Яков Перельман Головоломки по физике

Глава первая Тепловые явления

• Веер

Когда женщины обмахиваются веерами, им, конечно, становится прохладнее. Казалось бы, что занятие это вполне безвредно для остальных присутствующих в помещении и что собравшиеся могут быть только признательны женщинам за охлаждение воздуха в зале.

Посмотрим, так ли это. Почему при обмахивании веером мы ощущаем прохладу? Воздух, непосредственно прилегающий к нашему лицу, нагревается, и эта теплая воздушная маска, невидимо облегающая наше лицо, «греет» его, т. е. замедляет дальнейшую потерю тепла. Если воздух вокруг нас неподвижен, то нагревшийся близ лица слой воздуха лишь весьма медленно вытесняется вверх более тяжелым ненагретым воздухом. Когда же мы смахиваем веером с лица теплую воздушную маску, то лицо соприкасается с все новыми порциями ненагретого воздуха и непрерывно отдает им свою теплоту; тело наше остывает, и мы ощущаем прохладу.

Значит, при обмахивании веером женщины непрерывно удаляют от своего лица нагретый воздух и заменяют его ненагретым; нагревшись, этот воздух удаляется в свою очередь и заменяется новой порцией ненагретого и т. д.

Работа веером ускоряет перемешивание воздуха и способствует быстрейшему уравниванию температуры воздуха во всем зале, т. е. доставляет облегчение обладательницам веера за счет более прохладного воздуха, окружающего остальных присутствующих. Для действия веера имеет значение еще одно обстоятельство, о котором мы сейчас расскажем.

• Отчего при ветре холоднее?

Все знают, конечно, что в тихую погоду мороз переносится гораздо легче, чем при ветре. Но не все представляют себе отчетливо причину этого явления. Больший холод при ветре ощущается лишь живыми существами; термометр вовсе не опускается ниже, когда его обдувает ветер. Ощущение резкого холода в ветреную морозную погоду объясняется прежде всего тем, что от лица (и вообще от тела) отнимается при этом гораздо больше тепла, нежели в тихую погоду, когда воздух, нагретый телом, не так быстро сменяется новой порцией холодного воздуха. Чем ветер сильнее, тем бо́льшая масса воздуха успевает в течение каждой минуты прийти в соприкосновение с кожей и, следовательно, тем больше тепла отнимается ежеминутно от нашего тела. Этого одного уже достаточно, чтобы вызвать ощущение холода.

Но есть и еще причина. Кожа наша всегда испаряет влагу, даже в холодном воздухе. Для испарения требуется теплота; она отнимается от нашего тела и от того слоя воздуха, который к телу прилегает. Если воздух неподвижен, испарение совершается медленно, так как прилегающий к коже слой воздуха скоро насыщается парами (в насыщенном влагой воздухе не происходит интенсивного испарения). Но если воздух движется и к коже притекают все новые и новые его порции, то испарение все время поддерживается очень обильное, а это требует большого расхода теплоты, которая отбирается от нашего тела.

Как же велико охлаждающее действие ветра? Оно зависит от его скорости и от температуры воздуха; в общем оно гораздо значительнее, чем обычно думают. Приведу пример, дающий представление о том, каково бывает это понижение. Пусть температура воздуха +4°, а ветра нет никакого. Кожа нашего тела при таких условиях имеет температуру 31°. Если же дует легкий ветерок, едва движущий флаги и не шевелящий листвы (скорость 2 м/с), то кожа охлаждается на 7°; при ветре, заставляющем флаг полоскаться (скорость 6 м/с), кожа охлаждается на 22°: температура ее падает до 9°! Эти данные взяты из книги H.H. Калитана «Основы физики атмосферы в применении к медицине»; любознательный читатель найдет в ней много интересных подробностей.

Итак, о том, как будет ощущаться нами мороз, мы не можем судить по одной лишь температуре, а должны принимать во внимание также и скорость ветра. Один и тот же мороз переносится в Ленинграде в среднем хуже, чем в Москве, потому что средняя скорость ветра на берегах Балтийского моря равна 5–6 м/с, а в Москве – только 4,5 м/с. Еще легче переносятся морозы в Забайкалье, где средняя скорость ветра всего 1,3 м. Знаменитые восточносибирские морозы ощущаются далеко не так жестоко, как думаем мы, привыкшие в Европе к сравнительно сильным ветрам; Восточная Сибирь отличается почти полным безветрием, особенно в зимнее время.

• Горячее дыхание пустыни

«Значит, ветер и в знойный день должен приносить прохладу, – скажет, быть может, читатель, прочтя предыдущую статью. – Почему же в таком случае путешественники говорят о горячем дыхании пустыни?»



Противоречие объясняется тем, что в тропическом климате воздух бывает теплее, чем наше тело. Неудивительно, что там при ветре людям становится не прохладнее, а жарче. Теплота передается там уже не от тела воздуху, но обратно – воздух нагревает человеческое тело. Поэтому, чем бо́льшая масса воздуха успеет ежеминутно прийти в соприкосновение с телом, тем сильнее ощущение жара. Правда, испарение и здесь усиливается при ветре, но первая причина перевешивает. Вот почему жители пустыни, например туркмены, носят теплые халаты и меховые шапки.

• Греет ли вуаль?

Вот еще задача из физики обыденной жизни. Женщины утверждают, что вуаль греет, что без нее лицо зябнет. При взгляде на легкую ткань вуали, нередко с довольно крупными ячейками, мужчины не очень склонны верить этому утверждению и думают, что согревающее действие вуали – игра воображения.

Однако если вы вспомните сказанное выше, то отнесетесь к этому утверждению более доверчиво. Как бы крупны ни были ячейки вуали, воздух через такую ткань проходит все же с некоторым замедлением. Тот слой воздуха, который непосредственно прилегает к лицу и, нагревшись, служит теплой воздушной маской, – слой этот, удерживаемый вуалью, не так быстро сдувается ветром, как при отсутствии ее. Поэтому нет основания не верить женщинам, что при небольшом морозе и слабом ветре лицо во время ходьбы зябнет в вуали меньше, чем без нее.

• Охлаждающие кувшины

Если вам не случалось видеть таких кувшинов, то, вероятно, вы слыхали или читали о них. Эти сосуды из необожженной глины обладают той любопытной особенностью, что налитая в них вода становится прохладнее, чем окружающие предметы. Кувшины в большом распространении у южных народов (между прочим, и у нас в Крыму) и носят различные названия: в Испании – «алькарацца», в Египте – «гоула» и т. д.



Секрет охлаждающего действия этих кувшинов прост: жидкость просачивается через глиняные стенки наружу и там медленно испаряется, отнимая при этом теплоту («скрытую теплоту испарения») от сосуда и заключенной в нем жидкости.

Но неверно, что жидкость в таких сосудах очень охлаждается, как приходится читать в описаниях путешествий по южным странам. Охлаждение не может быть велико. Зависит оно от многих условий. Чем знойнее воздух, тем скорее и обильнее испаряется жидкость, увлажняющая сосуд снаружи, и, следовательно, тем более охлаждается вода внутри кувшина. Зависит охлаждение и от влажности окружающего воздуха: если в нем много влаги, испарение происходит медленно, и вода охлаждается незначительно; в сухом воздухе, напротив, происходит энергичное испарение, вызывающее более заметное охлаждение. Ветер также ускоряет испарение и тем способствует охлаждению; это все хорошо знают по тому ощущению холода, которое приходится испытывать в мокром платье в теплый, но ветреный день. Понижение температуры в охлаждающих кувшинах не превышает 5°. В знойный южный день, когда термометр показывает подчас 33°, вода в охлаждающем кувшине имеет температуру теплой ванны 28°. Охлаждение, как видим, практически бесполезное. Зато кувшины хорошо сохраняют холодную воду; для этой цели их преимущественно и употребляют.

Мы можем попытаться вычислить степень охлаждения воды в «алькараццах».

Пусть у нас имеется кувшин, вмещающий 5 л воды; допустим, что 1/10 л испарилась. Для испарения 1 л воды (1 кг) требуется при температуре знойного (33°) дня около 580 калорий. У нас испарилась 1/10 кг, следовательно, понадобилось 58 калорий. Если бы вся эта теплота заимствовалась только от воды, которая находится в кувшине, температура последней понизилась бы на 58/5, т. е. градусов на 12. Но бо́льшая часть тепла, потребного для испарения, отнимается от стенок самого кувшина и от окружающего его воздуха; с другой стороны, рядом с охлаждением воды в кувшине происходит и нагревание ее теплым воздухом, прилегающим к кувшину. Поэтому охлаждение едва до́стигает половины полученной цифры.

Трудно сказать, где кувшин охлаждается больше, – на солнце или в тени. На солнце ускоряется испарение, но вместе с тем усиливается и приток тепла. Лучше всего, вероятно, держать охлаждающие кувшины в тени на слабом ветре.

• «Ледник» без льда

На охлаждении от испарения основано устройство охлаждающего шкафа для хранения продуктов, своего рода «ледника» без льда. Устройство такого охладителя весьма несложно: это ящик из дерева (лучше из оцинкованного железа) с полками, на которые кладут подлежащие охлаждению продукты. Вверху ящика ставится длинный сосуд с чистой холодной водой; в сосуд погружен край холста, который идет вдоль задней стенки ящика вниз, кончаясь в сосуде, помещенном под нижней полкой. Холст напитывается водой, которая, как по фитилю, все время движется через него, медленно испаряясь и тем охлаждая все отделения «ледника».

Такой «ледник» следует ставить в прохладное место квартиры и каждый вечер менять в нем холодную воду, чтобы она успела за ночь хорошо остудиться. Сосуды, содержащие воду, и холст, пропитываемый ею, должны быть, конечно, совершенно чисты.

• Какую жару способны мы переносить?

Человек гораздо выносливее по отношению к жаре, чем обыкновенно думают: он способен переносить в южных странах температуру заметно выше той, какую мы в умеренном поясе считаем едва переносимой. Летом в Средней Австралии нередко наблюдается температура 46° в тени; там отмечались даже температуры в 55° в тени (по Цельсию). При переходе через Красное море в Персидский залив температура в корабельных помещениях достигает 50° и выше, несмотря на непрерывную вентиляцию.



Наиболее высокие температуры, наблюдавшиеся в природе на земном шаре, не превышали 57°. Температура эта установлена в так называемой «Долине Смерти» в Калифорнии. Зной в Средней Азии – самом жарком месте нашего Союза – не бывает выше 50°.

Отмеченные сейчас температуры измерялись в тени. Объясню кстати, почему метеоролога интересует температура именно в тени, а не на солнце. Дело в том, что температуру воздуха измеряет только термометр, выставленный в тени. Градусник, помещенный на солнце, может нагреться его лучами значительно выше, чем окружающий воздух, и показание его нисколько не характеризует теплового состояния воздушной среды. Поэтому и нет смысла, говоря о знойной погоде, ссылаться на показание термометра, выставленного на солнце.

Производились опыты для определения высшей температуры, какую может выдержать человеческий организм. Оказалось, что при весьма постепенном нагревании организм наш в сухом воздухе способен выдержать не только температуру кипения воды (100°), но иногда даже еще более высокую, до 160 °C, как доказали английские физики Благден и Чентри, проводившие ради опыта целые часы в натопленной печи хлебопекарни. «Можно сварить яйца и изжарить бифштекс в воздухе помещения, в котором люди остаются без вреда для себя», – замечает по этому поводу Тиндаль.

Чем же объясняется такая выносливость? Тем, что организм наш фактически не принимает этой температуры, а сохраняет температуру, близкую к нормальной. Он борется с нагреванием посредством обильного выделения пота; испарение пота поглощает значительное количество тепла из того слоя воздуха, который непосредственно прилегает к коже, и тем в достаточной мере понижает его температуру. Единственные необходимые условия состоят в том, чтобы тело не соприкасалось непосредственно с источником тепла и чтобы воздух был сух.

Кто бывал в нашей Средней Азии, тот замечал, без сомнения, как сравнительно легко переносится там жара в 37 и более градусов Цельсия, 24-градусная жара в Ленинграде переносится гораздо хуже. Причина, конечно, во влажности воздуха в Ленинграде и сухости его в Средней Азии, где дождь – явление крайне редкое.

• Термометр или барометр?

Известен анекдот о наивном человеке, который не решался принять ванну по следующей необыкновенной причине:

– Я сунул в ванну барометр, а он показал – бурю… Опасно купаться!

Но не думайте, что всегда легко отличить термометр от барометра. Есть такие термометры, вернее, термоскопы, которые с не меньшим правом могли бы называться барометрами, и наоборот. Примером может служить старинный термоскоп, придуманный Героном Александрийским. Когда солнечные лучи пригревают шар, воздух в верхней части шара, расширяясь, давит на воду и вытесняет ее по изогнутой трубке наружу; вода начинает капать из конца трубки в воронку, откуда стекает в нижний ящик. В холодную же погоду, напротив, упругость воздуха в шаре уменьшается и вода из нижнего ящика вытесняется давлением наружного воздуха по прямой трубке в шар.


Термоскоп Герона


Однако прибор этот чувствителен и к изменениям барометрического давления: когда наружное давление ослабевает, воздух внутри шара, сохранивший прежнее более высокое давление, расширяется и вытесняет часть воды по трубке в воронку; при повышении же наружного давления часть воды из ящика вгоняется в шар вследствие большего давления снаружи. Каждый градус температурной разницы вызовет такое же изменение в объеме воздуха внутри шара, как 760/273 = около 21/2 мм разницы в высоте барометрического столба (ртутного). В Москве барометрические колебания достигают 20 и более миллиметров; это соответствует 8 °C в термоскопе Герона, – значит, такое падение атмосферного давления легко принять за повышение температуры на 8 градусов!

Вы видите, что старинный термоскоп в не меньшей мере является и бароскопом. Одно время в продаже имелись у нас водяные барометры, которые являлись в такой же степени и термометрами; об этом, однако, не подозревали не только покупатели, но, кажется, и их изобретатель.

• Для чего служит ламповое стекло?

Мало кто знает о том, какой долгий путь прошло ламповое стекло, прежде чем достигло своего современного вида. Длинный ряд тысячелетий люди пользовались для освещения пламенем, не прибегая к услугам стекла. Понадобился гений Леонардо да Винчи (1452–1519), чтобы сделать это важное усовершенствование лампы. Но Леонардо окружил пламя не стеклянной, а металлической трубой; прошло еще три века, прежде чем додумались до замены металлической трубы прозрачным стеклянным цилиндром. Как видите, ламповое стекло – изобретение, над которым работали десятки поколений.

Каково же его назначение?

Едва ли у всех готов правильный ответ на столь естественный вопрос. Защищать пламя от ветра – лишь второстепенная роль стекла. Главное же действие его – в увеличении яркости пламени, в ускорении процесса горения. Роль стекла та же, что и печной или заводской трубы: оно усиливает приток воздуха к пламени, усиливает «тягу».

Разберемся в этом. Столб воздуха, находящийся внутри стекла, нагревается пламенем гораздо быстрее, нежели воздух, окружающий лампу. Нагревшись и сделавшись поэтому легче, воздух по закону Архимеда выталкивается вверх более тяжелым ненагретым воздухом, который поступает снизу, через отверстия в горелке. Таким образом устанавливается постоянное течение воздуха снизу вверх, течение, непрерывно отводящее продукты горения и приносящее свежий воздух. Чем стекло выше, тем больше разница в весе нагретого и ненагретого столба воздуха и тем энергичнее происходит приток свежего воздуха, а следовательно, ускоряется горение. Здесь имеет место то же самое, что и в высоких заводских трубах. Поэтому эти трубы делаются столь высокими.



Интересно, что уже Леонардо отчетливо представлял себе эти явления. В его рукописях находим такую запись: «Где появляется огонь, там вокруг него образуется воздушное течение: оно его поддерживает и усиливает».

• Почему пламя не гаснет само собой?

Если вдуматься хорошенько в процесс горения, то невольно возникает вопрос: отчего пламя не гаснет само собой? Ведь продуктами горения являются углекислый газ и водяной пар – вещества негорючие, неспособные поддерживать горение. Следовательно, пламя с первого же момента горения должно быть окружено негорючими веществами, которые мешают притоку воздуха; без воздуха горение продолжаться не может, и пламя должно погаснуть.



Почему же этого не происходит? Почему горение длится непрерывно, пока есть запас горючего вещества? Только потому, что газы расширяются от нагревания и, следовательно, становятся легче. Лишь благодаря этому нагретые продукты горения не остаются на месте своего образования, в непосредственном соседстве с пламенем, а немедленно же вытесняются вверх чистым воздухом. Если бы закон Архимеда не распространялся на газы (или если бы не было тяжести), всякое пламя, погоревши немного, гасло бы само собой.

Весьма легко убедиться в том, как губительно действуют на пламя продукты его горения. Вы нередко пользуетесь этим, сами того не подозревая, чтобы загасить огонь в лампе. Как задуваете вы керосиновую лампу? Дуете в нее сверху, т. е. гоните вниз, к пламени, негорючие продукты его горения; и оно гаснет, лишенное свободного доступа воздуха.

• Недостающая глава в романе Жюля Верна

Жюль Верн подробно поведал нам, как проводили время трое смельчаков внутри снаряда, мчащегося на Луну. Однако он не рассказал о том, как Мишель Ардан исполнял обязанности повара в этой необычной обстановке. Вероятно, романист полагал, что стряпня внутри летящего снаряда не представляет ничего такого, что заслуживало бы описания. Если так, то он ошибался. Дело в том, что внутри летящего ядра все предметы становятся невесомыми (подробное разъяснение этого интересного обстоятельства приведено в первой книге «Занимательной физики», а также в моих книгах «Межпланетные путешествия», «К звездам на ракете» и «Ракетой на Луну»). Жюль Верн упустил из виду это обстоятельство. А согласитесь, что стряпня в невесомой кухне – сюжет, вполне достойный пера романиста, и надо только пожалеть, что талантливый автор «Путешествия на Луну» не уделил внимания этой теме. Попытаюсь, как умею, восполнить недостающую главу в романе, чтобы дать читателю некоторое представление о том, насколько эффектно могла бы вылиться она из-под пера самого Жюля Верна.

При чтении этой статьи читатель должен все время не упускать из виду, что внутри ядра, как уже сказано, нет тяжести: все предметы в нем невесомы.

Завтрак в невесомой кухне

– Друзья мои, ведь мы еще не завтракали, – объявил Мишель Ардан своим спутникам по межпланетному путешествию. – Из того, что мы потеряли свой вес в пушечном снаряде, не следует вовсе, что мы потеряли и аппетит. Я берусь устроить вам, друзья мои, невесомый завтрак, который, без сомнения, будет состоять из самых легких блюд, когда-либо изготовлявшихся на свете.



И, не ожидая ответа товарищей, француз принялся за стряпню.

– Наша бутыль с водой притворяется пустой, – ворчал про себя Ардан, возясь с раскупоркой большой бутыли. – Не проведешь меня: я ведь знаю, отчего ты легкая… Так, пробка вынута. Изволь излить в кастрюлю свое невесомое содержимое!

Но сколько ни наклонял он бутыли, вода не выливалась.

– Не трудись, милый Ардан, – явился на выручку Николь. – Пойми, что в нашем снаряде, где нет тяжести, вода не может литься. Ты должен ее вытрясти из бутыли, как если бы это был густой сироп.

Недолго думая, Ардан хлопнул ладонью по дну опрокинутой бутылки. Новая неожиданность: у горлышка тотчас же раздулся водяной шар, величиной с кулак.

– Что стало с нашей водой? – изумился Ардан. – Вот, признаюсь, совсем излишний сюрприз! Объясните же, ученые друзья мои, что тут произошло?

– Это капля, милый Ардан, простая водяная капля. В мире без тяжести капли могут быть как угодно велики… Вспомни, что ведь жидкости только под влиянием тяжести принимают форму сосудов, льются в виде струй и т. д. Здесь же нет тяжести, жидкость предоставлена своим внутренним молекулярным силам и должна принять форму шара, как масло в знаменитом опыте Плато.

– Мне никакого дела нет до этого Плато с его опытами! Я должен вскипятить воду для бульона, и, клянусь, никакие молекулярные силы не остановят меня! – запальчиво объявил француз.

Он яростно принялся вытряхивать воду над парящей в воздухе кастрюлей, но, по-видимому, все было в заговоре против него. Большие водяные шары, достигнув кастрюли, быстро расползались по ее поверхности. Этим дело не кончилось: с внутренних стенок вода переходила на наружные, растекалась по ним, – и вскоре кастрюля оказалась окутанной толстым водяным слоем. Кипятить воду в таком виде не было никакой возможности.

– Вот любопытный опыт, доказывающий, как велика сила сцепления, – спокойно говорил взбешенному Ардану невозмутимый Николь. – Ты не волнуйся: ведь здесь обыкновенное смачивание жидкостями твердых тел; только в данном случае тяжесть не мешает развиться этому явлению с полной силой.

– И очень жаль, что не мешает! – возразил Ардан. – Смачивание здесь или что-либо другое, но мне необходимо иметь воду внутри кастрюли, а не вокруг нее. Вот еще новости какие! Ни один повар в мире не согласится готовить бульон при подобных условиях!

– Ты легко можешь воспрепятствовать смачиванию, если оно так мешает тебе, – успокоительно вставил м-р Барбикен. – Вспомни, что вода не смачивает тел, покрытых хотя бы тонким слоем жира. Обмажь свою кастрюлю снаружи жиром, и ты удержишь воду внутри нее.

– Браво! Вот это я называю истинной ученостью, – обрадовался Ардан, приводя совет в исполнение. Затем он приступил к нагреванию воды на пламени газовой горелки.

Положительно все складывалось против Ардана. Газовая горелка – и та закапризничала: прогорев полминуты тусклым пламенем, она погасла по необъяснимой причине.

Ардан возился вокруг горелки, терпеливо нянчился с пламенем, но хлопоты не приводили ни к чему: пламя отказывалось гореть.

– Барбикен! Николь! Неужели же нет средства заставить это упрямое пламя гореть так, как полагается ему по законам вашей физики и по уставам газовых компаний? – взывал к друзьям обескураженный француз.

– Но здесь нет ничего необычайного и ничего неожиданного, – объяснил Николь. – Это пламя горит именно так, как полагается согласно физическим законам. А газовые компании… я думаю, они все разорились бы, если бы не было тяжести. При горении, ты знаешь, образуются углекислота, водяной пар, словом, газы негорючие; обыкновенно эти продукты горения не остаются возле самого пламени: как теплые и, следовательно, более легкие, они вытесняются притекающим свежим воздухом. Но тут у нас нет тяжести, – поэтому продукты горения остаются на месте возникновения, окружают пламя слоем негорючих газов и преграждают доступ свежему воздуху. Оттого-то пламя так тускло здесь горит и так быстро гаснет. Ведь действие огнетушителей на том и основано, что пламя окружается негорючим газом.

– Значит, по-твоему, – перебил француз, – если бы на Земле не было тяжести, то не надо было бы и пожарных команд: пожар погас бы сам собой, задыхался бы в собственном дыхании?

– Совершенно верно. А пока, чтобы помочь делу, зажги еще раз горелку и давай обдувать пламя. Нам, я надеюсь, удастся создать искусственную тягу и заставить пламя гореть «по-земному».

Так и сделали. Ардан снова зажег горелку и принялся за стряпню, не без злорадства следя за тем, как Николь с Барбикеном поочередно обдували и обмахивали пламя, чтобы непрерывно вводить в него свежий воздух. В глубине души француз считал своих друзей и их науку виновниками «всей этой кутерьмы».

– Вы в некотором роде исполняете обязанности фабричной трубы, поддерживая тягу, – тараторил Ардан. – Мне очень жаль вас, ученые друзья мои, но если мы хотим иметь горячий завтрак, придется подчиниться велениям вашей физики.

Однако прошло четверть часа, полчаса, час, а вода в кастрюле и не думала закипать.

– Тебе придется вооружиться терпением, милый Ардан. Видишь ли, обыкновенная, весомая вода быстро нагревается – почему? Только потому, что в ней происходит перемешивание слоев: нагретые нижние слои, более легкие, вытесняются холодными сверху, и в результате вся жидкость быстро принимает высокую температуру. Случалось тебе когда-либо нагревать воду не снизу, а сверху? Тогда перемешивание слоев не происходит, потому что верхние нагретые слои остаются на месте. Теплопроводность же воды ничтожна; верхние слои можно даже довести до кипения, в то время как в нижних будут находиться куски нерастаявшего льда. Но в нашем невесомом мире безразлично, откуда ни нагревать воду: круговорота в кастрюле возникать не может, и вода должна нагреваться очень медленно. Если желаешь ускорить нагревание, ты должен все время перемешивать воду.

Николь предупредил Ардана, чтобы он не доводил воды до 100°, а ограничился несколько пониженной температурой. При 100° образуется много пара, который, обладая здесь удельным весом, одинаковым с удельным весом воды (оба равны нулю), будет смешиваться с ней в однородную пену.

Досадная неожиданность произошла с горохом. Когда Ардан, развязав мешочек, слегка тряхнул его, горошины рассеялись в воздухе и стали безостановочно бродить внутри каюты, ударяясь о стенки и отскакивая от них. Эти витающие горошины чуть не наделали большой беды: Николь нечаянно вдохнул одну из них и так раскашлялся, что едва не задохнулся. Чтобы избавиться от такой опасности и очистить воздух, друзья наши принялись усердно вылавливать летающие горошины тем сачком, который Ардан предусмотрительно захватил с собою «для сбора коллекции лунных бабочек».

Нелегко было стряпать при таких условиях. Ардан был прав, когда утверждал, что здесь спасовал бы самый искусный повар. Немало пришлось повозиться и при жарении бифштекса: надо было все время придерживать мясо вилкой, иначе упругие пары масла, образующиеся под бифштексом, выталкивали его из кастрюли, и недожаренное мясо летело «вверх», – если можно употребить это слово там, где не было ни «верха», ни «низа».

Странную картину представлял и самый обед в этом мире, лишенном тяжести. Друзья висели в воздухе в весьма разнообразных позах, не лишенных, впрочем, живописности, и поминутно стукались головами друг о друга. Сидеть, конечно, не приходилось. Такие вещи, как стулья, диваны, скамьи – совершенно бесполезны в мире, где нет тяжести. В сущности, и стол был бы здесь не нужен, если бы не настойчивое желание Ардана завтракать непременно «за столом».



Трудно было сварить бульон, но еще труднее оказалось съесть его. Начать с того, что разлить невесомый бульон по чашкам никак не удавалось. Ардан чуть не поплатился за такую попытку потерей трудов целого утра; забыв, что бульон невесом, он с досадой ударил по дну перевернутой кастрюли, чтобы изгнать из нее упрямый бульон. В результате из кастрюли вылетела огромная шарообразная капля – бульон в сфероидальной форме. Ардану понадобилось проявить искусство жонглера, чтобы вновь поймать и водворить в кастрюлю с таким трудом сваренный бульон.

Попытка пользоваться ложками осталась безрезультатной: бульон смачивал всю ложку до самых пальцев и висел на ней сплошной пеленой. Обмазали ложки маслом, чтобы предупредить смачивание, но дело от этого не стало лучше: бульон превратился на ложке в шарик, и не было никакой возможности благополучно донести эту невесомую пилюлю до рта.

В конце концов Николь нашел решение задачи: сделали трубки из восковой бумаги и с помощью их пили бульон, втягивая его в рот. Таким же способом приходилось нашим друзьям во время путешествия пить воду, вино и вообще всякие жидкости[1].

• Почему вода гасит огонь?

На столь простой вопрос не всегда умеют правильно ответить, и читатель, надеемся, не посетует на нас, если мы объясним вкратце, в чем собственно заключается это действие воды на огонь.

Во-первых, прикасаясь к горящему предмету, вода превращается в пар, отнимая при этом много теплоты у горящего тела; чтобы превратить крутой кипяток в пар, нужно впятеро с лишком больше теплоты, чем для нагревания того же количества холодной воды до 100 градусов.

Во-вторых, пары, образующиеся при этом, занимают объем, в сотни раз больший, чем породившая их вода; окружая горящее тело, пары оттесняют воздух, а без воздуха горение невозможно.



Чтобы увеличить огнегасительную силу воды, иногда примешивают к ней… порох! Это может показаться странным, однако это вполне разумно: порох быстро сгорает, выделяя большое количество негорючих газов, которые, окружая собой горящие предметы, затрудняют горение.

• Как тушат огонь с помощью огня?

Вы слыхали, вероятно, что лучшее, а иной раз и единственное средство борьбы с лесным или степным пожаром – это поджигание леса или степи с противоположной стороны. Новое пламя идет навстречу бушующему морю огня и, уничтожая горючий материал, лишает огонь пищи; встретившись, обе огненные стены мгновенно гаснут, словно пожрав друг друга.

Описание того, как пользуются этим приемом тушения огня при пожаре американских степей, многие, конечно, читали у Купера в романе «Прерия». Можно ли забыть тот драматический момент, когда старик траппер спас от огненной смерти путников, застигнутых в степи пожаром? Вот это место из «Прерии».


«Старик внезапно принял решительный вид.

– Настало время действовать, – сказал он.

– Вы слишком поздно спохватились, жалкий старик! – крикнул Миддльтон. – Огонь в расстоянии четверти мили от нас, и ветер несет его к нам с ужасающей быстротой!

– Вот как! Огонь! Не очень-то я боюсь его. Ну, молодцы, полно! Приложите-ка руки к этой высохшей траве и обнажите землю.

В очень короткое время было очищено место футов в двадцать в диаметре. Траппер вывел женщин на один край этого небольшого пространства, сказав, чтобы они прикрыли одеялами свои платья, легко могущие воспламениться. Приняв эти предосторожности, старик подошел к противоположному краю, где стихия окружила путников высоким, опасным кольцом, и, взяв щепотку самой сухой травы, положил ее на полку ружья и поджег. Легко воспламеняющееся вещество вспыхнуло сразу. Тогда старик бросил пылавшую траву в высокую заросль и, отойдя к центру круга, стал терпеливо ожидать результата своего дела.


Тушение степного пожара огнем


Разрушительная стихия с жадностью набросилась на новую пищу, и в одно мгновение пламя стало лизать траву.

– Ну, – сказал старик, – теперь вы увидите, как огонь сразит огонь.

– Но неужели это не опасно? – воскликнул удивленный Миддльтон. – Не приближаете ли вы к нам врага, вместо того чтобы отдалять его?

Огонь, все увеличиваясь, начал распространяться в три стороны, замирая на четвертой вследствие недостатка пищи. По мере того как огонь увеличивался и бушевал все сильнее и сильнее, он очищал перед собой все пространство, оставляя черную дымящуюся почву гораздо более обнаженной, чем если бы трава на этом месте была скошена косой.

Положение беглецов стало бы еще рискованнее, если бы очищенное ими место не увеличивалось по мере того, как пламя окружало его с остальных сторон.

Через несколько минут пламя стало отступать во всех направлениях, оставляя людей окутанными облаком дыма, но в полной безопасности от потока огня, продолжавшего бешено нестись вперед.

Зрители смотрели на простое средство, употребленное траппером, с тем же изумлением, с каким, как говорят, царедворцы Фердинанда смотрели на способ Колумба поставить яйцо».

Этот прием тушения степных и лесных пожаров не так, однако, прост, как кажется с первого взгляда. Пользоваться встречным огнем для тушения пожара должен лишь человек очень опытный, – иначе бедствие может даже усилиться.

Вы поймете, какая для этого нужна сноровка, если зададите себе вопрос: почему огонь, зажженный траппером, побежал навстречу пожару, а не в обратном направлении? Ведь ветер дул со стороны пожара и гнал огонь на путников! Казалось бы, пожар, причиненный траппером, должен был направиться не навстречу огненному морю, а назад по степи. Если бы так случилось, путники оказались бы окруженными огненным кольцом и неминуемо погибли бы.

В чем заключался секрет траппера?

В знании простого физического закона. Хотя ветер дул по направлению от горящей степи к путникам, – но впереди, близ огня, должно было существовать обратное течение воздуха, навстречу пламени. В самом деле: нагреваясь над морем огня, воздух становится легче и вытесняется вверх притекающим со всех сторон свежим воздухом со степи, не затронутой пламенем. Близ границы огня устанавливается поэтому тяга воздуха навстречу пламени. Зажечь встречный огонь необходимо в тот момент, когда пожар приблизится достаточно, чтобы ощутилась тяга воздуха. Вот почему траппер не спешил приниматься за дело раньше времени, а спокойно ждал нужного момента. Стоило поджечь траву немного раньше, когда встречная тяга еще не установилась, – и огонь распространился бы в обратном направлении, сделав положение людей безвыходным. Но и промедление могло быть не менее роковым: огонь подошел бы чересчур близко.

• Можно ли воду вскипятить кипятком?

Возьмите небольшую бутылку (баночку или пузырек), налейте в нее воды и поместите в стоящую на огне кастрюлю с чистой водой так, чтобы склянка не касалась дна вашей кастрюли; вам придется, конечно, подвесить этот пузырек на проволочной петле. Когда вода в кастрюле закипит, то, казалось бы, вслед за тем должна закипеть и вода в пузырьке. Можете, однако, ждать, сколько вам угодно, – вы не дождетесь этого: вода в пузырьке будет горяча, очень горяча, но кипеть она не будет. Кипяток оказывается недостаточно горячим, чтобы вскипятить воду.

Результат как будто неожиданный, между тем его надо было предвидеть. Чтобы довести воду до кипения, недостаточно только нагреть ее до 100 °C: надо еще сообщить ей значительный запас тепла для того, чтобы перевести воду в другое агрегатное состояние, а именно в пар.



Чистая вода кипит при 100 °C; выше этой точки ее температура при обычных условиях не поднимается, сколько бы мы ее ни нагревали. Значит, источник теплоты, с помощью которого мы нагреваем воду в пузырьке, имееттемпературу 100°; он может довести воду в пузырьке также только до 100°. Когда наступит это равенство температур, дальнейшего перехода тепла от воды кастрюли к пузырьку не будет.

Итак, нагревая воду в пузырьке таким способом, мы не можем доставить ей того избытка теплоты, который необходим для перехода воды в пар (каждый грамм воды, нагретый до 100°, требует еще свыше 500 калорий, чтобы перейти в пар). Вот почему вода в пузырьке хотя и нагревается, но не кипит.



Может возникнуть вопрос: чем же отличается вода в пузырьке от воды в кастрюле? Ведь в пузырьке та же вода, только отделенная от остальной массы стеклянной перегородкой; почему же не происходит с ней того же, что и с остальной водой?

Потому что перегородка мешает воде пузырька участвовать в тех течениях, которые перемешивают всю воду в кастрюле. Каждая частица воды в кастрюле может непосредственно коснуться накаленного дна, вода же пузырька соприкасается только с кипятком.

Итак, мы видели, что чистым кипятком вскипятить воду нельзя. Но стоит в кастрюлю всыпать горсть соли, и дело меняется. Соленая вода кипит не при ста градусах, а немного выше и, следовательно, может в свою очередь довести до кипения чистую воду в стеклянном пузырьке.

• Можно ли воду вскипятить снегом?

«Если уж кипяток для этой цели непригоден, то что говорить о снеге!» – ответит иной читатель. Не торопитесь с ответом, а лучше проделайте опыт хотя бы с тем же стеклянным флаконом, который вы только что употребляли.

Налейте в него воды до половины и погрузите в кипящую соленую воду. Когда вода во флаконе закипит, выньте его из кастрюли и быстро закупорьте заранее приготовленной плотной пробкой. Теперь переверните флакон и ждите, пока кипение внутри него прекратится.


Закипание воды в колбе, обливаемой холодной водой


Неожиданный результат охлаждения жестянки


Выждав этот момент, облейте флакон кипятком, – вода не закипит. Но положите на его донышко немного снегу или даже просто облейте его холодной водой, как показано на рисунке, – и вы увидите, что вода закипит… Снег сделал то, чего не мог сделать кипяток!

Это тем более загадочно, что на ощупь флакон не будет особенно горяч. Между тем вы собственными глазами видите, как вода в нем кипит!

Разгадка в том, что снег охладил стенки флакона; вследствие этого пар внутри сгустился в водяные капли. А так как воздух из стеклянного флакона был выгнан еще при кипячении, то теперь вода подвержена в нем гораздо меньшему давлению. Но известно, что при уменьшении давления на жидкость она кипит при температуре более низкой. Мы имеем, следовательно, в нашем флаконе хотя и кипяток, но кипяток негорячий.

Если стенки флакона очень тонки, то внезапное сгущение паров внутри него может вызвать нечто вроде взрыва; давление внешнего воздуха, не встречая достаточного противодействия изнутри флакона, способно раздавить его (вы видите, между прочим, что слово «взрыв» здесь неуместно). Лучше брать поэтому склянку круглую (колбу с выпуклым дном), чтобы воздух давил на свод.

Всего безопаснее производить подобный опыт с жестянкой для керосина, масла и т. п. Вскипятив в ней немного воды, завинтите плотно пробку и облейте посуду холодной водой. Тотчас же жестянка с паром сплющится давлением наружного воздуха, так как пар внутри нее превратится при охлаждении в воду. Жестянка будет измята давлением воздуха, словно по ней ударили тяжелым молотом.

• «Суп из барометра»

В книге «Странствования за границей» американский юморист Марк Твен рассказывает об одном случае своего альпийского путешествия – случае, разумеется, вымышленном:


«Неприятности наши кончились; поэтому люди могли отдохнуть, а у меня, наконец, явилась возможность обратить внимание на научную сторону экспедиции. Прежде всего я хотел определить посредством барометра высоту места, где мы находились, но, к сожалению, не получил никаких результатов. Из моих научных чтений я знал, что не то термометр, не то барометр следует кипятить для получения показаний. Который именно из двух, – я не знал наверное и потому решил прокипятить оба.

И все-таки не получил никаких результатов. Осмотрев оба инструмента, я увидел, что они вконец испорчены: у барометра была только одна медная стрелка, а в шарике термометра болтался комок ртути…



Я отыскал другой барометр; он был совершенно новый и очень хороший. Полчаса кипятил я его в горшке с бобовой похлебкой, которую варил повар. Результат получился неожиданный: инструмент совершенно перестал действовать, но суп приобрел такой сильный привкус барометра, что главный повар – человек очень умный – изменил его название в списке кушаний. Новое блюдо заслужило всеобщее одобрение, так что я приказал готовить каждый день суп из барометра. Конечно, барометр был совершенно испорчен, но я не особенно жалел о нем. Раз он не помог мне определить высоту местности, значит, он больше мне не нужен».


Отбросив шутки, постараемся ответить на вопрос: что же в самом деле следовало «кипятить», термометр или барометр?

Термометр; и вот почему. Из предыдущего опыта мы видели, что чем меньше давление на воду, тем ниже температура ее кипения. Так как с поднятием в горы атмосферное давление уменьшается, то должна вместе с тем понижаться и температура кипения воды.

И действительно, наблюдаются следующие температуры кипения чистой воды при различных давлениях атмосферы:



В Берне (Швейцария), где среднее давление атмосферы 713 мм, вода в открытых сосудах кипит уже при 97,5°, а на вершине Монблана, где барометр показывает 424 мм, кипяток имеет температуру всего 84,5°. С поднятием на каждый километр температура кипения воды падает на 3 °C. Значит, если мы измерим температуру, при которой кипит вода (по выражению Твена, если «будем кипятить термометр»), то, справившись в соответствующей таблице, сможем узнать высоту места. Для этого необходимо, конечно, иметь в распоряжении заранее составленные таблицы, о чем Марк Твен «просто» забыл.

Употребляемые для этой цели приборы – гипсотермометры – не менее удобны для переноски, чем металлические барометры, и дают гораздо более точные показания.

Разумеется, и барометр может служить для определения высоты места, так как он прямо, без всякого «кипячения», показывает давление атмосферы: чем выше мы поднимаемся, тем давление меньше. Но и тут необходимы либо таблицы, показывающие, как уменьшается давление воздуха по мере поднятия над уровнем моря, либо знание соответствующей формулы. Все это будто бы смешалось в голове юмориста и побудило его «варить суп из барометра».

• Всегда ли кипяток горяч?

Бравый ординарец Бен-Зуф, с которым читатель, без сомнения, познакомился по роману Жюля Верна «Гектор Сервадак», был твердо убежден, что кипяток всегда и всюду одинаково горяч. Вероятно, он думал бы так всю жизнь, если бы случаю не угодно было забросить его, вместе с командиром Сервадаком, на… комету. Это капризное светило, столкнувшись с Землей, отрезало от нашей планеты как раз тот участок, где находились оба героя, и унесло их далее по своему эллиптическому пути. И вот тогда-то денщик впервые убедился на собственном опыте, что кипяток вовсе не всюду одинаково горяч. Сделал он это открытие неожиданно, готовя завтрак.



«Бен-Зуф налил воды в кастрюлю, поставил ее на плиту и ждал, когда закипит вода, чтобы опустить в нее яйца, которые казались ему пустыми, так они мало весили.

Менее чем через две минуты вода уже закипела.

– Черт побери! Как огонь греет теперь! – воскликнул Бен-Зуф.

– Не огонь греет сильнее, – ответил, подумав, Сервадак, – а вода закипает скорее.

И, сняв со стены термометр Цельсия, он опустил его в кипящую воду.

Градусник показал только шестьдесят шесть градусов.

– Ого! – воскликнул офицер. – Вода кипит при шестидесяти шести градусах вместо ста!

– Итак, капитан?..

– Итак, Бен-Зуф, советую тебе продержать яйца в кипятке четверть часа.

– Но они будут крутые!

– Нет, дружище, они будут едва сварены.

Причиной этого явления было, очевидно, уменьшение высоты атмосферной оболочки. Воздушный столб над поверхностью почвы уменьшился приблизительно на одну треть, и вот почему вода, подверженная меньшему давлению, кипела при шестидесяти шести градусах вместо ста. Подобное же явление имело бы место на горе, высота которой достигает 11 000 м. И если бы у капитана был барометр, он указал бы ему это уменьшение воздушного давления».

Наблюдения наших героев мы не станем подвергать сомнению: они утверждают, что вода кипела при 66 градусах, и мы примем это как факт. Но весьма сомнительно, чтобы они могли чувствовать себя хорошо в той разреженной атмосфере, в которой они находились.

Автор «Сервадака» совершенно правильно замечает, что подобное явление наблюдалось бы на высоте 11 000 м: там вода, как видно из расчета[2], действительно должна кипеть при 66°. Но давление атмосферы при этом должно быть равно 190 мм ртутного столба, ровно вчетверо меньше нормального. В воздухе, разреженном до такой степени, почти невозможно дышать! Ведь речь идет о высотах, находящихся уже в стратосфере! Мы знаем, что летчики, достигавшие такой высоты без масок, лишались сознания от недостатка воздуха, а между тем Сервадак и его ординарец чувствовали себя сносно. Хорошо, что у Сервадака под рукой не оказалось барометра: иначе романисту пришлось бы заставить этот инструмент показывать не ту цифру, которую он должен был бы показать согласно законам физики.

Если бы наши герои попали не на воображаемую комету, а, например, на Марс, где атмосферное давление не превышает 60–70 мм, им пришлось бы пить еще менее горячий кипяток – всего в 45 градусов!

Наоборот, очень горячий кипяток можно получить на дне глубоких шахт, где давление воздуха значительно больше, чем на поверхности Земли. В шахте глубиною 300 м вода кипит при 101°, на глубине 600 м, – при 102°.

При значительно повышенном давлении закипает вода и в котле паровой машины. Например, при 14 атмосферах вода закипает при 200 градусах! Напротив, под колоколом воздушного насоса можно заставить бурно кипеть воду при обыкновенной комнатной температуре, получая «кипяток» всего градусов в 20.

Загрузка...