то, что он в действительности не отрекся и ни в коей мере не изменил своим прежним взглядам. В 1638 он опубликовал в Голландии новую книгу «Беседы и математические доказательства», где в более академической форме изложил свои мысли относительно законов механики, причем диапазон рассматриваемых проблем очень широк – от статики и сопротивления материалов до законов движения маятника и законов падения.
Эта книга, по сути, не менее революционна, чем та, за которую его судили, но теологи не обратили на нее внимания, потому что не поняли. До самой смерти Галилей не прекращал активной творческой деятельности: он пытался использовать маятник в качестве основного элемента механизма часов; за несколько месяцев до того как полностью ослеп, открыл либрации Луны (кажущиеся периодические покачивания); и уже совершенно слепой диктовал последние мысли своим ученикам – Винченцо Вивиани и Эванджелиста Торричелли. Так, в ссылке, непобежденный Галилей умер в 1642 году.
Вторым человеком, сыгравшим решающую роль в утверждении гелиоцентрической системы, был немецкий ученый Иоганн Кеплер (1571–1630), рис. 2.7. Иоганн родился в бедной семье. Поступил в Тюбингенский университет, где с увлечением занимался математикой и астрономией. Его учитель профессор Местлин втайне был последователем Коперника. Конечно, в университете Местлин преподавал астрономию по Птолемею, но дома он знакомил своего ученика с основами нового учения. И вскоре Кеплер стал горячим и убежденным сторонником теории Коперника. Он закончил обучение как священник, но не был допущен к богословской деятельности, как вольнодумец. Он стал профессором математики и морали в городе Граце.
Рис. 2.7. Иоганн Кеплер
Затем был вынужден переезжать с места на место, в основном, из-за преследований со стороны католической церкви. Жил и умер в нищете.
Несмотря на жизненные перипетии, Кеплер в любых условиях вел научную работу. Для Карла Маркса, как пример самоотверженности, он был одним из двух любимых героев, другим был Спартак. После смерти Кеплера наследникам досталось: поношенная одежда, 22 флорина наличными, 29 000 флоринов невыплаченного жалованья, 27 опубликованных рукописей и множество неопубликованных – они позже были изданы в 22-томном сборнике. Со смертью Кеплера его злоключения не закончились. В конце Тридцатилетней войны было полностью разрушено кладбище, где он похоронен, и от его могилы ничего не осталось. Часть архива Кеплера исчезла. В 1774 году большую часть архива (18 томов из 22) приобрела Петербургская академия наук, там всё и хранится в настоящий момент.
Альберт Эйнштейн назвал Кеплера «несравненным человеком» и писал о его судьбе: «Он жил в эпоху, когда еще не было уверенности в существовании некоторой общей закономерности для всех явлений природы. Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!»
Основываясь на мистической натурфилософии и пантеистических мотивах, Кеплер развил мысль о мировой гармонии. В его ранних работах использовались пифагорейские идеи. Число планет и расстояния от них до Солнца были связаны с числом и расположением правильных геометрических (евклидовых) тел, при этом движение планет вокруг Солнца объяснял действием своеобразных интеллектуальных сил, или душ. Эти результаты сегодня не представляют особой ценности (их критиковали и современники, в частности, Галилей). Но их публикация в 1596 году в книге, которую коротко называют «Космографической тайной», привлекла внимание Тихо Браге. Он пригласил Кеплера к себе в Прагу для совместной работы. Именно это сотрудничество, которое состояло в кропотливом анализе точных данных каталогов наблюдений Тихо Браге за движениями планет, привело к замечательным результатам.
В 1600 году Кеплер занялся исследованием движения Марса. Он перебрал всевозможные комбинации эпициклов, деферентов, эксцентров и эквантов, чтобы добиться наилучшего совпадения расчетных результатов с наблюдаемым перемещением планеты, но добился точности в совпадении угловых координат планет лишь в 8 угловых минут, то есть всего около ¼ видимого диаметра лунного диска. Даже по тем временам это было очень низкой точностью. Естественно, такой результат не удовлетворил Кеплера. Часто приводят его слова: «эти 8 минут привели к пересмотру всей астрономии». Перебрав около семидесяти различных комбинаций, Кеплер пришел к выводу, что орбита Марса должна быть эллипсом.
Чтобы согласиться с собственным выводом, Кеплеру нужно было переломить себя. Как и большинство его современников, он был убежденным сторонником концепции идеального кругового движения. К сожалению, в 1601 году скончался Тихо Браге, но бесценные записи его наблюдений остались у Кеплера, и он в полной мере ими воспользовался.
Свои открытия Кеплер опубликовал в 1609 году в книге «Новая астрономия». В последующие годы он существенно дополнил свою работу, включив в нее даже результаты исследования движения спутников Юпитера; эти результаты были напечатаны в 1619 и 1621 годах. Из огромной массы полезных сведений и довольно-таки путаных рассуждений были выведены и сформулированы три закона движения планет. Первые два были даны в «Новой астрономии», третий – в труде «Гармония мира», изданном в 1619 году. Сегодня они известны под названием законов Кеплера. В современной формулировке эти законы звучат так:
Первый закон: Каждая планета движется по эллипсу, в одном из фокусов которого находится центр Солнца.
Второй закон: Площадь сектора орбиты, описанная радиус-вектором планеты, изменяется пропорционально времени.
Третий закон: Квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от Солнца (под «средним расстоянием» здесь понимается большая полуось эллипса):
Законы Кеплера показали, как движутся планеты. Это, конечно, имеет практическую ценность для небесной механики. На рис. 2.8 проиллюстрирован второй закон Кеплера, где показано, что за равное время t радиус-вектор «Солнце – планета» «заметает» равные площади S. Очевидно, что чем ближе планета к Солнцу, тем больше ее скорость. Третий закон легко позволяет найти среднее расстояние планеты от Солнца, если известно время ее полного обращения по орбите. Эти вычисления принимают особо простой вид, если расстояние измерять в астрономических единицах (1 а. е. равна среднему расстоянию от Солнца до Земли), а время – в годах (время одного полного оборота Земли вокруг Солнца). Если период обращения планеты вокруг Солнца равен T годам, то ее среднее расстояние от Солнца в астрономических единицах равно T2/3.
Рис. 2.8. Иллюстрация второго закона Кеплера
Выводы Кеплера – это результат многолетнего кропотливого труда, но они не сразу были восприняты сторонниками теории Коперника. Галилей, как говорилось, «до конца» оставался верен концепции круговых движений. Однако простота в расчетах при использовании законов Кеплера была неоспоримой, а точность предсказания положения планет значительно превосходила птолемеевские. Все это обеспечило законам Кеплера широкое признание и популярность в использовании уже в XVII веке.